1
|
Park JY, Mani S, Clair G, Olson HM, Paurus VL, Ansong CK, Blundell C, Young R, Kanter J, Gordon S, Yi AY, Mainigi M, Huh DD. A microphysiological model of human trophoblast invasion during implantation. Nat Commun 2022; 13:1252. [PMID: 35292627 PMCID: PMC8924260 DOI: 10.1038/s41467-022-28663-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Successful establishment of pregnancy requires adhesion of an embryo to the endometrium and subsequent invasion into the maternal tissue. Abnormalities in this critical process of implantation and placentation lead to many pregnancy complications. Here we present a microenigneered system to model a complex sequence of orchestrated multicellular events that plays an essential role in early pregnancy. Our implantation-on-a-chip is capable of reconstructing the three-dimensional structural organization of the maternal-fetal interface to model the invasion of specialized fetal extravillous trophoblasts into the maternal uterus. Using primary human cells isolated from clinical specimens, we demonstrate in vivo-like directional migration of extravillous trophoblasts towards a microengineered maternal vessel and their interactions with the endothelium necessary for vascular remodeling. Through parametric variation of the cellular microenvironment and proteomic analysis of microengineered tissues, we show the important role of decidualized stromal cells as a regulator of extravillous trophoblast migration. Furthermore, our study reveals previously unknown effects of pre-implantation maternal immune cells on extravillous trophoblast invasion. This work represents a significant advance in our ability to model early human pregnancy, and may enable the development of advanced in vitro platforms for basic and clinical research of human reproduction.
Collapse
Affiliation(s)
- Ju Young Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles K Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Young
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Liauw J, Groom K, Ganzevoort W, Gluud C, McKinlay CJD, Sharp A, Mackay L, Kariya C, Lim K, von Dadelszen P, Limpens J, Jakobsen JC. Short-term outcomes of phosphodiesterase type 5 inhibitors for fetal growth restriction: a study protocol for a systematic review with individual participant data meta-analysis, aggregate meta-analysis, and trial sequential analysis. Syst Rev 2021; 10:305. [PMID: 34861900 PMCID: PMC8643016 DOI: 10.1186/s13643-021-01849-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Early onset fetal growth restriction secondary to placental insufficiency can lead to severe maternal and neonatal morbidity and mortality. Pre-clinical studies and a few small randomised clinical trials have suggested that phosphodiesterase type 5 (PDE-5) inhibitors may have protective effects against placental insufficiency in this context; however, robust evidence is lacking. The STRIDER Consortium conducted four randomised trials to investigate the use of a PDE-5 inhibitor, sildenafil, for the treatment of early onset fetal growth restriction. We present a protocol for the pre-planned systematic review with individual participant data meta-analysis, aggregate meta-analysis, and trial sequential analysis of these and other eligible trials. The main objective of this study will be to evaluate the effects of PDE-5 inhibitors on neonatal morbidity compared with placebo or no intervention among pregnancies with fetal growth restriction. METHODS We will search the following electronic databases with no language or date restrictions: OVID MEDLINE, OVID EMBASE, the Cochrane Controlled Register of Trials (CENTRAL), and the clinical trial registers Clinicaltrials.gov and World Health Organisation International Clinical Trials Registry Platform (ICTRP). We will identify randomised trials of PDE-5 inhibitors in singleton pregnancies with growth restriction. Two reviewers will independently screen all citations, full-text articles, and abstract data. Our primary outcome will be infant survival without evidence of serious adverse neonatal outcome. Secondary outcomes will include gestational age at birth and birth weight z-scores. We will assess bias using the Cochrane Risk of Bias 2 tool. We will conduct aggregate meta-analysis using fixed and random effects models, Trial Sequential Analysis, and individual participant data meta-analysis using one- and two-stage approaches. The certainty of evidence will be assessed with GRADE. DISCUSSION This pre-defined protocol will minimise bias during analysis and interpretation of results, toward the goal of providing robust evidence regarding the use of PDE-5 inhibitors for the treatment of early onset fetal growth restriction. SYSTEMATIC REVIEW REGISTRATION PROSPERO (CRD42017069688).
Collapse
Affiliation(s)
- Jessica Liauw
- Department of Obstetrics and Gynaecology, University of British Columbia, Room C420-4500 Oak Street, Vancouver, British Columbia, V6H 3N1, Canada.
| | - Katie Groom
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wessel Ganzevoort
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Andrew Sharp
- Harris-Wellbeing Preterm Birth Centre, University of Liverpool, Liverpool, UK
| | - Laura Mackay
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Ken Lim
- Department of Obstetrics and Gynaecology, University of British Columbia, Room C420-4500 Oak Street, Vancouver, British Columbia, V6H 3N1, Canada
| | | | - Jacqueline Limpens
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Regional Health Research, The Faculty of Heath Sciences, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
3
|
Hisamatsu Y, Murata H, Tsubokura H, Hashimoto Y, Kitada M, Tanaka S, Okada H. Matrix Metalloproteinases in Human Decidualized Endometrial Stromal Cells. Curr Issues Mol Biol 2021; 43:2111-2123. [PMID: 34940120 PMCID: PMC8929033 DOI: 10.3390/cimb43030146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic changes, such as growth, decidualization, shedding, and regeneration, in the human endometrium are regulated by the reciprocal action of female hormones, such as estradiol (E2), and progesterone (P4). Matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) control the invasion of extravillous trophoblast cells after implantation. Several MMPs and TIMPs function in the decidua and endometrial stromal cells (ESCs). Here, we aimed to systematically investigate the changes in MMPs and TIMPs associated with ESC decidualization. We evaluated the expression of 23 MMPs, four TIMPs, and four anti-sense non-coding RNAs from MMP loci. Primary ESC cultures treated with E2 + medroxyprogesterone acetate (MPA), a potent P4 receptor agonist, showed significant down-regulation of MMP3, MMP10, MMP11, MMP12, MMP20, and MMP27 in decidualized ESCs, as assessed by quantitative reverse transcription PCR. Further, MMP15 and MMP19 were significantly upregulated in decidualized ESCs. siRNA-mediated silencing of Heart and Neural Crest Derivatives Expressed 2 (HAND2), a master transcriptional regulator in ESC decidualization, significantly increased MMP15 expression in untreated human ESCs. These results collectively indicate the importance of MMP15 and MMP19 in ESC decidualization and highlight the role of HAND2 in repressing MMP15 transcription, thereby regulating decidualization.
Collapse
Affiliation(s)
- Yoji Hisamatsu
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Hiromi Murata
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Yoshiko Hashimoto
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Osaka 573-1010, Japan;
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Osaka 573-1010, Japan;
- Correspondence: (S.T.); (H.O.)
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
- Correspondence: (S.T.); (H.O.)
| |
Collapse
|
4
|
Ortega MA, Asúnsolo Á, Fraile-Martínez O, Sainz F, Saez MA, Bravo C, De León-Luis JA, Alvarez-Mon MA, Coca S, Álvarez-Mon M, Buján J, García-Honduvilla N. An increase in elastogenic components in the placental villi of women with chronic venous disease during pregnancy is associated with decreased EGFL7 expression level. Mol Med Rep 2021; 24:556. [PMID: 34080027 PMCID: PMC8188638 DOI: 10.3892/mmr.2021.12195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic venous disease (CVD) is the response to a series of hemodynamic changes in the venous system and the onset of this disease is often triggered by pregnancy. Placental tissue is particularly sensitive to the characteristic changes which occurs in venous hypertension. In this regard, changes in the extracellular matrix (ECM), that occur to adapt to this situation, are fundamental to controlling elastogenesis. Therefore, the aim of the present study was to analyze the changes that occur in the mRNA and protein expression level of proteins related to elastogenesis in the placental villi of women diagnosed with CVD, in the third trimester of pregnancy. An observational, analytical and prospective cohort study was conducted, in which the placenta from 62 women with CVD were compared with that in placenta from 52 women without a diagnosis of CVD. Gene and protein expression levels were analyzed using reverse transcription-quantitative PCR and immunohistochemistry, respectively. The results showed a significant decrease in the gene and protein expression level of EGFL7 in the placental villi of women with CVD. By contrast, significant increases in the gene and protein expression level of ECM-related proteins, such as tropoelastin, fibulin 4, fibrillin 1 and members of the lysyl oxidase family (LOX and LOXL-1) were also found in the placental villi of women with CVD. To the best of our knowledge, the results from the present study showed for the first time that CVD during pregnancy was associated with changes in the mRNA and protein expression level in essential components of the EGFL7-modulated elastogenesis process in placental villi.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research, 28034 Madrid, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Felipe Sainz
- University Center for The Defense of Madrid, 28047 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Coral Bravo
- University Center for The Defense of Madrid, 28047 Madrid, Spain
| | - Juan A De León-Luis
- Service of Gynecology and Obstetrics, Section of Fetal Maternal Medicine, Central University Hospital of Defence‑University of Alcalá, 28047 Madrid, Spain
| | - Miguel A Alvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| |
Collapse
|
5
|
Activation of Blood Vessel Development in Endometrial Stromal Cells In Vitro Cocultured with Human Peri-Implantation Embryos Revealed by Single-Cell RNA-Seq. Life (Basel) 2021; 11:life11050367. [PMID: 33919335 PMCID: PMC8143346 DOI: 10.3390/life11050367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022] Open
Abstract
In humans, the maternal endometrium participates in the physical and physiological interaction with the blastocyst to begin implantation. A bidirectional crosstalk is critical for normal implantation and then a successful pregnancy. While several studies have used animal models or cell lines to study this step, little knowledge was acquired to address the role of endometrial cells in humans. Here, we analyzed single-cell sequencing data from a previous study including 24 non-coculture endometrial stromal cells (EmSCs) and 57 EmSCs after coculture with embryos. We further explored the transcriptomic changes in EmSCs and their interactions with trophoblast cells after coculture. Differentially expressed gene (DEG) analysis showed 1783 upregulated genes and 569 downregulated genes in the cocultured embryos. Weight gene coexpression network and gene ontology analysis of these DEGs showed a higher expression of RAMP1, LTBP1, and LRP1 in EmSCs after coculture, indicating the enrichment of biological processes in blood vessel development and female pregnancy. These data imply that EmSCs start blood vessel development at the implantation stage. Compared with endometrium data in vivo at the implantation window, key pathways including epithelial cell development and oxygen response were involved at this stage. Further analysis using CellphoneDB shed light on the interactions between EmSCs and embryonic trophoblasts, suggesting the important role of integrins and fibroblast growth factor pathways during implantation. Taken together, our work reveals the synchronization signaling and pathways happening at the implantation stage involving the acquisition of receptivity in EmSCs and the interaction between EmSCs and trophoblast cells.
Collapse
|
6
|
Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol 2020; 16:479-494. [PMID: 32601352 DOI: 10.1038/s41574-020-0372-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Pre-eclampsia and fetal growth restriction arise from disorders of placental development and have some shared mechanistic features. Initiation is often rooted in the maldevelopment of a maternal-placental blood supply capable of providing for the growth requirements of the fetus in later pregnancy, without exerting undue stress on maternal body systems. Here, we review normal development of a placental bed with a safe and adequate blood supply and a villous placenta-blood interface from which nutrients and oxygen can be extracted for the growing fetus. We consider disease mechanisms that are intrinsic to the maternal environment, the placenta or the interaction between the two. Systemic signalling from the endocrine placenta targets the maternal endothelium and multiple organs to adjust metabolism for an optimal pregnancy and later lactation. This signalling capacity is skewed when placental damage occurs and can deliver a dangerous pathogenic stimulus. We discuss the placental secretome including glycoproteins, microRNAs and extracellular vesicles as potential biomarkers of disease. Angiomodulatory mediators, currently the only effective biomarkers, are discussed alongside non-invasive imaging approaches to the prediction of disease risk. Identifying the signs of impending pathology early enough to intervene and ameliorate disease in later pregnancy remains a complex and challenging objective.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
| | - Jenny E Myers
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Kate Timms
- Lydia Becker Institute of Inflammation and Immunology, The University of Manchester, Manchester, UK
| | - Melissa Westwood
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
7
|
Majali-Martinez A, Hoch D, Tam-Amersdorfer C, Pollheimer J, Glasner A, Ghaffari-Tabrizi-Wizsy N, Beristain AG, Hiden U, Dieber-Rotheneder M, Desoye G. Matrix metalloproteinase 15 plays a pivotal role in human first trimester cytotrophoblast invasion and is not altered by maternal obesity. FASEB J 2020; 34:10720-10730. [PMID: 32614494 PMCID: PMC7496590 DOI: 10.1096/fj.202000773r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 01/13/2023]
Abstract
Adequate anchoring of the placenta in the uterus through invasion of first trimester cytotrophoblasts (CTB) is required for a successful pregnancy. This process is mediated by matrix metalloproteinases (MMPs) and regulated by the maternal environment. Obesity is known to alter the intrauterine milieu and has been related to impaired invasion. We hypothesized that placental MMP15, a novel membrane‐type MMP, is involved in CTB invasion and regulated by maternal obesity in early pregnancy. Thus, in this study MMP15 was immunolocalized to invasive extravillous and interstitial CTB. MMP15 silencing in chorionic villous explants using two different siRNAs reduced trophoblast outgrowth length (−35%, P ≤ .001 and −26%, P < .05) and area (−43%, P ≤ .001 and −36%, P ≤ .01) without altering trophoblast proliferation or apoptosis. Short‐term treatment of primary first trimester trophoblasts with IL‐6 (10 ng/mL), interleukin 10 (IL‐10) (50 ng/mL), and tumor necrosis factor α (TNF‐α) (10 ng/mL) did not affect MMP15 protein levels. Likewise, MMP15 mRNA and protein levels were unaltered between human first trimester placentas from control pregnancies vs those complicated with maternal obesity. Overall, our results suggest that the role of MMP15 in placental development and function in early pregnancy is limited to CTB invasion without being affected by short‐ and long‐term inflammation.
Collapse
Affiliation(s)
| | - Denise Hoch
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Alexander G Beristain
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Park YG, Choi J, Seol JW. Angiopoietin-2 regulated by progesterone induces uterine vascular remodeling during pregnancy. Mol Med Rep 2020; 22:1235-1242. [PMID: 32468067 PMCID: PMC7339584 DOI: 10.3892/mmr.2020.11185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/04/2020] [Indexed: 01/02/2023] Open
Abstract
During pregnancy, the uterus undergoes intense neovascularization and vascular remodeling to supply oxygen and nutrients to the embryo. During this period, progesterone secreted from the ovary has effects on vascular remodeling in the endometrium and interacts with angiogenic factors. However, the exact mechanism of uterine vascular remodeling during pregnancy is poorly understood. Therefore, the aim of the present study was to investigate the association between angiopoietin-2 (Ang-2), one of the angiopoietins, and intrauterine vessel remodeling during pregnancy, and to determine the effect of progesterone on Ang-2 levels. Changes in Ang-2 expression were observed according to quantitative modification of progesterone using pregnant mice and human uterine microvascular endothelial cells. As a result, Ang-2 was observed mainly in the mesometrial region (MR) of the uterus during the period between implantation and placentation. Furthermore, a substantial amount of Ang-2 also appeared in endothelial cells, particularly of the venous sinus region (VSR). Interestingly, Ang-2 expression was increased by progesterone, whereas estrogen had limited effects. To confirm the association between Ang-2 and progesterone, the function of the progesterone receptor (PR) was inhibited using RU486, a blocker of PR. Ang-2 expression and vascular remodeling of the VSR in the uterus were decreased when the functions of progesterone were inhibited. Overall, the regulation of Ang-2 by progesterone/PR was associated with vascular remodeling in the VSR during pregnancy. The present study proposed a solution to prevent pregnancy failure due to a lack of vascularity in the uterus in advance.
Collapse
Affiliation(s)
- Yang-Gyu Park
- Biosafety Research Institute and Laboratory of Biochemistry, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jawun Choi
- Biosafety Research Institute and Laboratory of Biochemistry, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute and Laboratory of Biochemistry, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
9
|
Vangrieken P, Vanterpool SF, van Schooten FJ, Al-Nasiry S, Andriessen P, Degreef E, Alfer J, Kramer BW, von Rango U. Histological villous maturation in placentas of complicated pregnancies. Histol Histopathol 2020; 35:849-862. [PMID: 31985030 DOI: 10.14670/hh-18-205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chorioamnionitis and preeclampsia account for the majority of preterm births worldwide. Thus far, adequate methods for early detection or prevention of these diseases are lacking. In preeclampsia, accelerated villous maturation is believed to compensate placental insufficiency. However, little is known about the effects of placental inflammation in chorioamnionitis on villous maturation. Therefore, we established a set of morphological parameters to evaluate histological villous maturity in pregnancies complicated by chorioamnionitis and preeclampsia. Preterm placentas complicated by chorioamnionitis or preeclampsia were compared to idiopathic preterm placentas and term controls. Histological villous maturation was analyzed by means of 17 histological markers. Fourteen of these markers provided information on absolute and relative numbers of the terminal villi (TV), the extent of their vascularization (using CD31-stained sections) and their exchange capacities. In addition, the numbers of syncytial bridges, syncytial apoptotic knots and shed syncytiotrophoblasts were counted. Accelerated villous maturation in preeclampsia was demonstrated by means of histological villous remodeling and confirmed by 11 relevant markers. Chorioamnionitis, however, only showed increased area of fetal capillaries. In preeclampsia, placentas may transition from growth to maturation earlier than placentas in normal pregnancies, whereas in chorioamnionitis placental changes are more acute and therefore less elaborated at a structural level. Regression analysis suggests the number of all villi and the number of terminal villi as a percentage of all villi as parameters to evaluate histological villous maturity in preeclamptic placentas and to assist diagnosis. However, we would recommend to analyze all 11 relevant parameters to judge placental maturity in detail.
Collapse
Affiliation(s)
- Philippe Vangrieken
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Sizzle F Vanterpool
- Department of Reproductive Medicine, University Hospital Ghent, Ghent, Belgium.,School for Mental Health and Neurosciences (MHeNS), Department of Pediatrics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Frederik J van Schooten
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Salwan Al-Nasiry
- School for Oncology and Developmental Biology (GROW), Department of Obstetrics and Gynaecology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Peter Andriessen
- Department of Pediatrics, Máxima Medical Center, Veldhoven, the Netherlands
| | - Ellen Degreef
- Foundation Laboratory for Pathology and Medical Microbiology (PAMM), Eindhoven, The Netherlands
| | - Joachim Alfer
- Department of Pathology, Kaufbeuren-Ravensburg, Ravensburg, Germany
| | - Boris W Kramer
- School for Mental Health and Neurosciences (MHeNS), Department of Pediatrics, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Oncology and Developmental Biology (GROW), Department of Obstetrics and Gynaecology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ulrike von Rango
- Department of Anatomy and Embryology, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
10
|
Moser G, Guettler J, Forstner D, Gauster M. Maternal Platelets—Friend or Foe of the Human Placenta? Int J Mol Sci 2019; 20:ijms20225639. [PMID: 31718032 PMCID: PMC6888633 DOI: 10.3390/ijms20225639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
Human pregnancy relies on hemochorial placentation, including implantation of the blastocyst and deep invasion of fetal trophoblast cells into maternal uterine blood vessels, enabling direct contact of maternal blood with placental villi. Hemochorial placentation requires fast and reliable hemostasis to guarantee survival of the mother, but also for the neonates. During human pregnancy, maternal platelet count decreases gradually from first, to second, and third trimester. In addition to hemodilution, accelerated platelet sequestration and consumption in the placental circulation may contribute to a decline of platelet count throughout gestation. Local stasis, turbulences, or damage of the syncytiotrophoblast layer can activate maternal platelets within the placental intervillous space and result in formation of fibrin-type fibrinoid. Perivillous fibrinoid is a regular constituent of the normal placenta which is considered to be an important regulator of intervillous hemodynamics, as well as having a role in shaping the developing villous trees. However, exaggerated activation of platelets at the maternal-fetal interface can provoke inflammasome activation in the placental trophoblast, and enhance formation of circulating platelet-monocyte aggregates, resulting in sterile inflammation of the placenta and a systemic inflammatory response in the mother. Hence, the degree of activation determines whether maternal platelets are a friend or foe of the human placenta. Exaggerated activation of maternal platelets can either directly cause or propagate the disease process in placenta-associated pregnancy pathologies, such as preeclampsia.
Collapse
|
11
|
Dunk C, Kwan M, Hazan A, Walker S, Wright JK, Harris LK, Jones RL, Keating S, Kingdom JCP, Whittle W, Maxwell C, Lye SJ. Failure of Decidualization and Maternal Immune Tolerance Underlies Uterovascular Resistance in Intra Uterine Growth Restriction. Front Endocrinol (Lausanne) 2019; 10:160. [PMID: 30949130 PMCID: PMC6436182 DOI: 10.3389/fendo.2019.00160] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Failure of uterine vascular transformation is associated with pregnancy complications including Intra Uterine Growth Restriction (IUGR). The decidua and its immune cell populations play a key role in the earliest stages of this process. Here we investigate the hypothesis that abnormal decidualization and failure of maternal immune tolerance in the second trimester may underlie the uteroplacental pathology of IUGR. Placental bed biopsies were obtained from women undergoing elective caesarian delivery of a healthy term pregnancy, an IUGR pregnancy or a pregnancy complicated by both IUGR and preeclampsia. Decidual tissues were also collected from second trimester terminations from women with either normal or high uterine artery Doppler pulsatile index (PI). Immunohistochemical image analysis and flow cytometry were used to quantify vascular remodeling, decidual leukocytes and decidual status in cases vs. controls. Biopsies from pregnancies complicated by severe IUGR with a high uterine artery pulsatile index (PI) displayed a lack of: myometrial vascular transformation, interstitial, and endovascular extravillous trophoblast (EVT) invasion, and a lower number of maternal leukocytes. Apoptotic mural EVT were observed in association with mature dendritic cells and T cells in the IUGR samples. Second trimester pregnancies with high uterine artery PI displayed a higher incidence of small for gestational age fetuses; a skewed decidual immunology with higher numbers of; CD8 T cells, mature CD83 dendritic cells and lymphatic vessels that were packed with decidual leukocytes. The decidual stromal cells (DSCs) failed to differentiate into the large secretory DSC in these cases, remaining small and cuboidal and expressing lower levels of the nuclear progesterone receptor isoform B, and DSC markers Insulin Growth Factor Binding protein-1 (IGFBP-1) and CD10 as compared to controls. This study shows that defective progesterone mediated decidualization and a hostile maternal immune response against the invading endovascular EVT contribute to the failure of uterovascular remodeling in IUGR pregnancies.
Collapse
Affiliation(s)
- Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- *Correspondence: Caroline Dunk
| | - Melissa Kwan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Aleah Hazan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Sierra Walker
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Julie K. Wright
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Lynda K. Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
- Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom
| | - Rebecca Lee Jones
- Faculty of Biology Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
- Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom
| | - Sarah Keating
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John C. P. Kingdom
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wendy Whittle
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cynthia Maxwell
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen J. Lye
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Behavior of Smooth Muscle Cells under Hypoxic Conditions: Possible Implications on the Varicose Vein Endothelium. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7156150. [PMID: 30498761 PMCID: PMC6220744 DOI: 10.1155/2018/7156150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Varicose veins are a disease with high incidence and prevalence. In the venous wall, the smooth muscle cells (SMCs) act in the vascular homeostasis that secretes multiple substances in response to stimuli. Any alteration of these cells can modify the function and structure of the other venous layers such as the endothelium, resulting in increases in endothelial permeability and release of substances. Therefore, knowing the cellular and molecular mechanisms of varicose veins is imperative. The aims of this study are to understand how SMCs of patients with varicose veins subjected to saphenectomy of the great saphenous vein react under hypoxic cell conditions and to determine the role of vascular endothelial growth factor (VEGF) in this process. We obtained SMCs from human saphenous vein segments from patients with varicose veins (n=10) and from organ donors (n=6) undergoing surgery. Once expanded, the cells were subjected to hypoxic conditions in specific chambers, and expansion was examined through analyzing morphology and the expression of α-actin. Further gene expression studies of HIF-1α, EGLN3, VEGF, TGF-β1, eNOS, and Tie-2 were performed using RT-qPCR. This study reveals the reaction of venous cells to sustained hypoxia. As significant differential gene expression was observed, we were able to determine how venous cells are sensitive to hypoxia. We hypothesize that venous insufficiency leads to cellular hypoxia with homeostatic imbalance. VEGF plays a differential role that can be related to the cellular quiescence markers in varicose veins, which are possible therapeutic targets. Our results show how SMCs are sensitive to hypoxia with a different gene expression. Therefore, we can assume that the condition of venous insufficiency leads to a situation of sustained cellular hypoxia. This situation may explain the cellular response that occurs in the venous wall as a compensatory mechanism.
Collapse
|
13
|
Wang XH, Liu W, Fan DX, Hu WT, Li MQ, Zhu XY, Jin LP. IL‑33 restricts invasion and adhesion of trophoblast cell line JEG3 by downregulation of integrin α4β1 and CD62L. Mol Med Rep 2017; 16:3887-3893. [PMID: 28765940 PMCID: PMC5646966 DOI: 10.3892/mmr.2017.7085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/27/2017] [Indexed: 12/02/2022] Open
Abstract
Interleukin-33 (IL-33) promotes migration of cancer cells through downregulating the expression of E-cadherin. Previous studies have demonstrated that IL-33 stimulates the proliferation of trophoblasts. However, the effect of IL-33 on the adhesion and invasion of trophoblasts has not been investigated in detail. In the present study, the expression of IL-33 and its receptor, IL-1 receptor-like 1 (ST2), was examined in villi from women during early pregnancy using immunohistochemistry. ST2 expression on human trophoblast and choriocarcinoma cell lines JAR, BeWo, JEG3 and HTR8 was confirmed by flow cytometry (FCM) assay. The effect of recombinant human IL-33 (rhIL-33) on adhesion, invasion and associated molecules was analyzed by cell adhesion, Matrigel invasion and FCM assays. The current study identified that human trophoblasts expressed IL-33 and ST2. RhIL-33 inhibited trophoblast invasion and adhesion, and decreased adhesion and invasion-associated molecules such as integrin α4β1 and CD62L. Therefore, these results suggest that IL-33 may serve an important role in limiting invasion and implantation of trophoblasts by adhesion and invasion-associated molecules, contributing to the formation of the placenta and maintenance of normal pregnancy during early pregnancy.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Wei Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Deng-Xuan Fan
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Wen-Ting Hu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Xiao-Yong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
14
|
Strategies for investigating the maternal-fetal interface in the first trimester of pregnancy: What can we learn about pathology? Placenta 2017; 60:145-149. [PMID: 28506493 PMCID: PMC5730536 DOI: 10.1016/j.placenta.2017.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
Abstract
The pathologies of the pregnancy complications pre-eclampsia (PE) and fetal growth restriction (FGR) are established in the first trimester of human pregnancy. In a normal pregnancy, decidual spiral arteries are transformed into wide diameter, non-vasoactive vessels capable of meeting the increased demands of the developing fetus for nutrients and oxygen. Disruption of this transformation is associated with PE and FGR. Very little is known of how these first trimester changes are regulated normally and even less is known about how they are compromised in complicated pregnancies. Interactions between maternal and placental cells are essential for pregnancy to progress and this review will summarise the challenges in investigating this area. We will discuss how first trimester studies of pregnancies with an increased risk of developing PE/FGR have started to provide valuable information about pregnancy at this most dynamic and crucial time. We will discuss where there is scope to progress these studies further by refining the ability to identify compromised pregnancies at an early stage, by integrating information from many cell types from the same pregnancy, and by improving our methods for modelling the maternal-fetal interface in vitro. Pathology of PE/FGR begins in the first trimester. Investigating pregnancies with increased risk of PE/FGR is giving valuable information. This will improve further with advances in identifying compromised pregnancies.
Collapse
|