1
|
Wu G, Wang D, Xiong F, Wang Q, Liu W, Chen J, Chen Y. The emerging roles of CEACAM6 in human cancer (Review). Int J Oncol 2024; 64:27. [PMID: 38240103 PMCID: PMC10836497 DOI: 10.3892/ijo.2024.5615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Carcinoembryonic antigen (CEA)‑related cell adhesion molecule 6 (CEACAM6) is a cell adhesion protein of the CEA family of glycosyl phosphatidyl inositol anchored cell surface glycoproteins. A wealth of research has demonstrated that CEACAM6 is generally upregulated in pancreatic adenocarcinoma, breast cancer, non‑small cell lung cancer, gastric cancer, colon cancer and other cancers and promotes tumor progression, invasion and metastasis. The transcriptional expression of CEACAM6 is regulated by various factors, including the CD151/TGF‑β1/Smad3 axis, microRNA (miR)‑146, miR‑26a, miR‑29a/b/c, miR‑128, miR‑1256 and DNA methylation. In addition, the N‑glycosylation of CEACAM6 protein at Asn256 is mediated by α‑1,6‑mannosylglycoptotein 6‑β‑N‑acetylglucosaminyltransferase. In terms of downstream signaling pathways, CEACAM6 promotes tumor proliferation by increasing levels of cyclin D1 and cyclin‑dependent kinase 4 proteins. CEACAM6 can activate the ERK1/2/MAPK or SRC/focal adhesion kinase/PI3K/AKT pathways directly or through EGFR, leading to stimulation of tumor proliferation, invasion, migration, resistance to anoikis and chemotherapy, as well as angiogenesis. This article provides a review of the expression pattern, biological function and relationship with prognosis of CEACAM6 in cancer. In summary, CEACAM6 may be a valuable diagnostic biomarker and potential therapeutic target for human cancers exhibiting overexpression of CEACAM6.
Collapse
Affiliation(s)
- Guanhua Wu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Da Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Fei Xiong
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Qi Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Wenzheng Liu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Junsheng Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Yongjun Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
2
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
3
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Garimella SV, Gampa SC, Chaturvedi P. Mitochondria in Cancer Stem Cells: From an Innocent Bystander to a Central Player in Therapy Resistance. Stem Cells Cloning 2023; 16:19-41. [PMID: 37641714 PMCID: PMC10460581 DOI: 10.2147/sccaa.s417842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer continues to rank among the world's leading causes of mortality despite advancements in treatment. Cancer stem cells, which can self-renew, are present in low abundance and contribute significantly to tumor recurrence, tumorigenicity, and drug resistance to various therapies. The drug resistance observed in cancer stem cells is attributed to several factors, such as cellular quiescence, dormancy, elevated aldehyde dehydrogenase activity, apoptosis evasion mechanisms, high expression of drug efflux pumps, protective vascular niche, enhanced DNA damage response, scavenging of reactive oxygen species, hypoxic stability, and stemness-related signaling pathways. Multiple studies have shown that mitochondria play a pivotal role in conferring drug resistance to cancer stem cells, through mitochondrial biogenesis, metabolism, and dynamics. A better understanding of how mitochondria contribute to tumorigenesis, heterogeneity, and drug resistance could lead to the development of innovative cancer treatments.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Kim JY, Jung JH, Lee SJ, Han SS, Hong SH. Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells. Mol Cells 2022; 45:869-876. [PMID: 36172978 PMCID: PMC9794553 DOI: 10.14348/molcells.2022.0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential anti-tumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathione-dependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seon-Sook Han
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- KW-Bio Co., Ltd., Wonju 26487, Korea
| |
Collapse
|
6
|
Kim H, Lee J, Jung SY, Yun HH, Ko JH, Lee JH. SF3B4 Depletion Retards the Growth of A549 Non-Small Cell Lung Cancer Cells via UBE4B-Mediated Regulation of p53/p21 and p27 Expression. Mol Cells 2022; 45:718-728. [PMID: 35996826 PMCID: PMC9589371 DOI: 10.14348/molcells.2022.0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Splicing factor B subunit 4 (SF3B4), a component of the U2-pre-mRNA spliceosomal complex, contributes to tumorigenesis in several types of tumors. However, the oncogenic potential of SF3B4 in lung cancer has not yet been determined. The in vivo expression profiles of SF3B4 in non-small cell lung cancer (NSCLC) from publicly available data revealed a significant increase in SF3B4 expression in tumor tissues compared to that in normal tissues. The impact of SF3B4 deletion on the growth of NSCLC cells was determined using a siRNA strategy in A549 lung adenocarcinoma cells. SF3B4 silencing resulted in marked retardation of the A549 cell proliferation, accompanied by the accumulation of cells at the G0/G1 phase and increased expression of p27, p21, and p53. Double knockdown of SF3B4 and p53 resulted in the restoration of p21 expression and partial recovery of cell proliferation, indicating that the p53/p21 axis is involved, at least in part, in the SF3B4-mediated regulation of A549 cell proliferation. We also provided ubiquitination factor E4B (UBE4B) is essential for p53 accumulation after SF3B4 depletion based on followings. First, co-immunoprecipitation showed that SF3B4 interacts with UBE4B. Furthermore, UBE4B levels were decreased by SF3B4 depletion. UBE4B depletion, in turn, reproduced the outcome of SF3B4 depletion, including reduction of polyubiquitinated p53 levels, subsequent induction of p53/p21 and p27, and proliferation retardation. Collectively, our findings indicate the important role of SF3B4 in the regulation of A549 cell proliferation through the UBE4B/p53/p21 axis and p27, implicating the therapeutic strategies for NSCLC targeting SF3B4 and UBE4B.
Collapse
Affiliation(s)
- Hyungmin Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeehan Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Soon-Young Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
7
|
Kwon YW, Jo HS, Bae S, Seo Y, Song P, Song M, Yoon JH. Application of Proteomics in Cancer: Recent Trends and Approaches for Biomarkers Discovery. Front Med (Lausanne) 2021; 8:747333. [PMID: 34631760 PMCID: PMC8492935 DOI: 10.3389/fmed.2021.747333] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Proteomics has become an important field in molecular sciences, as it provides valuable information on the identity, expression levels, and modification of proteins. For example, cancer proteomics unraveled key information in mechanistic studies on tumor growth and metastasis, which has contributed to the identification of clinically applicable biomarkers as well as therapeutic targets. Several cancer proteome databases have been established and are being shared worldwide. Importantly, the integration of proteomics studies with other omics is providing extensive data related to molecular mechanisms and target modulators. These data may be analyzed and processed through bioinformatic pipelines to obtain useful information. The purpose of this review is to provide an overview of cancer proteomics and recent advances in proteomic techniques. In particular, we aim to offer insights into current proteomics studies of brain cancer, in which proteomic applications are in a relatively early stage. This review covers applications of proteomics from the discovery of biomarkers to the characterization of molecular mechanisms through advances in technology. Moreover, it addresses global trends in proteomics approaches for translational research. As a core method in translational research, the continued development of this field is expected to provide valuable information at a scale beyond that previously seen.
Collapse
Affiliation(s)
- Yang Woo Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Han-Seul Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Sungwon Bae
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Youngsuk Seo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
8
|
Jung SH, You JE, Choi SW, Kang KS, Cho JY, Lyu J, Kim PH. Polycystin-1 Enhances Stemmness Potential of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22094868. [PMID: 34064452 PMCID: PMC8125233 DOI: 10.3390/ijms22094868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 01/01/2023] Open
Abstract
Polycystic Kidney Disease (PKD) is a disorder that affects the kidneys and other organs, and its major forms are encoded by polycystin-1 (PC1) and polycystin-2 (PC2), as PKD1 and PKD2. It is located sandwiched inside and outside cell membranes and interacts with other cells. This protein is most active in kidney cells before birth, and PC1 and PC2 work together to help regulate cell proliferation, cell migration, and interactions with other cells. The molecular relationship and the function between PKD1 and cancer is well known, such as increased or decreased cell proliferation and promoting or suppressing cell migration depending on the cancer cell type specifically. However, its function in stem cells has not been revealed. Therefore, in this study, we investigated the biological function of PC1 and umbilical cord blood-derived mesenchymal stem cell (UCB-MSC). Furthermore, we assessed how it affects cell migration, proliferation, and the viability of cells when expressed in the PKD1 gene. In addition, we confirmed in an ex vivo artificial tooth model generated by the three-dimension printing technique that the ability to differentiate into osteocytes improved according to the expression level of the stemness markers when PKD1 was expressed. This study is the first report to examine the biological function of PKD1 in UCB-MSC. This gene may be capable of enhancing differentiation ability and maintaining long-term stemness for the therapeutic use of stem cells.
Collapse
Affiliation(s)
- Se-Hwa Jung
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
| | - Ji-Eun You
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
| | - Soon-Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.-W.C.); (K.-S.K.)
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.-W.C.); (K.-S.K.)
| | - Je-Yeol Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea;
| | - Jungmook Lyu
- Myung-Gok Eye Research Institute, Department of Medical Science, Konyang University, Daejeon 320-832, Korea;
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
- Correspondence: ; Tel.: +82-42-600-8436; Fax: +82-42-600-8408
| |
Collapse
|