1
|
Kassa J, Korábečný J, Nepovimová E. The Evaluation of Benefit of Newly Prepared Reversible Inhibitors of Acetylcholinesterase and Commonly Used Pyridostigmine as Pharmacological Pretreatment of Soman-Poisoned Mice. ACTA MEDICA (HRADEC KRALOVE) 2017; 60:37-43. [PMID: 28418831 DOI: 10.14712/18059694.2017.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
AIM The ability of four newly prepared reversible inhibitors of acetylcholinesterase (6-chlorotacrine, 7-phenoxytacrine, compounds 1 and 2) and currently used carbamate pyridostigmine to increase the resistance of mice against soman and the efficacy of antidotal treatment of soman-poisoned mice was evaluated. METHODS The evaluation of the effect of pharmacological pretreatment is based on the identification of changes of soman-induced toxicity that was evaluated by the assessment of its LD50 value and its 95% confidence limit using probitlogarithmical analysis of death occurring within 24 h after administration of soman. RESULTS 6-chlorotacrine was only able to markedly protect mice against acute toxicity of soman. In addition, the pharmacological pretreatment with 6-chlorotacrine or compound 2 was able to increase the efficacy of antidotal treatment (the oxime HI-6 in combination with atropine) of soman-poisoned mice. The other newly prepared reversible inhibitors of acetylcholinesterase (7-phenoxytacrine, compound 1) as well as commonly used pyridostigmine did not influence the efficacy of antidotal treatment. CONCLUSION These findings demonstrate that pharmacological pretreatment of somanpoisoned mice can be promising and useful in the case of administration of 6-chlorotacrine and partly compound 2.
Collapse
Affiliation(s)
- Jiří Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic.
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Eugenie Nepovimová
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Kassa J, Korábečný J. Dose Dependent Prophylactic Efficacy of 6-Chlorotacrine in Soman-Poisoned Mice. ACTA MEDICA (HRADEC KRALOVE) 2017; 60:140-145. [PMID: 29716679 DOI: 10.14712/18059694.2018.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
AIM The influence of the dose on the ability of promising newly prepared reversible inhibitor of acetylcholinesterase (6-chlorotacrine) to increase the resistance of mice against soman and the efficacy of antidotal treatment of soman-poisoned mice was evaluated. METHODS The evaluation of the effect of pharmacological pretreatment is based on the identification of changes of soman-induced toxicity that was evaluated by the assessment of its LD50 value and its 95% confidence limit using probit-logarithmical analysis of death occurring within 24 hrs after administration of soman. RESULTS The dose of 6-chlorotacrine significantly influences the prophylactic efficacy of 6-chlorotacrine. Its highest dose was only able to significantly protect mice against acute toxicity of soman and increase the efficacy of antidotal treatment (atropine in combination with the oxime HI-6) of soman-poisoned mice. In addition, the highest dose of 6-chlorotacrine was significantly more effective to protect mice from soman poisoning than its lowest dose. CONCLUSION These findings demonstrate the important influence of the dose of 6-chlorotacine on its prophylactic efficacy in the case of pharmacological pretreatment of soman poisoning in mice.
Collapse
Affiliation(s)
- Jiří Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Králové, Czech Republic.
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
|
4
|
Chen J, Pan H, Chen C, Wu W, Iskandar K, He J, Piermartiri T, Jacobowitz DM, Yu QS, McDonough JH, Greig NH, Marini AM. (-)-Phenserine attenuates soman-induced neuropathology. PLoS One 2014; 9:e99818. [PMID: 24955574 PMCID: PMC4067273 DOI: 10.1371/journal.pone.0099818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022] Open
Abstract
Organophosphorus (OP) nerve agents are deadly chemical weapons that pose an alarming threat to military and civilian populations. The irreversible inhibition of the critical cholinergic degradative enzyme acetylcholinesterase (AChE) by OP nerve agents leads to cholinergic crisis. Resulting excessive synaptic acetylcholine levels leads to status epilepticus that, in turn, results in brain damage. Current countermeasures are only modestly effective in protecting against OP-induced brain damage, supporting interest for evaluation of new ones. (-)-Phenserine is a reversible AChE inhibitor possessing neuroprotective and amyloid precursor protein lowering actions that reached Phase III clinical trials for Alzheimer's Disease where it exhibited a wide safety margin. This compound preferentially enters the CNS and has potential to impede soman binding to the active site of AChE to, thereby, serve in a protective capacity. Herein, we demonstrate that (-)-phenserine protects neurons against soman-induced neuronal cell death in rats when administered either as a pretreatment or post-treatment paradigm, improves motoric movement in soman-exposed animals and reduces mortality when given as a pretreatment. Gene expression analysis, undertaken to elucidate mechanism, showed that (-)-phenserine pretreatment increased select neuroprotective genes and reversed a Homer1 expression elevation induced by soman exposure. These studies suggest that (-)-phenserine warrants further evaluation as an OP nerve agent protective strategy.
Collapse
Affiliation(s)
- Jun Chen
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Hongna Pan
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Cynthia Chen
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Wei Wu
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Kevin Iskandar
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Jeffrey He
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Tetsade Piermartiri
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - David M. Jacobowitz
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Qian-Sheng Yu
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - John H. McDonough
- Pharmacology Branch, Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ann M. Marini
- Neurology Department, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Kassa J, Korabecny J, Sepsova V, Tumova M. The Evaluation of Prophylactic Efficacy of Newly Developed Reversible Inhibitors of Acetylcholinesterase in Soman-Poisoned Mice - A Comparison with Commonly Used Pyridostigmine. Basic Clin Pharmacol Toxicol 2014; 115:571-6. [DOI: 10.1111/bcpt.12269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Jiri Kassa
- Department of Toxicology; Faculty of Military Health Sciences; Hradec Kralove Czech Republic
| | - Jan Korabecny
- Department of Toxicology; Faculty of Military Health Sciences; Hradec Kralove Czech Republic
| | - Vendula Sepsova
- Department of Toxicology; Faculty of Military Health Sciences; Hradec Kralove Czech Republic
| | - Martina Tumova
- Department of Toxicology; Faculty of Military Health Sciences; Hradec Kralove Czech Republic
| |
Collapse
|
6
|
Nambiar MP, Wright BS, Rezk PE, Smith KB, Gordon RK, Moran TS, Richards SM, Sciuto AM. Development of a microinstillation model of inhalation exposure to assess lung injury following exposure to toxic chemicals and nerve agents in Guinea pigs. Toxicol Mech Methods 2012; 16:295-306. [PMID: 20021028 DOI: 10.1080/15376510600748760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Respiratory disturbances due to chemical warfare nerve agents (CWNAs) are the starting point of mass casualty and the primary cause of death by these weapons of terror and mass destruction. However, very few studies have been implemented to assess respiratory toxicity and exacerbation induced by CWNAs, especially methylphosphonothioic acid S-(2-(bis(1-methylethyl)amino)ethyl)O-ethyl ester (VX). In this study, we developed a microinstillation technique of inhalation exposure to assess lung injury following exposure to CWNAs and toxic chemicals. Guinea pigs were gently intubated by placing a microcatheter into the trachea 1.5 to 2.0 cm centrally above the bifurcation. This location is crucial to deliver aerosolized agents uniformly to the lung's lobes. The placement of the tube is calculated by measuring the distance from the upper front teeth to the tracheal bifurcation, which is typically 8.5 cm for guinea pigs of equivalent size and a weight range of 250 g to 300 g. The catheter is capable of withstanding 100 psi pressure; the terminus has five peripheral holes to pump air that aerosolizes the nerve agent that is delivered in the central hole. The microcatheter is regulated by a central control system to deliver the aerosolized agent in a volume lower than the tidal volume of the guinea pigs. The average particle size of the nerve agent delivered was 1.48 +/- 0.07 micrometer. The microinstillation technology has been validated by exposing the animals to Coomassie brilliant blue, which showed a uniform distribution of the dye in different lung lobes. In addition, the concentration of the dye in the lungs correlated with the dose/time of exposure. Furthermore, histopathological analysis confirmed the absence of barotraumas following micoinstillation. This novel technique delivers the agent safely, requires less amount of agent, avoids exposure to skin, pelt, and eye, and circumvents the concern of deposition of the particles in the nasal and palette due to the switching of breathing from nasal to oronasal in whole-body dynamic chamber or nose only exposure. Currently, we are using this inhalation exposure technique to investigate lung injuries and respiratory disturbances following direct exposure to VX.
Collapse
Affiliation(s)
- Madhusoodana P Nambiar
- Department of Biochemical Pharmacology/Division of Biochemistry, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910-7500, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen Y. Organophosphate-induced brain damage: mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. Neurotoxicology 2012; 33:391-400. [PMID: 22498093 DOI: 10.1016/j.neuro.2012.03.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/24/2012] [Accepted: 03/25/2012] [Indexed: 02/06/2023]
Abstract
Organophosphate (OP)-induced brain damage is defined as progressive damage to the brain, resulting from the cholinergic neuronal excitotoxicity and dysfunction induced by OP-induced irreversible AChE inhibition. This delayed secondary neuronal damage that occurs mainly in the cholinergic regions of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, might be largely responsible for persistent profound neuropsychiatric and neurological impairments (memory, cognitive, mental, emotional, motor and sensory deficits) in the victims of OP poisoning. Neuroprotective strategies for attenuating OP-induced brain damage should target different development stages of OP-induced brain damage, and may include but not limited to: (1) Antidote therapies with atropine and related efficient anticholinergic drugs; (2) Anti-excitotoxic therapies targeting attenuation of cerebral edema and inflammatory reaction, blockage of calcium influx, inhibition of apoptosis program, and the control of seizures; (3) Neuroprotective strategies using cytokines, antioxidants and NMDAR antagonists (a single drug or a combination of drugs) to slow down the process of secondary neuronal damage; and (4) Therapies targeting individual symptoms or clusters of chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may help limit or prevent secondary neuronal damage at the early stage of OP poisoning and attenuate the subsequent neuropsychiatric and neurological impairments, thus reducing the long-term disability caused by exposure to OPs.
Collapse
Affiliation(s)
- Yun Chen
- BrightstarTech, Inc., 23102 Meadow Mist Road, Clarksburg, MD 20871, USA.
| |
Collapse
|
8
|
Deterioration in brain and heart functions following a single sub-lethal (0.8 LCt50) inhalation exposure of rats to sarin vapor: a putative mechanism of the long term toxicity. Toxicol Appl Pharmacol 2011; 253:31-7. [PMID: 21419149 DOI: 10.1016/j.taap.2011.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/06/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022]
Abstract
The main injuries among victims of the terrorist act in the Tokyo subway resulted from sub-lethal inhalation and whole body exposure to sarin vapor. In order to study the long term effects of such exposure and to simulate these conditions, freely moving rats were exposed to sarin vapor (27.2±1.7 μg/l) for 10 min. About 50% of the rats showed no overt symptoms and the rest had mild to moderate clinical symptoms that subsided within 4h following exposure. A reduction of weight was noted during the first 3 days with full recovery on the 4th day. Rat's heart was challenged with epinephrine 1 and 6 months post exposure. A significant reduction in the threshold for epinephrine-induced arrhythmia (EPIA) was noted in rats exposed to sarin. A time dependent increase in the kD and Bmax values of muscarinic auto receptors (M2) was recorded in the rat's cortex and striatum. No changes were recorded in the rats' brain trans locator protein (TSPO) levels, concomitant with no observed changes in the animals' performance in A Morris water maze test. A significant increase in open field activity was noted 6 months following exposure to sarin vapor as well as a significant decrease in prostaglandin E₂ (PGE₂) production in the brain. It is speculated that down regulation of the M2 auto receptor function, caused hyper reactivity of the cholinergic system which leads to the changes described above. The continuous reduction in M2 auto-receptor system through an unknown mechanism may be the cause for long lasting decline in sarin-exposed casualties' health.
Collapse
|
9
|
Liu P, Aslan S, Li X, Buhner DM, Spence JS, Briggs RW, Haley RW, Lu H. Perfusion deficit to cholinergic challenge in veterans with Gulf War Illness. Neurotoxicology 2010; 32:242-6. [PMID: 21147163 DOI: 10.1016/j.neuro.2010.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
A highly plausible etiology for Gulf War Illness (GWI) is that the neural damage and cognitive deficits are associated with excessive exposure to cholinesterase-inhibiting cholinergic stimulants. Our previous SPECT study provided strong indication that cerebral blood flow (CBF) in veterans with GWI may be different from those of unaffected control veterans. The present study confirmed and extended previous findings that patients with GWI have abnormal response to an inhibitory cholinergic challenge, physostigmine infusion, when compared to age-gender-education matched control veterans. The MRI-based arterial spin labeling (ASL) and phase-contrast techniques have several key advantages over SPECT, including shorter experiment duration, complete non-invasiveness, and higher spatial and temporal resolutions, and therefore may provide a cost-effective biomarker for characterization of GWI.
Collapse
Affiliation(s)
- Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Qashu F, Braga MFM. Primary brain targets of nerve agents: the role of the amygdala in comparison to the hippocampus. Neurotoxicology 2009; 30:772-6. [PMID: 19591865 PMCID: PMC2761531 DOI: 10.1016/j.neuro.2009.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/20/2009] [Accepted: 06/30/2009] [Indexed: 12/01/2022]
Abstract
Exposure to nerve agents and other organophosphorus acetylcholinesterases used in industry and agriculture can cause death, or brain damage, producing long-term cognitive and behavioral deficits. Brain damage is primarily caused by the intense seizure activity induced by these agents. Identifying the brain regions that respond most intensely to nerve agents, in terms of generating and spreading seizure activity, along with knowledge of the physiology and biochemistry of these regions, can facilitate the development of pharmacological treatments that will effectively control seizures even if administered when seizures are well underway. Here, we contrast the pathological (neuronal damage) and pathophysiological (neuronal activity) findings of responses to nerve agents in the amygdala and the hippocampus, the two brain structures that play a central role in the generation and spread of seizures. The evidence so far suggests that exposure to nerve agents causes significantly more damage in the amygdala than in the hippocampus. Furthermore, in in vitro brain slices, the amygdala generates prolonged, seizure-like neuronal discharges in response to the nerve agent soman, at a time when the hippocampus generates only interictal-like activity. In vivo experiments are now required to confirm the primary role that the amygdala seems to play in nerve agent-induced seizure generation.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
11
|
Haley RW, Spence JS, Carmack PS, Gunst RF, Schucany WR, Petty F, Devous MD, Bonte FJ, Trivedi MH. Abnormal brain response to cholinergic challenge in chronic encephalopathy from the 1991 Gulf War. Psychiatry Res 2009; 171:207-20. [PMID: 19230625 DOI: 10.1016/j.pscychresns.2008.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 04/10/2008] [Accepted: 05/06/2008] [Indexed: 01/14/2023]
Abstract
Several case definitions of chronic illness in veterans of the 1991 Persian Gulf War have been linked epidemiologically with environmental exposure to cholinesterase-inhibiting chemicals, which cause chronic changes in cholinergic receptors in animal models. Twenty-one chronically ill Gulf War veterans (5 with symptom complex 1, 11 with complex 2, and 5 with complex 3) and 17 age-, sex- and education-matched controls, underwent an 99mTc-HMPAO-SPECT brain scan following infusion of saline and >48 h later a second scan following infusion of physostigmine in saline. From each SPECT image mean normalized regional cerebral blood flow (nrCBF) from 39 small blocks of correlated voxels were extracted with geostatistical spatial modeling from eight deep gray matter structures in each hemisphere. Baseline nrCBF in symptom complex 2 was lower than controls throughout deep structures. The change in nrCBF after physostigmine (challenge minus baseline) was negative in complexes 1 and 3 and controls but positive in complex 2 in some structures. Since effects were opposite in different groups, no finding typified the entire patient sample. A hold-out discriminant model of nrCBF from 17 deep brain blocks predicted membership in the clinical groups with sensitivity of 0.95 and specificity of 0.82. Gulf War-associated chronic encephalopathy in a subset of veterans may be due to neuronal dysfunction, including abnormal cholinergic response, in deep brain structures.
Collapse
Affiliation(s)
- Robert W Haley
- Epidemiology Division, Departments of Internal Medicine and Clinical Science, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Assessment of low level whole-body soman vapor exposure in rats. Neurotoxicol Teratol 2009; 31:110-8. [DOI: 10.1016/j.ntt.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/22/2022]
|
13
|
Behavioral evaluation of rats following low-level inhalation exposure to sarin. Pharmacol Biochem Behav 2009; 91:517-25. [DOI: 10.1016/j.pbb.2008.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/08/2008] [Accepted: 09/11/2008] [Indexed: 11/23/2022]
|
14
|
Bajgar J, Sevelová L, Krejcová G, Fusek J, Vachek J, Kassa J, Herink J, de Jong LPA, Benschop HP. Biochemical and Behavioral Effects of Soman Vapors in Low Concentrations. Inhal Toxicol 2008; 16:497-507. [PMID: 15204741 DOI: 10.1080/08958370490442430] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Soman belongs to the most dangerous nerve agents because of the low effectiveness of the presently available antidotes. Soman acts by inhibiting acetylcholinesterase (AChE) both peripherally and centrally, with a subsequent accumulation of neuromediator acetylcholine and other metabolic changes. From the data published in literature it can be concluded that exposure to nerve agents leading to acute effects or chronic exposure to nerve agents may lead to delayed and persistent adverse effects. The aim of this study was to demonstrate changes in AChE and butyrylcholinesterase (BuChE) activities, stressogenic markers (i.e., tyrosine aminotransferase [TAT] activity, and plasma corticosterone level), and neuroexcitability and behavior 24 h and 4 wk following a single soman inhalation exposure at low level. AChE activity in erythrocytes and BuChE activity in plasma was decreased (dependent on the dose of soman) 24 h and 4 wk after the exposure. A similar decrease in AChE activity in different brain parts was observed. One of the stressogenic parameters, TAT, was changed 24 h after exposure only. Behavior of experimental animals was changed 24 h after the exposure, and 4 behavioral parameters persisted 4 wk after the exposure. Neuroexcitability was increased at 24 h after the exposure and had become about normal 4 wk after the exposure. Summarizing, long-term effects (4 wk) were observed after inhalation exposure of guinea pigs to sublethal concentrations of soman.
Collapse
Affiliation(s)
- Jiri Bajgar
- Purkyne Military Medical Academy, Department of Toxicology, Hradec Králové, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grauer E, Chapman S, Rabinovitz I, Raveh L, Weissman BA, Kadar T, Allon N. Single whole-body exposure to sarin vapor in rats: Long-term neuronal and behavioral deficits. Toxicol Appl Pharmacol 2008; 227:265-74. [DOI: 10.1016/j.taap.2007.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/29/2007] [Accepted: 11/07/2007] [Indexed: 11/24/2022]
|
16
|
Damodaran TV, Patel AG, Greenfield ST, Dressman HK, Lin SM, Abou-Donia MB. Gene expression profiles of the rat brain both immediately and 3 months following acute sarin exposure. Biochem Pharmacol 2005; 71:497-520. [PMID: 16376859 DOI: 10.1016/j.bcp.2005.10.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/07/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
We have studied sarin-induced global gene expression patterns at an early time point (15 min; 0.5xLD50) and a later time point (3 months; 1xLD50) using Affymetrix: Rat Neurobiology U34 chips in male, Sprague-Dawley rats and have identified a total of 65 (early) and 38 (late) genes showing statistically significant alterations from control levels at 15 min and 3 months, respectively. At the early time point, those that are classified as ion channel, cytoskeletal and cell adhesion molecules, in addition to neuropeptides and their receptors predominated over all other groups. The other groups included: cholinergic signaling, calcium channel and binding proteins, transporters, chemokines, GABAnergic, glutamatergic, aspartate, catecholaminergic, nitric oxide synthase, purinergic, and serotonergic signaling molecules. At the late time point, genes that are classified as calcium channel and binding proteins, cytoskeletal and cell adhesion molecules and GABAnergic signaling molecules were most prominent. Seven molecules (Ania-9, Arrb-1, CX-3C, Gabab-1d, Nos-2a, Nrxn-1b, PDE2) were identified that showed altered persistent expression in both time points. Selected genes from each of these time points were further validated using semi quantitative RT-PCR approaches. Some of the genes that were identified in the present study have been shown to be involved in organophosphate-induced neurotoxicity by both other groups as well as ours. Principal component analysis (PCA) of the expression data from both time points was used for comparative analysis of the gene expression, which indicated that the changes in gene expression were a function of dose and time of euthanasia after the treatment. Our model also predicts that besides dose and duration of post-treatment period, age and possibly other factors may be playing important roles in the regulation of pathways, leading to the neurotoxicity.
Collapse
Affiliation(s)
- Tirupapuliyur V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
17
|
Scremin OU, Shih TM, Huynh L, Roch M, Booth R, Jenden DJ. Delayed neurologic and behavioral effects of subtoxic doses of cholinesterase inhibitors. J Pharmacol Exp Ther 2003; 304:1111-9. [PMID: 12604688 DOI: 10.1124/jpet.102.044818] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that pyridostigmine bromide (PB) intake and/or low-level sarin exposure, suggested by some as causes of the symptoms experienced by Persian Gulf War veterans, induce neurobehavioral dysfunction that outlasts their effects on cholinesterase. Adult male Sprague-Dawley rats were treated during 3 weeks with s.c. saline, PB in drinking water (80 mg/l), sarin (62.5 microg/kg; 0.5x LD(50), three times/week s.c.), or PB in drinking water + sarin. Animals were tested for passive avoidance, nociceptive threshold, acoustic startle, and open field activity 2, 4, or 16 weeks after treatment. Two weeks after sarin, acoustic startle was enhanced, whereas distance explored in the open field decreased. These effects were absent with PB + sarin or PB by itself. No effect on any variable was found at 4 weeks, whereas at 16 weeks sarin induced a decrease and PB + sarin induced an increase in habituation in the open field test. Nociceptive threshold was elevated in the PB + sarin group at 16 weeks. No effect of treatment on passive avoidance was noted in any group. Brain regional acetylcholinesterase and cholineacetyltransferase activities were not affected at any time after treatment, but muscarinic receptors were down-regulated in hippocampus, caudate putamen, and mesencephalon in the sarin group at 2 weeks. In conclusion, this study gives further support to the use of PB against nerve agent poisoning and does not support the hypothesis that delayed symptoms experienced by Persian Gulf War veterans could be due to PB, alone or in association with low-level sarin exposure.
Collapse
Affiliation(s)
- Oscar U Scremin
- Department of Research, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA.
| | | | | | | | | | | |
Collapse
|