1
|
Shaw T, Fok R, Courtney E, Li ST, Chiang J, Ngeow J. Missed diagnosis or misdiagnosis: Common pitfalls in genetic testing. Singapore Med J 2023; 64:67-73. [PMID: 36722519 PMCID: PMC9979802 DOI: 10.4103/singaporemedj.smj-2021-467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genetic testing has the power to identify individuals with increased predisposition to disease, allowing individuals the opportunity to make informed management, treatment and reproductive decisions. As genomic medicine continues to be integrated into aspects of everyday patient care and the indications for genetic testing continue to expand, genetic services are increasingly being offered by non-genetic clinicians. The current complexities of genetic testing highlight the need to support and ensure non-genetic professionals are adequately equipped with the knowledge and skills to provide services. We describe a series of misdiagnosed/mismanaged cases, highlighting the common pitfalls in genetic testing to identify the knowledge gaps and where education and support is needed. We highlight that education focusing on differential diagnoses, test selection and result interpretation is needed. Collaboration and communication between genetic and non-genetic clinicians and integration of genetic counsellors into different medical settings are important. This will minimise the risks and maximise the benefits of genetic testing, ensuring adverse outcomes are mitigated.
Collapse
Affiliation(s)
- Tarryn Shaw
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rose Fok
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Eliza Courtney
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Shao-Tzu Li
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Jianbang Chiang
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore,Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore,Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,Correspondence: A/Prof Joanne Ngeow, Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Headquarters & Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore. E-mail:
| |
Collapse
|
2
|
Dettwyler SA, Koeppe ES, Jacobs MF, Stoffel EM. Outcomes of retesting in patients with previously uninformative cancer genetics evaluations. Fam Cancer 2022; 21:375-385. [PMID: 34545504 PMCID: PMC8934750 DOI: 10.1007/s10689-021-00276-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/12/2021] [Indexed: 11/24/2022]
Abstract
Advances in cancer genetics have increased germline pathogenic/likely pathogenic variant (PV/LPV) detection rates. More data is needed to inform which patients with previously uninformative results could benefit most from retesting, especially beyond breast/ovarian cancer populations. Here, we describe retesting outcomes and predictors of PV/LPVs in a cohort of patients unselected by cancer diagnosis. Retrospective chart reviews were conducted for patients at a cancer genetics clinic between 1998 and 2019 who underwent genetic testing (GT) on ≥ 2 dates with ≥ 1 year between tests, with no PV/LPVs on first-line GT. Demographics, retesting indications, and GT details were reviewed to evaluate predictive factors of PV/LPV identification. 139 patients underwent retesting, of whom 24 (17.3%) had a PV/LPV, encompassing 15 genes. 14 PV/LPV carriers (58.3%) only returned for retesting after personal or familial history changes (typically new cancer diagnoses), while 10 (41.7%) retested due to updated GT availability. No specific GT method was most likely to identify PV/LPVs and no specific clinical factors were predictive of a PV/LPV. The identified PV/LPVs were consistent with patients' personal or family histories, but were discordant with the initial referral indication for GT. For 16 (66.7%) PV/LPV carriers, the genetic diagnosis changed clinical management. This study adds to the limited body of literature on retesting outcomes beyond first-line BRCA analysis alone and confirms the utility of multigene panel testing. Retesting certain affected individuals when updated GT is available could result in earlier PV/LPV identification, significantly impacting screening recommendations and potentially reducing cancer-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Erika S Koeppe
- Michigan Medicine Cancer Genetics Clinic, Ann Arbor, MI, USA
| | | | - Elena M Stoffel
- Michigan Medicine Cancer Genetics Clinic, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Bratslavsky G, Mendhiratta N, Daneshvar M, Brugarolas J, Ball MW, Metwalli A, Nathanson KL, Pierorazio PM, Boris RS, Singer EA, Carlo MI, Daly MB, Henske EP, Hyatt C, Middleton L, Morris G, Jeong A, Narayan V, Rathmell WK, Vaishampayan U, Lee BH, Battle D, Hall MJ, Hafez K, Jewett M, Karamboulas C, Pal SK, Hakimi AA, Kutikov A, Iliopoulos O, Linehan WM, Jonasch E, Srinivasan R, Shuch B. Genetic risk assessment for hereditary renal cell carcinoma: Clinical consensus statement. Cancer 2021; 127:3957-3966. [PMID: 34343338 PMCID: PMC8711633 DOI: 10.1002/cncr.33679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Although renal cell carcinoma (RCC) is believed to have a strong hereditary component, there is a paucity of published guidelines for genetic risk assessment. A panel of experts was convened to gauge current opinions. METHODS A North American multidisciplinary panel with expertise in hereditary RCC, including urologists, medical oncologists, clinical geneticists, genetic counselors, and patient advocates, was convened. Before the summit, a modified Delphi methodology was used to generate, review, and curate a set of consensus questions regarding RCC genetic risk assessment. Uniform consensus was defined as ≥85% agreement on particular questions. RESULTS Thirty-three panelists, including urologists (n = 13), medical oncologists (n = 12), genetic counselors and clinical geneticists (n = 6), and patient advocates (n = 2), reviewed 53 curated consensus questions. Uniform consensus was achieved on 30 statements in specific areas that addressed for whom, what, when, and how genetic testing should be performed. Topics of consensus included the family history criteria, which should trigger further assessment, the need for risk assessment in those with bilateral or multifocal disease and/or specific histology, the utility of multigene panel testing, and acceptance of clinician-based counseling and testing by those who have experience with hereditary RCC. CONCLUSIONS In the first ever consensus panel on RCC genetic risk assessment, 30 consensus statements were reached. Areas that require further research and discussion were also identified, with a second future meeting planned. This consensus statement may provide further guidance for clinicians when considering RCC genetic risk assessment. LAY SUMMARY The contribution of germline genetics to the development of renal cell carcinoma (RCC) has long been recognized. However, there is a paucity of guidelines to define how and when genetic risk assessment should be performed for patients with known or suspected hereditary RCC. Without guidelines, clinicians struggle to define who requires further evaluation, when risk assessment or testing should be done, which genes should be considered, and how counseling and/or testing should be performed. To this end, a multidisciplinary panel of national experts was convened to gauge current opinion on genetic risk assessment in RCC and to enumerate a set of recommendations to guide clinicians when evaluating individuals with suspected hereditary kidney cancer.
Collapse
Affiliation(s)
| | - Neil Mendhiratta
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Daneshvar
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James Brugarolas
- Department of Medicine, Division of Hematology-Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mark W. Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam Metwalli
- Department of Surgery, Division of Urology, Howard University Hospital, Washington, DC, USA
| | - Katherine L. Nathanson
- Division of Human Genetics and Translational Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip M. Pierorazio
- Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ronald S. Boris
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric A. Singer
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Maria I. Carlo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Colette Hyatt
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lindsay Middleton
- Department of Medicine, Division of Hematology-Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gloria Morris
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anhyo Jeong
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Vivek Narayan
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ulka Vaishampayan
- Department of Oncology, Karmanos Cancer Center/Wayne State University, Detroit, MI, USA
| | | | - Dena Battle
- The Kidney Cancer Research Alliance, VA, USA
| | - Michael J. Hall
- Department of Surgery, Division of Urology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Khaled Hafez
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Jewett
- Division of Urology, Department of Surgery, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Christina Karamboulas
- Division of Urology, Department of Surgery, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Sumanta K. Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - A. Ari Hakimi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Kutikov
- Department of Surgery, Division of Urology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eric Jonasch
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Brian Shuch
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Rainone M, Singh I, Salo-Mullen EE, Stadler ZK, O'Reilly EM. An Emerging Paradigm for Germline Testing in Pancreatic Ductal Adenocarcinoma and Immediate Implications for Clinical Practice: A Review. JAMA Oncol 2021; 6:764-771. [PMID: 32053139 DOI: 10.1001/jamaoncol.2019.5963] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm with a rising incidence and is a leading public health challenge. Pancreatic ductal adenocarcinoma has been well characterized genomically, with findings of therapeutic actionability that have substantive implications for clinical practice based on recent high-level evidence. Observations Pathogenic germline alterations (PGAs) are relatively common in individuals with PDAC, as evidenced in multiple recent data sets, with a frequency of approximately 10%. The most common PGAs are in BRCA1, BRCA2, and ATM and more rarely in PALB2, MLH1, MSH2, MSH6, PMS2, CDKN2A, and TP53, among others, with an aggregate frequency of 3.8% to 9.7%. These PGAs are of key interest owing to therapeutic actionability and the downstream identification of at-risk family members and possible hereditary cancer syndromes. Approximately 3% to 7% of individuals with PDAC harbor a BRCA1 or BRCA2 mutation, which are among the most frequently mutated genes in PDAC. Recent updates to the American Society of Clinical Oncology and the National Comprehensive Cancer Network guidelines recommend risk assessment for all individuals with PDAC irrespective of personal or family history or ethnicity. Treatment implications include the use of checkpoint inhibitor therapy for mismatch repair-deficient PDAC and the validation of poly-ADP (adenosine diphosphate)-ribose polymerase inhibitor (PARPi) therapy as a maintenance strategy in platinum-sensitive PDAC. Conclusions and Relevance With increasing evidence and slow improvement of outcomes, PDAC has entered the era of precision medicine. Germline mutations have been identified in key genes with an aggregate frequency of 3.8% to 9.7%, several of which are therapeutically actionable with platinum, PARPi, and checkpoint inhibitor therapy. Potential therapeutic targets need to be actively sought and identified.
Collapse
Affiliation(s)
- Michael Rainone
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Mount Sinai St Luke's and Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Isha Singh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Mount Sinai St Luke's and Mount Sinai West Hospitals, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin E Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
5
|
Melas M, Subbiah S, Saadat S, Rajurkar S, McDonnell KJ. The Community Oncology and Academic Medical Center Alliance in the Age of Precision Medicine: Cancer Genetics and Genomics Considerations. J Clin Med 2020; 9:E2125. [PMID: 32640668 PMCID: PMC7408957 DOI: 10.3390/jcm9072125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Recent public policy, governmental regulatory and economic trends have motivated the establishment and deepening of community health and academic medical center alliances. Accordingly, community oncology practices now deliver a significant portion of their oncology care in association with academic cancer centers. In the age of precision medicine, this alliance has acquired critical importance; novel advances in nucleic acid sequencing, the generation and analysis of immense data sets, the changing clinical landscape of hereditary cancer predisposition and ongoing discovery of novel, targeted therapies challenge community-based oncologists to deliver molecularly-informed health care. The active engagement of community oncology practices with academic partners helps with meeting these challenges; community/academic alliances result in improved cancer patient care and provider efficacy. Here, we review the community oncology and academic medical center alliance. We examine how practitioners may leverage academic center precision medicine-based cancer genetics and genomics programs to advance their patients' needs. We highlight a number of project initiatives at the City of Hope Comprehensive Cancer Center that seek to optimize community oncology and academic cancer center precision medicine interactions.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Shanmuga Subbiah
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Glendora, CA 91741, USA;
| | - Siamak Saadat
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Colton, CA 92324, USA;
| | - Swapnil Rajurkar
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Upland, CA 91786, USA;
| | - Kevin J. McDonnell
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
- Center for Precision Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Nasri Nasrabadi P, Nayeri Z, Gharib E, Salmanipour R, Masoomi F, Mahjoubi F, Zomorodipour A. Establishment of a CALU, AURKA, and MCM2 gene panel for discrimination of metastasis from primary colon and lung cancers. PLoS One 2020; 15:e0233717. [PMID: 32469983 PMCID: PMC7259615 DOI: 10.1371/journal.pone.0233717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Metastasis is known as a key step in cancer recurrence and could be stimulated by multiple factors. Calumenin (CALU) is one of these factors which has a direct impact on cancer metastasis and yet, its underlined mechanisms have not been completely elucidated. The current study was aimed to identify CALU co-expressed genes, their signaling pathways, and expression status within the human cancers. To this point, CALU associated genes were visualized using the Cytoscape plugin BisoGenet and annotated with the Enrichr web-based application. The list of CALU related diseases was retrieved using the DisGenNet, and cancer datasets were downloaded from The Cancer Genome Atlas (TCGA) and analyzed with the Cufflink software. ROC curve analysis was used to estimate the diagnostic accuracy of DEGs in each cancer, and the Kaplan–Meier survival analysis was performed to plot the overall survival of patients. The protein level of the signature biomarkers was measured in 40 biopsy specimens and matched adjacent normal tissues collected from CRC and lung cancer patients. Analysis of CALU co-expressed genes network in TCGA datasets indicated that the network is markedly altered in human colon (COAD) and lung (LUAD) cancers. Diagnostic accuracy estimation of differentially expressed genes showed that a gene panel consisted of CALU, AURKA, and MCM2 was able to successfully distinguish cancer tumors from healthy samples. Cancer cases with abnormal expression of the signature genes had a significantly lower survival rate than other patients. Additionally, comparison of CALU, AURKA, and MCM2 proteins between healthy samples, early and advanced tumors showed that the level of these proteins was increased through normal–carcinoma transition in both types of cancers. These data indicate that the interactions between CALU, AURKA, and MCM2 has a pivotal role in cancer development, and thereby needs to be explored in the future.
Collapse
Affiliation(s)
- Parinaz Nasri Nasrabadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Nayeri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Salmanipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Masoomi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Forouzandeh Mahjoubi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Zomorodipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
7
|
Konstantinopoulos PA, Norquist B, Lacchetti C, Armstrong D, Grisham RN, Goodfellow PJ, Kohn EC, Levine DA, Liu JF, Lu KH, Sparacio D, Annunziata CM. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline. J Clin Oncol 2020; 38:1222-1245. [PMID: 31986064 PMCID: PMC8842911 DOI: 10.1200/jco.19.02960] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2019] [Indexed: 08/01/2023] Open
Abstract
PURPOSE To provide recommendations on genetic and tumor testing for women diagnosed with epithelial ovarian cancer based on available evidence and expert consensus. METHODS A literature search and prospectively defined study selection criteria sought systematic reviews, meta-analyses, randomized controlled trials (RCTs), and comparative observational studies published from 2007 through 2019. Guideline recommendations were based on the review of the evidence. RESULTS The systematic review identified 19 eligible studies. The evidence consisted of systematic reviews of observational data, consensus guidelines, and RCTs. RECOMMENDATIONS All women diagnosed with epithelial ovarian cancer should have germline genetic testing for BRCA1/2 and other ovarian cancer susceptibility genes. In women who do not carry a germline pathogenic or likely pathogenic BRCA1/2 variant, somatic tumor testing for BRCA1/2 pathogenic or likely pathogenic variants should be performed. Women with identified germline or somatic pathogenic or likely pathogenic variants in BRCA1/2 genes should be offered treatments that are US Food and Drug Administration (FDA) approved in the upfront and the recurrent setting. Women diagnosed with clear cell, endometrioid, or mucinous ovarian cancer should be offered somatic tumor testing for mismatch repair deficiency (dMMR). Women with identified dMMR should be offered FDA-approved treatment based on these results. Genetic evaluations should be conducted in conjunction with health care providers familiar with the diagnosis and management of hereditary cancer. First- or second-degree blood relatives of a patient with ovarian cancer with a known germline pathogenic cancer susceptibility gene variant should be offered individualized genetic risk evaluation, counseling, and genetic testing. Clinical decision making should not be made based on a variant of uncertain significance. Women with epithelial ovarian cancer should have testing at the time of diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elise C Kohn
- Gynecologic Cancer Therapeutics, National Cancer Institute, Bethesda, MD
| | | | | | - Karen H Lu
- The University of Texas MD Anderson Cancer Center, Houston,TX
| | | | | |
Collapse
|
8
|
Clift KE, Macklin SK, Hines SL. Patients with pathogenic variants for breast cancer other than BRCA1 and BRCA2: qualitative interviews about health care experiences. Hered Cancer Clin Pract 2020; 17:32. [PMID: 31890060 PMCID: PMC6916015 DOI: 10.1186/s13053-019-0132-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background Genetic testing for hereditary cancer syndromes has been revolutionized by next-generation sequencing, which allows for simultaneous review of numerous genes. Multigene panels are regularly offered to patients because of their scope and decreased cost and turnaround time. However, many genes included on larger panels have not been studied as extensively as BRCA1 and BRCA2 (BRCA1/2), and their clinical effects are often not as well established. Methods We identified patients who received positive test results for pathogenic variants of breast cancer genes from January 2012 through May 2018. We mailed a survey and conducted qualitative interviews to explore the personal and health care experiences of patients with pathogenic variants of BRCA1/2 and patients with "other" (ie, non-BRCA1/2 or PALB2; PTEN; ATM; TP53; NBM, RAD51C; MSH6) variants. We compared the experiences of these patients. Results Fifty-nine out of 128 individuals responded to the survey (46%). Thirty-two patients had BRCA1/2 variants, and 27 had other variants. (49 women and 10 men; median [range] age, 63 [34-87] years). We interviewed 21 patients (17 women and 4 men; median [range] age, 59.6 [34-82] years). Of the interview participants, ten patients had BRCA1/2 variants, and 11 had non-BRCA1/2 variants. Patients reported receiving poor information about their genetic test results, and they often educated their physicians about their results. Some patients believed that they had been ignored or "brushed off" by health care professionals because non-BRCA1/2 genes are less understood outside the genetics research community. Patients with BRCA1/2 variants had similar problems with health care providers, despite increased awareness and established guidelines about BRCA1/2. Conclusions Research is required to understand the clinical significance and proper management of diseases attributable to newly characterized hereditary cancer genes. Additional evaluation of patient and provider education should be at the forefront of efforts to improve patient care.
Collapse
Affiliation(s)
- Kristin E Clift
- 1Center for Individualized Medicine, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Sarah K Macklin
- 2Department of Clinical Genomics, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Stephanie L Hines
- 3Internal Medicine, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| |
Collapse
|
9
|
Lodovichi S, Bellè F, Cervelli T, Lorenzoni A, Maresca L, Cozzani C, Caligo MA, Galli A. Effect of BRCA1 missense variants on gene reversion in DNA double-strand break repair mutants and cell cycle-arrested cells of Saccharomyces cerevisiae. Mutagenesis 2019; 35:189-195. [DOI: 10.1093/mutage/gez043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
AbstractEvaluation of the functional impact of germline BRCA1 variants that are likely to be associated to breast and ovarian cancer could help to investigate the mechanism of BRCA1 tumorigenesis. Expression of pathogenic BRCA1 missense variants increased homologous recombination (HR) and gene reversion (GR) in yeast. We thought to exploit yeast genetics to shed light on BRCA1-induced genome instability and tumorigenesis. We determined the effect on GR of several neutral and pathogenic BRCA1 variants in the yeast strain RSY6wt and its isogenic DSB repair mutants, such as mre11∆, rad50∆ and rad51∆. In the RSY6wt, four out of five pathogenic and two out of six neutral variants significantly increased GR; rad51∆ strain, the pathogenic variants C61G and A1708E induced a weak but significant increase in GR. On the other hand, in rad50∆ mutant expressing the pathogenic variants localised at the BRCT domain, a further GR increase was seen. The neutral variant N132K and the VUS A1789T induced a weak GR increase in mre11∆ mutant. Thus, BRCA1 missense variants require specific genetic functions and presumably induced GR by different mechanisms. As DNA repair is regulated by cell cycle, we determined the effect on GR of BRCA1 variants in cell cycle-arrested RSYwt cells. GR is highly BRCA1-inducible in S-phase-arrested cells as compared to G1 or G2. Sequence analysis of genomic DNA from ILV1 revertant clones showed that BRCA1-induced ilv1-92 reversion by base substitution when GR is at least 6-fold over the control. Our study demonstrated that BRCA1 may interfere with yeast DNA repair functions that are active in S-phase causing high level of GR. In addition, we confirmed here that yeast could be a reliable model to investigate the mechanism and genetic requirements of BRCA1-induced genome instability. Finally, developing yeast-based assays to characterise BRCA1 missense variants could be useful to design more precise therapies.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Alessandra Lorenzoni
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Luisa Maresca
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Cozzani
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
10
|
Abstract
Germline mutations in BRCA1 and BRCA2 account for approximately 50% of inherited breast and ovarian cancers. Three founder mutations in BRCA1/2 have been reported in Colombia, but the pattern of mutations in other cancer susceptibility genes is unknown. This study describes the frequency and type of germline mutations in hereditary breast and/or ovarian cancer genes in a referral cancer center in Colombia. Eighty-five women referred to the oncogenetics unit of the Instituto de Cancerologia Las Americas in Medellin (Colombia), meeting testing criteria for hereditary breast and ovarian cancer syndrome (NCCN 2015), who had germline testing with a commercial 25-gene hereditary cancer panel, were included in the analysis. Nineteen patients (22.4%) carried a deleterious germline mutation in a cancer susceptibility gene: BRCA1 (7), BRCA2 (8), PALB2 (1), ATM (1), MSH2 (1) and PMS2 (1). The frequency of mutations in BRCA1/2 was 17.6%. One BRCA2 mutation (c.9246dupG) was recurrent in five non-related individuals and is not previously reported in the country. Seventeen mutation-carriers had a diagnosis of breast cancer (median age of diagnosis of 36 years) and two of ovarian cancer. All BRCA1 mutation-carriers with breast cancer had triple negative tumors (median age of diagnosis of 31 years). Variants of unknown significance were reported in 35% of test results. This is the first report of a multi-gene study for hereditary breast and/or ovarian cancer in a Latin American country. We found a high frequency and a wide spectrum of germline mutations in cancer susceptibility genes in Colombian patients, some of which were not previously reported in the country. We observed a very low frequency of known Colombian founder BRCA1/2 mutations (1.2%) and we found mutations in other genes such as PALB2, ATM, MSH2 and PMS2. Our results highlight the importance of performing multi-gene panel testing, including comprehensive BRCA1/2 analysis (full gene sequencing and large rearrangement analysis), in high-risk breast and/or ovarian cancer patients in Colombia.
Collapse
|
11
|
Theobald KA, Susswein LR, Marshall ML, Roberts ME, Mester JL, Speyer D, Williams RNW, Knapke SC, Solomon SR, Murphy PD, Klein RT, Hruska KS, Solomon BD. Utility of Expedited Hereditary Cancer Testing in the Surgical Management of Patients with a New Breast Cancer Diagnosis. Ann Surg Oncol 2018; 25:3556-3562. [PMID: 30167906 DOI: 10.1245/s10434-018-6581-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Knowledge of a germline pathogenic/likely pathogenic variant (PV) may inform breast cancer management. BRCA1/2 PV often impact surgical decisions, but data for multi-gene panel testing are lacking. Expedited genetic testing reduces turn-around times based on request for treatment-related decision making. This report aims to describe the clinical utility of expedited multi-gene panel testing for patients with newly diagnosed breast cancer. METHODS Clinical and demographic information were reviewed for patients with newly diagnosed female breast cancer undergoing expedited panel testing between 2013 and 2017. The National Comprehensive Cancer Network guidelines (NCCN, version 1.2018) were evaluated in terms of published management recommendations for the genes in which PVs were identified. RESULTS The overall PV yield was 9.5% (678/7127) for women undergoing expedited panel testing, with 700 PVs identified among 678 women. PVs were identified in genes other than BRCA1/2 in 55.9% (391/700) of cases. The NCCN guidelines recommend management for the genes in which 96.6% (676/700) of PVs are identified. The NCCN guidelines also recommend risk-reducing mastectomy for 46.0% (322/700) of PVs identified. An additional 45.6% (319/700) of PVs were identified in genes for which NCCN recommends mastectomy based on family history. In addition, 49.9% (349/700) of PVs were in genes with NCCN guidelines recommending prophylactic surgery for tissues other than breast. CONCLUSION A majority of the patients with newly diagnosed breast cancer were candidates for surgical intervention according to the NCCN guidelines, and half of these patients would have been missed if only BRCA1/2 testing had been ordered. Expedited multi-gene hereditary cancer panel testing should be considered as a first-line approach to provide comprehensive information for breast cancer management.
Collapse
|
12
|
Valentini V, Zelli V, Rizzolo P, Silvestri V, Alimandi M, D'Aloia MM, Giustini S, Calvieri S, Richetta AG, Monteleone G, Ottini L. PIK3CA c.3140A>G mutation in a patient with suspected Proteus Syndrome: a case report. Clin Case Rep 2018; 6:1358-1363. [PMID: 29988677 PMCID: PMC6028416 DOI: 10.1002/ccr3.1546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/20/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
We present a patient with suspected Proteus Syndrome, an overgrowth disorder associated with AKT1c.49G>A mutation. NGS analysis detected PIK3CAc.3140A>G mutation in the patient's affected tissue allowing for PROS (PIK3CA-related overgrowth spectrum) diagnosis. The overlapping clinical features in overgrowth disorders highlight the importance of molecular testing for a correct diagnosis.
Collapse
Affiliation(s)
| | - Veronica Zelli
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Piera Rizzolo
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | | | - Maurizio Alimandi
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | | | - Sandra Giustini
- Department of Internal Medicine and Medical SpecialtiesUnit of DermatologySapienza University of RomeRomeItaly
| | - Stefano Calvieri
- Department of Internal Medicine and Medical SpecialtiesUnit of DermatologySapienza University of RomeRomeItaly
| | - Antonio Giovanni Richetta
- Department of Internal Medicine and Medical SpecialtiesUnit of DermatologySapienza University of RomeRomeItaly
| | - Giovanni Monteleone
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly
| | - Laura Ottini
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
13
|
|
14
|
Abstract
Conducting randomized controlled trials (RCTs) in patients with germline mutations in genes that predispose to adult-onset cancer is hampered by the rarity of these mutations, barriers to their identification, and challenges inherent to randomizing high-risk individuals as part of a clinical trial. Most of the clinically relevant RCTs have been conducted in 3 syndromes in only some of the high-risk genes for which clinical testing is currently available. This article reviews the surgical, screening, and chemoprevention RCTs in each of the syndromes in clinically relevant studies conducted in the past 10 years.
Collapse
|
15
|
Murphy AE, Hussain L, Ho C, Dunki-Jacobs E, Lee D, Tameron A, Huelsman K, Rice C, Wexelman BA. Preoperative Panel Testing for Hereditary Cancer Syndromes Does Not Significantly Impact Time to Surgery for Newly Diagnosed Breast Cancer Patients Compared with BRCA1/2 Testing. Ann Surg Oncol 2017; 24:3055-3059. [DOI: 10.1245/s10434-017-5957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 11/18/2022]
|
16
|
Collins SC. Precision reproductive medicine: multigene panel testing for infertility risk assessment. J Assist Reprod Genet 2017; 34:967-973. [PMID: 28470451 DOI: 10.1007/s10815-017-0938-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022] Open
Abstract
The concept of precision medicine relies on a thorough understanding of the consequences of unique features of individual patients, such as environmental exposures and genetic profiles. A key component of implementing individualized care in this paradigm will be improved assessment of genetic risk. Compared with single gene tests, multigene panel testing-which has recently become commercially available for female infertility-offers the possibility of a more comprehensive and efficient risk evaluation. However, as the use of multigene panel testing for breast cancer risk has shown, this approach must be used judiciously to ensure its usefulness in a clinical setting. Key challenges which have been encountered in oncology include the interpretation of gene variants of questionable clinical effect and a lack of evidence to guide management after variants are identified. In this review, the core concepts of multigene panel testing for risk assessment are discussed, with careful attention to both its shortcomings as well as its potential for benefit in reproductive medicine.
Collapse
Affiliation(s)
- Stephen C Collins
- Division of Reproductive Endocrinology and Infertility, Yale School of Medicine, 150 Sargent Drive, Second Floor, New Haven, CT, 06511, USA.
| |
Collapse
|
17
|
Vysotskaia VS, Hogan GJ, Gould GM, Wang X, Robertson AD, Haas KR, Theilmann MR, Spurka L, Grauman PV, Lai HH, Jeon D, Haliburton G, Leggett M, Chu CS, Iori K, Maguire JR, Ready K, Evans EA, Kang HP, Haque IS. Development and validation of a 36-gene sequencing assay for hereditary cancer risk assessment. PeerJ 2017; 5:e3046. [PMID: 28243543 PMCID: PMC5326550 DOI: 10.7717/peerj.3046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
The past two decades have brought many important advances in our understanding of the hereditary susceptibility to cancer. Numerous studies have provided convincing evidence that identification of germline mutations associated with hereditary cancer syndromes can lead to reductions in morbidity and mortality through targeted risk management options. Additionally, advances in gene sequencing technology now permit the development of multigene hereditary cancer testing panels. Here, we describe the 2016 revision of the Counsyl Inherited Cancer Screen for detecting single-nucleotide variants (SNVs), short insertions and deletions (indels), and copy number variants (CNVs) in 36 genes associated with an elevated risk for breast, ovarian, colorectal, gastric, endometrial, pancreatic, thyroid, prostate, melanoma, and neuroendocrine cancers. To determine test accuracy and reproducibility, we performed a rigorous analytical validation across 341 samples, including 118 cell lines and 223 patient samples. The screen achieved 100% test sensitivity across different mutation types, with high specificity and 100% concordance with conventional Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). We also demonstrated the screen's high intra-run and inter-run reproducibility and robust performance on blood and saliva specimens. Furthermore, we showed that pathogenic Alu element insertions can be accurately detected by our test. Overall, the validation in our clinical laboratory demonstrated the analytical performance required for collecting and reporting genetic information related to risk of developing hereditary cancers.
Collapse
Affiliation(s)
| | - Gregory J. Hogan
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Genevieve M. Gould
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Xin Wang
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Alex D. Robertson
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
- Current affiliation: Color Genomics, Inc., Burlingame, CA, United States
| | - Kevin R. Haas
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Mark R. Theilmann
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Lindsay Spurka
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Peter V. Grauman
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Henry H. Lai
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Diana Jeon
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Genevieve Haliburton
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Matt Leggett
- Project Management Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Clement S. Chu
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Kevin Iori
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Jared R. Maguire
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Kaylene Ready
- Medical Affairs Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Eric A. Evans
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
| | - Hyunseok P. Kang
- Clinical Laboratory, Counsyl, Inc, South San Francisco, California, United States
| | - Imran S. Haque
- Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States
- Current affiliation: Freenome, Inc., South San Francisco, CA, United States
| |
Collapse
|