1
|
Stork BA, Dean A, Ortiz AR, Saha P, Putluri N, Planas-Silva MD, Mahmud I, Rajapakshe K, Coarfa C, Knapp S, Lorenzi PL, Kemp BE, Turk BE, Scott JW, Means AR, York B. Calcium/calmodulin-dependent protein kinase kinase 2 regulates hepatic fuel metabolism. Mol Metab 2022; 62:101513. [PMID: 35562082 PMCID: PMC9157561 DOI: 10.1016/j.molmet.2022.101513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The liver is the primary internal metabolic organ that coordinates whole body energy homeostasis in response to feeding and fasting. Genetic ablation or pharmacological inhibition of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) has been shown to significantly improve hepatic health and peripheral insulin sensitivity upon overnutrition with high fat diet. However, the precise molecular underpinnings that explain this metabolic protection have remained largely undefined. METHODS To characterize the role of CaMKK2 in hepatic metabolism, we developed and challenged liver-specific CaMKK2 knockout (CaMKK2LKO) mice with high fat diet and performed glucose and insulin tolerance tests to evaluate peripheral insulin sensitivity. We used a combination of RNA-Sequencing, glucose and fatty acid istotopic tracer studies, a newly developed Seahorse assay for measuring the oxidative capacity of purified peroxisomes, and a degenerate peptide libarary to identify putative CaMKK2 substrates that mechanistically explain the protective effects of hepatic CaMKK2 ablation. RESULTS Consistent with previous findings, we show that hepatic CaMKK2 ablation significantly improves indices of peripheral insulin sensitivity. Mechanistically, we found that CaMKK2 phosphorylates and regulates GAPDH to promote glucose metabolism and PEX3 to blunt peroxisomal fatty acid catabolism in the liver. CONCLUSION CaMKK2 is a central metabolic fuel sensor in the liver that significantly contributes to whole body systems metabolism.
Collapse
Affiliation(s)
- Brittany A Stork
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adam Dean
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrea R Ortiz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pradip Saha
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kimal Rajapakshe
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John W Scott
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, 3065, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|