1
|
Chen H, Gong Z, Zhou H, Han Y. Deciphering chemoresistance in osteosarcoma: Unveiling regulatory mechanisms and function through the lens of noncoding RNA. Drug Dev Res 2024; 85:e22167. [PMID: 38444106 DOI: 10.1002/ddr.22167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor and is prevalent in children, adolescents, and elderly individuals. It has the characteristics of high invasion and metastasis. Neoadjuvant chemotherapy combined with surgical resection is the most commonly used treatment for OS. However, the efficacy of OS is considerably diminished by chemotherapy resistance. In recent years, noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are hot topics in the field of chemotherapy resistance research. Several studies have demonstrated that ncRNAs are substantially associated with chemoresistance in OS. Thus, the present study overviews the abnormally expressed ncRNAs in OS and the molecular mechanisms involved in chemoresistance, with an emphasis on their function in promoting or inhibiting chemoresistance. ncRNAs are expected to become potential therapeutic targets for overcoming drug resistance and predictive biomarkers in OS, which are of great significance for enhancing the therapeutic effect and improving the prognosis.
Collapse
Affiliation(s)
- Hefen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhujun Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Chen HH, Hao PH, Zhang FY, Zhang TN. Non-coding RNAs in metabolic reprogramming of bone and soft tissue sarcoma: Fundamental mechanism and clinical implication. Biomed Pharmacother 2023; 160:114346. [PMID: 36738505 DOI: 10.1016/j.biopha.2023.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Sarcomas, comprising approximately 1% of human malignancies, show a poor response to treatment and easy recurrence. Metabolic reprogramming play an important role in tumor development in sarcomas. Accumulating evidence shows that non-coding RNAs (ncRNAs) participate in regulating the cellular metabolism of sarcomas, which improves the understanding of the development of therapy-resistant tumors. This review addresses the regulatory roles of metabolism-related ncRNAs and their implications for sarcoma initiation and progression. Dysregulation of metabolism-related ncRNAs is common in sarcomas and is associated with poor survival. Emerging studies show that abnormal expression of metabolism-related ncRNAs affects cellular metabolism, including glucose, lipid, and mitochondrial metabolism, and leads to the development of aggressive sarcomas. This review summarizes recent advances in the roles of dysregulated metabolism-related ncRNAs in sarcoma development and stemness and describes their potential to serve as biological biomarkers for disease diagnosis and prognosis prediction, as well as therapeutic targets for treating refractory sarcomas.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Fang-Yuan Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
3
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Xia M, Zu X, Chen Z, Wen G, Zhong J. Noncoding RNAs in triple negative breast cancer: Mechanisms for chemoresistance. Cancer Lett 2021; 523:100-110. [PMID: 34601022 DOI: 10.1016/j.canlet.2021.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype among breast cancers with high recurrence and this condition is partly due to chemoresistance. Therefore, fully understanding the mechanism of TNBC-resistance is the key to overcoming chemoresistance, which will be an effective strategy for TNBC therapy. Various potential mechanisms involved in the chemoresistance of TNBC have been investigated and indicated that noncoding RNAs (ncRNAs) especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) take part in most TNBC resistance. The ncRNA-induced chemoresistance process is involved in the alteration of many activities. here, we mainly summarize the mechanisms of ncRNAs in the chemoresistance of TNBC and discuss the potential clinical application of ncRNAs in the treatment of TNBC, indicating that targeting ncRNAs might be a promising strategy for resensitization to chemotherapies.
Collapse
Affiliation(s)
- Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Zuyao Chen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
5
|
Li Q, Sun H, Luo D, Gan L, Mo S, Dai W, Liang L, Yang Y, Xu M, Li J, Zheng P, Li X, Li Y, Wang Z. Lnc-RP11-536 K7.3/SOX2/HIF-1α signaling axis regulates oxaliplatin resistance in patient-derived colorectal cancer organoids. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:348. [PMID: 34740372 PMCID: PMC8570024 DOI: 10.1186/s13046-021-02143-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Background Resistance to oxaliplatin is a major obstacle for the management of locally advanced and metastatic colon cancer (CC). Although long noncoding RNAs (lncRNAs) play key roles in CC, the relationships between lncRNAs and resistance to oxaliplatin have been poorly understood yet. Methods Chemo-sensitive and chemo-resistant organoids were established from colon cancer tissues of the oxaliplatin-sensitive or -resistant patients. Analysis of the patient cohort indicated that lnc-RP11-536 K7.3 had a potential oncogenic role in CC. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of lnc-RP11-536 K7.3 on CC proliferation, glycolysis, and angiogenesis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between lnc-RP11-536 K7.3, SOX2 and their downstream target HIF-1α. Results In this study, we identified a novel lncRNA, lnc-RP11-536 K7.3, was associated with resistance to oxaliplatin and predicted a poor survival. Knockout of lnc-RP11-536 K7.3 inhibited the proliferation, glycolysis, and angiogenesis, whereas enhanced chemosensitivity in chemo-resistant organoids and CC cells both in vitro and in vivo. Furthermore, we found that lnc-RP11-536 K7.3 recruited SOX2 to transcriptionally activate USP7 mRNA expression. The accumulative USP7 resulted in deubiquitylation and stabilization of HIF-1α, thereby facilitating resistance to oxaliplatin. Conclusion In conclusion, our findings indicated that lnc-RP11-536 K7.3 could promote proliferation, glycolysis, angiogenesis, and chemo-resistance in CC by SOX2/USP7/HIF-1α signaling axis. This revealed a new insight into how lncRNA could regulate chemosensitivity and provide a potential therapeutic target for reversing resistance to oxaliplatin in the management of CC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02143-x.
Collapse
Affiliation(s)
- Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huizhen Sun
- Clinical Medicine Transformation Center and Office of Academic Research, Shanghai Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.,Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lu Gan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Midie Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pathology and Biobank, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jing Li
- Department of CyberKnife Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, 518055, China.
| | - Ziliang Wang
- Clinical Medicine Transformation Center and Office of Academic Research, Shanghai Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
6
|
Huang Z, Huang L, Liu L, Wang L, Lin W, Zhu X, Su W, Lv C. Knockdown of microRNA-203 reduces cisplatin chemo-sensitivity to osteosarcoma cell lines MG63 and U2OS in vitro by targeting RUNX2. J Chemother 2021; 33:328-341. [PMID: 33764270 DOI: 10.1080/1120009x.2021.1899441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Clinical studies have reported that miRNAs abnormal expression are associated with the generation of cisplatin-resistant to osteosarcoma. Our previous research found that miR-203 is downregulated in osteosarcoma cells and overexpressed miR-203 exerts antitumor properties on osteosarcoma cells. However, the role and mechanism of miR-203 in regulating the sensitivity of cisplatin in osteosarcoma cells remains unclear. This study aimed to investigate the effects of miR-203 in cisplatin therapy for osteosarcoma cells in vitro and determined the underlying mechanism. In this study, we found that miR-203 was significantly upregulated in osteosarcoma cells after exposure to cisplatin. miR-203 knockdown reduced the sensitivity of osteosarcoma cells to cisplatin by suppressing cell apoptosis, cell cycle arrest, and inducing invasion. Meanwhile, we found that miR-203 knockdown reduces the therapeutic sensitivity of osteosarcoma cells by upregulating RUNX2. Moreover, we found that RUNX2 silencing sensitizes osteosarcoma cells to chemotherapy treatment of cisplatin. In summary, our findings demonstrated that miR-203 knockdown reduces cisplatin chemo-sensitivity to osteosarcoma cells in vitro by targeting RUNX2, and speculated that miR-203 may be a target for drug resistance of osteosarcoma to cisplatin.
Collapse
Affiliation(s)
- Zhengxiang Huang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintuo Huang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lue Liu
- Department of Orthopedics, the Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China
| | - Lu Wang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Lin
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiongbai Zhu
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Su
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Lv
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Lin Z, Xie X, Lu S, Liu T. Noncoding RNAs in osteosarcoma: Implications for drug resistance. Cancer Lett 2021; 504:91-103. [PMID: 33587978 DOI: 10.1016/j.canlet.2021.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 02/09/2023]
Abstract
Osteosarcoma is the most frequent bone malignancy in children and adolescents. Despite advances of surgery and chemotherapy in osteosarcoma over the past decades, overall survival rates of osteosarcoma have reached a plateau. The development of multi-drug resistance (MDR) has become the main obstacle in improving chemotherapeutic effects in osteosarcoma treatment. Therefore, understanding detailed mechanisms of chemoresistance and developing novel therapeutic targets to overcome chemoresistance are crucial to improve the prognosis of osteosarcoma patients. Accumulating evidence has proved that multiple noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) play pivotal roles in osteosarcoma progression. Notably, a great number of ncRNAs are abnormally expressed and can regulate chemosensitivity through various mechanisms in osteosarcoma. In this review, we systematically summarize the roles of ncRNAs as well as the molecular mechanisms in modulating drug resistance of osteosarcoma and discuss the potential roles of ncRNAs as biomarkers and novel therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Wen JF, Jiang YQ, Li C, Dai XK, Wu T, Yin WZ. LncRNA-SARCC sensitizes osteosarcoma to cisplatin through the miR-143-mediated glycolysis inhibition by targeting Hexokinase 2. Cancer Biomark 2021; 28:231-246. [PMID: 32508321 DOI: 10.3233/cbm-191181] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemotherapy is one of the primary treatments used against cancer. Cisplatin is a conventional chemotherapy drug used to treat osteosarcoma; however, due to the development of cisplatin resistance, advantageous therapeutic outcomes and prognosis of osteosarcoma remain low. Thus, investigation of the specific targeted therapies to circumvent the anti-chemoresistance of osteosarcoma depends on understanding the molecular mechanisms underlying cisplatin resistance. Tumor cells display an increased utilization of glycolysis rather than oxidative phosphorylation. This phenomenon is called the "Warburg effect," which presents a survival advantage for tumor cells, leading to chemoresistance. To date, the molecular mechanism underlying osteosarcoma cisplatin resistance remains to be fully elucidated. In this study, we reported the significant down-regulation of the long noncoding RNA-Suppressing Androgen Receptor in Renal Cell Carcinoma (lncRNA-SARCC) in the cells of osteosarcoma and in the specimens from osteosarcoma patients. Moreover, we observed a negative correlation between the lncRNA-SARCC and cisplatin resistance in the osteosarcoma tissues. Overexpression of the lncRNA-SARCC sensitizes osteosarcoma cells to cisplatin. From microarray analysis, we screened several miRNAs, which are significantly regulated by the lncRNA-SARCC in osteosarcoma cells, and revealed that lncRNA-SARCC promoted microRNA-43 (miR-143) expression in osteosarcoma. Interestingly, miR-143 showed the same expression pattern with the lncRNA-SARCC in osteosarcoma patient specimens. By establishing a cisplatin-resistant cell line from Sarcoma Osteogenic-2 (Saos-2), we found the cisplatin-resistant cells with down-regulated expressions of the lncRNA-SARCC and miR-143, but with a higher glycolysis rate compared to that in parental cells. We identified the glycolysis key enzyme, Hexokinase 2 (HK2), as a direct target for miR-143 in osteosarcoma. Restoration of the HK2 expression in the lncRNA-SARCC-overexpressing osteosarcoma cells reversed cisplatin resistance, suggesting that lncRNA-SARCC-mediated cisplatin sensitivity may be via glycolysis in the miR-143-inhibited osteosarcoma cells. Finally, results from both in vitro and in vivo xenograft models demonstrated that the lncRNA-SARCC was an effective therapeutic agent for overcoming cisplatin resistance in osteosarcoma. Our findings suggest an essential axis of the lncRNA-SARCC-miR-143-HK2 in regulation of osteosarcoma chemosensitivity, presenting the lncRNA-SARCC as a new therapeutic target against cisplatin-resistant osteosarcoma.
Collapse
Affiliation(s)
- Ji-Feng Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yong-Qing Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xian-Kui Dai
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tong Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wen-Zhe Yin
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Gu Z, Li Z, Xu R, Zhu X, Hu R, Xue Y, Xu W. miR-16-5p Suppresses Progression and Invasion of Osteosarcoma via Targeting at Smad3. Front Pharmacol 2020; 11:1324. [PMID: 32982740 PMCID: PMC7479212 DOI: 10.3389/fphar.2020.01324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs are known to regulate carcinogenesis of osteosarcoma. Although, miR-16-5p is known to exert inhibitory effects on several forms of cancers, its effects on the growth and invasion of osteosarcoma have not been studied. Methods We collected human osteosarcoma specimens and adjacent tissues to detect the expression of miR-16-5p by real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. The proliferation, migration, and invasion of MG63 and HOS cells following miR-16-5p overexpression and inhibition were detected with cell counting kit-8, wound healing assay, and Transwell assay, respectively. An expression vector carrying a mutated 3'-untranslated region of mothers against decapentaplegic homolog 3 (Smad3) was constructed. Results The results showed that miR-16-5p expression was downregulated in osteosarcoma tissues and cells as compared with adjacent counterparts, while Smad3 was overexpressed in osteosarcoma cells. The overexpression of miR-16-5p resulted in the inhibition of the proliferation, migration, and invasion of osteosarcoma cells and enhanced the therapeutic effect of cisplatin. These effects were attenuated with miR-16-5p expression inhibition. In cells transfected with miR-16-5p mimic, Smad3 expression decreased, while this effect was absent in the cells carrying mutated Smad3. Conclusions Therefore, miR-16-5p inhibits the growth and invasion of osteosarcoma by targeting Smad3.
Collapse
Affiliation(s)
- Zhijian Gu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhikun Li
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijun Xu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixi Hu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghua Xue
- Department of Neurosurgery, Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Wang S, Li MY, Liu Y, Vlantis AC, Chan JY, Xue L, Hu BG, Yang S, Chen MX, Zhou S, Guo W, Zeng X, Qiu S, van Hasselt CA, Tong MC, Chen GG. The role of microRNA in cisplatin resistance or sensitivity. Expert Opin Ther Targets 2020; 24:885-897. [PMID: 32559147 DOI: 10.1080/14728222.2020.1785431] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cisplatin is a chemotherapy drug that has been used to treat a number of cancers for decades, and is still one of the most commonly used anti-cancer agents. However, some patients do not respond to cisplatin while other patients who were originally sensitive to cisplatin eventually develop chemoresistance, leading to treatment failure or/and tumor recurrence. AREAS COVERED Different mechanisms contribute to cisplatin resistance or sensitivity, involving multiple pathways or/and processes such as DNA repair, DNA damage response, drug transport, and apoptosis. Among the various mechanisms, it appears that microRNAs play an important role in determining the resistance or sensitivity. In this article, we analyzed and summarized recent findings in this area, with the aim that these data can aid further research and understanding, leading to the eventual reduction of cisplatin resistance. EXPERT COMMENTARY microRNAs can positively or negatively regulate cisplatin resistance by acting on molecules or/and pathways related to apoptosis, autophagy, hypoxia, cancer stem cells, NF-κB, and Notch1. It appears that the modulation of relevant microRNAs can effectively re-sensitize cancer cells to cisplatin regimen in certain types of cancers including breast, colorectal, gastric, liver, lung, ovarian, prostate, testicular, and thyroid cancers.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong, Pharmaceutical University , Guangzhou, China.,Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital , Hong Kong, China
| | - Yi Liu
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital , Hong Kong, China
| | - Alexander C Vlantis
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Jason Yk Chan
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Lingbin Xue
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China
| | - Bao-Guang Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Binzhou Medical University , Binzhou, Shenzhen, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen , Shenzhen, Guangdong, China
| | - Mo-Xian Chen
- Division of Gastroenterology, Shenzhen Children's Hospital , Shenzhen, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital , Shenzhen, China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., LTD , Shenzhen, Guangdong, China
| | - Xianhai Zeng
- DShenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital , Shandong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Shuqi Qiu
- DShenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital , Shandong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - C Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - Michael Cf Tong
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| | - George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery; The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT , Hong Kong, China.,The Chinese University of Hong Kong - Shenzhen Ear, Nose and Throat Joint Research Centre, Longgang ENT Hospital , Shenzhen, China
| |
Collapse
|
11
|
Zhao Z, Ji M, Wang Q, He N, Li Y. miR-16-5p/PDK4-Mediated Metabolic Reprogramming Is Involved in Chemoresistance of Cervical Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:509-517. [PMID: 32577500 PMCID: PMC7301169 DOI: 10.1016/j.omto.2020.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, investigation about molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The molecular mechanisms responsible for the chemoresistance of cervical cancer were investigated by the use of doxorubicin (Dox)-resistant HeLa/Dox and SiHa/Dox cells. Our data showed that chemoresistant cells exhibited significantly higher glucose consumption, lactate production rate, and ATP levels than that of their parental cells. Among metabolic and glycolytic related genes, the expression of PDK4 was upregulated in Dox-resistant cells. Knockdown of PDK4 can decrease glucose consumption, lactate production rate, and ATP levels and further sensitize resistant cervical cancer cells to Dox treatment. By screening microRNAs (miRNAs), which can regulate expression of PDK4, we found that miR-16-5p was downregulated in chemoresistant cells. Overexpression of miR-16-5p can decrease the expression of PDK4 and sensitize the resistant cells to Dox treatment. Xenograft models confirmed that knockdown of PDK4 can increase chemotherapy efficiency for in vivo tumor growth. Collectively, our data suggested that miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qianqing Wang
- Department of Gynaecological Oncology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Kiss A, Ráduly AP, Regdon Z, Polgár Z, Tarapcsák S, Sturniolo I, El-Hamoly T, Virág L, Hegedűs C. Targeting Nuclear NAD + Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells. Cancers (Basel) 2020; 12:cancers12051180. [PMID: 32392755 PMCID: PMC7281559 DOI: 10.3390/cancers12051180] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in children and adolescents. Modern OS treatment, based on the combination of neoadjuvant chemotherapy (cisplatin + doxorubicin + methotrexate) with subsequent surgical removal of the primary tumor and metastases, has dramatically improved overall survival of OS patients. However, further research is needed to identify new therapeutic targets. Here we report that expression level of the nuclear NAD synthesis enzyme, nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1), increases in U-2OS cells upon exposure to DNA damaging agents, suggesting the involvement of the enzyme in the DNA damage response. Moreover, genetic inactivation of NMNAT1 sensitizes U-2OS osteosarcoma cells to cisplatin, doxorubicin, or a combination of these two treatments. Increased cisplatin-induced cell death of NMNAT1−/− cells showed features of both apoptosis and necroptosis, as indicated by the protective effect of the caspase-3 inhibitor z-DEVD-FMK and the necroptosis inhibitor necrostatin-1. Activation of the DNA damage sensor enzyme poly(ADP-ribose) polymerase 1 (PARP1), a major consumer of NAD+ in the nucleus, was fully blocked by NMNAT1 inactivation, leading to increased DNA damage (phospho-H2AX foci). The PARP inhibitor, olaparib, sensitized wild type but not NMNAT1−/− cells to cisplatin-induced anti-clonogenic effects, suggesting that impaired PARP1 activity is important for chemosensitization. Cisplatin-induced cell death of NMNAT1−/− cells was also characterized by a marked drop in cellular ATP levels and impaired mitochondrial respiratory reserve capacity, highlighting the central role of compromised cellular bioenergetics in chemosensitization by NMNAT1 inactivation. Moreover, NMNAT1 cells also displayed markedly higher sensitivity to cisplatin when grown as spheroids in 3D culture. In summary, our work provides the first evidence that NMNAT1 is a promising therapeutic target for osteosarcoma and possibly other tumors as well.
Collapse
Affiliation(s)
- Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Arnold Péter Ráduly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary,
| | - Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Tarek El-Hamoly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, 113701 Cairo, Egypt
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| |
Collapse
|
13
|
Wang Y, Zhang D, Li Y, Fang F. MiR-138 Suppresses the PDK1 Expression to Decrease the Oxaliplatin Resistance of Colorectal Cancer. Onco Targets Ther 2020; 13:3607-3618. [PMID: 32431512 PMCID: PMC7198439 DOI: 10.2147/ott.s242929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background Oxaliplatin is one kind of platinum-based drug. It is effective and commonly used in the treatment of colorectal cancer (CRC). However, development of acquired drug resistance is still a big obstacle during the oxaliplatin therapy. It is urgent to take strategies to decrease the oxaliplatin resistance of CRC. Materials and Methods Oxaliplatin-resistant HT29 and SW480 (HT29/R and SW480/R) cells were acquired through long-term exposure to oxaliplatin by using the routine HT29 and SW480 cells. Relative glucose consumption, lactate generation and LDH activity were tested to evaluate the glycolysis of CRC cell lines. MTT assays were conducted to evaluate the differences of oxaliplatin sensitivity between HT29/R (SW480/R) cells and their parental HT29 (SW480) cells. Regulation of miR-138 on PDK1 was confirmed through qRT-PCR, Western blot and dual-luciferase reporter assays. Reactive oxygen species (ROS) levels were measured by flow cytometry. Results HT29/R and SW480/R cells exhibited higher glucose consumption, lactate production and LDH activity compared to their parental HT29 and SW480 cells. However, oxygen consumption rate (OCR) in HT29/R and SW480/R cells is lower than that in HT29 and SW480 cells, respectively. Results of MTT assays showed that treatment with miR-138 can increase the cytotoxicity of oxaliplatin to HT29/R and SW480/R cells. Research on mechanisms showed that PDK1 was the target of miR-138. Overexpression of miR-138 can inhibit the expression of PDK1, and thus increase the OCR of HT29/R and SW480/R cells. Under the treatment of oxaliplatin, the miR-138-overexpressed HT29/R and SW480/R cells generated more amount of ROS to get into the apoptosis process. Conclusion Overexpression of miR-138 suppressed the PDK1 expression to decrease the oxaliplatin resistance of CRC.
Collapse
Affiliation(s)
- Yao Wang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Duo Zhang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Yao Li
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Fang Fang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| |
Collapse
|
14
|
Ou L, Lin H, Song Y, Tan G, Gui X, Li J, Chen X, Deng Z, Lin S. Efficient miRNA Inhibitor with GO-PEI Nanosheets for Osteosarcoma Suppression by Targeting PTEN. Int J Nanomedicine 2020; 15:5131-5146. [PMID: 32764941 PMCID: PMC7372002 DOI: 10.2147/ijn.s257084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gene therapy is considered a novel way to treat osteosarcoma, and microRNAs are potential therapeutic targets for osteosarcoma. miR-214 has been found to promote osteosarcoma aggression and metastasis. Graphene oxide (GO) is widely used for gene delivery for the distinct physiochemical properties and minimal cytotoxicity. METHODS Polyethyleneimine (PEI)-functionalized GO complex was well-prepared and loaded with miR-214 inhibitor at different concentrations. The load efficacy was tested by gel retardation assay and the cy3-labeled fluorescence of cellular uptake. The experiments of wound healing, immunofluorescence staining, Western blot, qRT-PCR and immunohistochemical staining were performed to measure the inhibitory effect of the miR-214 inhibitor systematically released from the complexes against MG63, U2OS cells and xenograft tumors. RESULTS The systematic mechanistic elucidation of the efficient delivery of the miR-214 inhibitor by GO-PEI indicated that the inhibition of cellular miR-214 caused a decrease in osteosarcoma cell invasion and migration and an increase in apoptosis by targeting phosphatase and tensin homolog (PTEN). The synergistic combination of the GO-PEI-miR-214 inhibitor and CDDP chemotherapy showed significant cell death. In a xenograft mouse model, the GO-PEI-miR-214 inhibitor significantly inhibited tumor volume growth. CONCLUSION This study indicates the potential of functionalized GO-PEI as a vehicle for miRNA inhibitor delivery to treat osteosarcoma with low toxicity and miR-214 can be a good target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
- Correspondence: Lingling Ou The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Guangzhou510632, People’s Republic of China Email
| | - Haiyingjie Lin
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Yuwei Song
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Guoqiang Tan
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Xiujuan Gui
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Jinyuan Li
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Xiaoting Chen
- Integrated Traditional and Western Medicine Research Center of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510000, People’s Republic of China
| | - Zhendong Deng
- Integrated Traditional and Western Medicine Research Center of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510000, People’s Republic of China
| | - Shaoqiang Lin
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
- Integrated Traditional and Western Medicine Research Center of the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510000, People’s Republic of China
- Shaoqiang Lin Integrated Traditional and Western Medicine Research Center of the First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Guangzhou510000, People’s Republic of China Email
| |
Collapse
|
15
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
16
|
Zhu Y, Liu YL, Wu MD, Zhuang YW, Ye SF, Shi XH. Downregulation of miRNA-214 inhibits cisplatin resistance, cell migration, and epithelial interstitial transformation in gastric cancer SGC-7901/DDP cells. Shijie Huaren Xiaohua Zazhi 2019; 27:742-747. [DOI: 10.11569/wcjd.v27.i12.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the common tumors of the digestive system, and resistance to chemotherapy is the bottleneck that restricts the therapeutic effect of chemotherapy in GC. Therefore, it is of great significance to explore the mechanism of reversal of chemotherapy resistance.
AIM To investigate the effect of miRNA-214 (miR-214) knockdown on cisplatin resistance, cell migration, and epithelial mesenchymal transformation (EMT) in GC SGC-7901/DDP cells, and to explore the preliminary mechanism.
METHODS After transfection of SGC-7901/DDP cells with miR-214 inhibitor using the LipofectamineTM2000 method, the change of cell resistance to cisplatin was evaluated by the CCK-8 assay, cell migration was evaluated by wound healing assay, and the protein expression levels of E-cadherin (E-cad), Vimentin, N-cadherin (N-cad), NF-κB, and Bcl-2 were detected by Western blot.
RESULTS After transfection with miR-214 inhibitor, the resistance of SGC-7901/DDP cells to cisplatin was significantly reduced (P < 0.05), and the ability of cell migration was obviously decreased (P < 0.05). The expression level of E-cad protein was significantly increased (P < 0.05), while the expression levels of Vimentin and N-cad proteins were significantly decreased (P < 0.05). Moreover, the expression levels of NF-κB and Bcl-2 protein in SGC-7901/DDP cells were significantly decreased (P < 0.05).
CONCLUSION Down-regulation of miR-214 can reduce the resistance of SGC-7901/DDP cells to cisplatin and inhibit cell migration and EMT. This effect may be related to the down-regulation of NF-κB and Bcl-2 expression.
Collapse
Affiliation(s)
- Yan Zhu
- Department of General Practice, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Yu-Li Liu
- Department of Gastroenterology, Run Run Shaw Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Ming-Dong Wu
- Department of General Practice, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Yong-Wei Zhuang
- Department of General Practice, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Shu-Fang Ye
- Department of General Practice, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Xu-Hong Shi
- Department of General Practice, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
17
|
Li Y, Song X, Liu Z, Li Q, Huang M, Su B, Mao Y, Wang Y, Mo W, Chen H. Upregulation of miR-214 Induced Radioresistance of Osteosarcoma by Targeting PHLDA2 via PI3K/Akt Signaling. Front Oncol 2019; 9:298. [PMID: 31058093 PMCID: PMC6482205 DOI: 10.3389/fonc.2019.00298] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma is an aggressive bone tumor with high resistance to radiotherapy. Pleckstrin homology-like domain family A member 2 (PHLDA2) displays low expression in human osteosarcoma as a proapoptosis factor. miRNAs have been shown to be important in modulating translation and therapeutic responsiveness in solid tumors. Herein, we used luciferase assay to show that miR-214 downregulates the PHLDA2 expression by targeting its 3′-untranslated region (UTR). A high level of miR-214 was identified in tumor tissues from 30 osteosarcoma patients via qPCR analysis, associated positively with lung metastasis. Ectopic expression miR-214 enhanced radioresistance in osteosarcoma cells, with decreased IR-induced apoptosis. Moreover, the depletion of miR-214 enhanced radiosensitivity in both osteosarcoma cells and mouse xenograft models. Importantly, we showed that miR-214 regulated the activation of phosphatidylinositol-3-kinase/Akt signaling pathway by inhibiting PHLDA2. Finally, the introduction of PHLDA2 cDNA lacking the 3′-UTR or treatment with Akt inhibitor LY294002 partially abrogated miR-214-induced radioresistance. In summary, our results reveal that the upregulation of miR-214 as a frequent event in osteosarcoma contributes to radioresistance by regulating the PHLDA2/Akt pathway. The miR-214/PHLDA2/Akt axis provides a new avenue toward understanding the mechanism of radiosensitivity and may be a potential target for osteosarcoma intervention.
Collapse
Affiliation(s)
- Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Xinmao Song
- Department of Radiation Oncology, Eye, Ear, Nose, and Throat Hospital, FuDan University, Shanghai, China
| | - Zegang Liu
- Department of General Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Qiutian Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Meijin Huang
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Bin Su
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yuchi Mao
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yuanyuan Wang
- Department of Pathology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Wenqian Mo
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
18
|
Heishima K, Meuten T, Yoshida K, Mori T, Thamm DH. Prognostic significance of circulating microRNA-214 and -126 in dogs with appendicular osteosarcoma receiving amputation and chemotherapy. BMC Vet Res 2019; 15:39. [PMID: 30683101 PMCID: PMC6347759 DOI: 10.1186/s12917-019-1776-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dogs with appendicular osteosarcoma (OSA) receiving standard amputation and adjuvant chemotherapy demonstrate variable outcome with treatment; however, additional biomarkers would be helpful for predicting their outcome. In the present study, we assessed the potential of circulating microRNA-214 (miR-214) and - 126 (miR-126) to predict time to metastasis and death in dogs with OSA treated with amputation and chemotherapy. RESULTS Seventy-six dogs that fully met inclusion criteria were included in the analysis. The criteria included (1) a diagnosis of appendicular OSA without metastases at diagnosis, (2) treatment by amputation and chemotherapy using carboplatin, doxorubicin, cisplatin, or a combination of these agents. Circulating miR-214 and -126 levels at the time before treatment were measured by using RT-qPCR. High circulating miR-214 and serum alkaline phosphatase (ALP) significantly predicted short disease-free survival (DFS) and overall survival (OS). Conversely, high circulating miR-126 significantly predicted prolonged DFS and OS. An integrated approach using circulating miR-214, - 126, and serum ALP showed better accuracy in the prediction of DFS and OS and identification of long-term survivors than prediction using only ALP. Other variables (age, weight, sex, monocyte counts, and primary tumor site) were associated with neither DFS nor OS. miRNA levels did not strongly correlate with histopathological indices. CONCLUSIONS Circulating miR-214, - 126, and an integrated prognostic score have strong potential to predict the outcome of canine appendicular OSA patients receiving amputation and chemotherapy.
Collapse
Affiliation(s)
- Kazuki Heishima
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Travis Meuten
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Kyoko Yoshida
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Douglas H. Thamm
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
19
|
Chen X, Lv C, Zhu X, Lin W, Wang L, Huang Z, Yang S, Sun J. MicroRNA-504 modulates osteosarcoma cell chemoresistance to cisplatin by targeting p53. Oncol Lett 2018; 17:1664-1674. [PMID: 30675226 PMCID: PMC6341607 DOI: 10.3892/ol.2018.9749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Chemoresistance implicates the therapeutic value of cisplatin and remains a primary obstacle to its clinical use. MicroRNAs (miRs) negatively modulate the expression of their target genes and are associated with the occurrence and progression of various types of tumor. The abnormal expression of miR-504 has been reported in certain types of human tumor and has been associated with tumor prognosis. However, the association between miR-504 and cisplatin in human osteosarcoma remains unclear. The present study therefore aimed to assess the in vitro effects and possible mechanism of miR-504 in cell proliferation, apoptosis and cisplatin resistance in MG63 osteosarcoma cells. The results demonstrated that miR-504 was overexpressed in osteosarcoma tissues and cells. This overexpression also induced cell proliferation, as determined by MTT and EdU staining assays. Furthermore, miR-504 suppressed cisplatin-induced apoptosis, which was demonstrated via MTT, cell morphology analysis and flow cytometry. Cisplatin-induced G1 arrest was also suppressed, which was determined by flow cytometry. The potential target genes of miR-504 were predicted using bioinformatics. p53 was confirmed to be a direct target of miR-504 using a luciferase reporter assay and western blot analysis revealed that miR-504 negatively regulated p53 expression at a molecular level. These results indicate that miR-504 contributes to cisplatin resistance in MG63 osteosarcoma cells by suppressing p53. miR-504 may therefore be a potential biomarker for cisplatin resistance in patients with osteosarcoma.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chen Lv
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiongbai Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shengwu Yang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junying Sun
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
20
|
Zhang Y, Li M, Hu C. Exosomal transfer of miR-214 mediates gefitinib resistance in non-small cell lung cancer. Biochem Biophys Res Commun 2018; 507:457-464. [PMID: 30458987 DOI: 10.1016/j.bbrc.2018.11.061] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023]
Abstract
Recent studies have demonstrated that exosomal miRNAs mediate as intercellular bio-messengers of drug resistance in lung cancer. Our objective was to investigate whether exosomes derived from gefitinib resistant non-small cell lung cancer cells could confer resistance to its recipient cells. Exosomes were successfully isolated by ultracentrifugation and exosomes morphologies and sizes were determined by transmission electron microscopy and dynamic light scattering analysis. Fluorescent PKH-67 labeled exosomes derived from PC-9GR cells could be taken up and internalized by PC-9 cells. CCK8 measurement showed that PC-9GR-derived exosomes could confer gefitinib resistance in PC-9 cells. MiRNA-214 was upregulated in gefitinib resistant PC-9GR cells and its derived exosomes by qPCR analysis. Inhibition of exosomal miR-214 with antagomir reversed gefitinib resistance conferred by PC-9GR-derived exosomes in vitro, which was confirmed by flow cytometry analysis and westernblot of apoptotic protein (caspase-3, caspase-3 cleaved, bax) and anti-apoptotic protein (bcl-2). Finally, exosomes enriched with miR-214 antagomir was further confirmed to reverse gefitinib resistance in vivo. Our results are the first to show that exosomes derived from gefitinib-resistant PC-9GR cells could transfer resistance to its recipient sensitive PC-9 cells, which might be mediated by exosomal transfer of miR-214.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Respiratory Medicine, Xiangya Hospital (Key Cite of National Clinical Research Center for Respiratory Disease), Central South University, Changsha, Hunan, 410008, PR China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital (Key Cite of National Clinical Research Center for Respiratory Disease), Central South University, Changsha, Hunan, 410008, PR China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital (Key Cite of National Clinical Research Center for Respiratory Disease), Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
21
|
Kun-Peng Z, Xiao-Long M, Lei Z, Chun-Lin Z, Jian-Ping H, Tai-Cheng Z. Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics 2018; 10:1327-1346. [PMID: 30191736 DOI: 10.2217/epi-2018-0023] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To identify circular RNAs (circRNAs) related to osteosarcoma (OS) chemoresistance. Materials & methods: CircRNA expression profile was performed in three paired human chemoresistant and chemosensitive OS cell lines by next-generation sequencing. Quantitative real-time-PCR (qRT-PCR) was used to confirm next-generation sequencing data. Bioinformatics analysis was conducted to predict their functions. Results: Eighty circRNAs were dysregulated in the chemoresistant OS cells compared with the control, after validated by qRT-PCR. Bioinformatics analysis showed that some pathways related to drug metabolism were significantly enriched. Additionally, hsa_circ_0004674 was distinctly increased in OS chemoresistant cells and tissues, related to poor prognosis. CircRNA-miRNA-mRNA pathways related to hsa_circ_0004674 were constructed by TargetScan and miRanda. Conclusion: CircRNAs may play a role in OS chemoresistance and hsa_circ_0004674 might be a candidate target.
Collapse
Affiliation(s)
- Zhu Kun-Peng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Ma Xiao-Long
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhang Lei
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhang Chun-Lin
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Hu Jian-Ping
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhan Tai-Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| |
Collapse
|
22
|
Wang Y, Zhang X, Wang Z, Hu Q, Wu J, Li Y, Ren X, Wu T, Tao X, Chen X, Li X, Xia J, Cheng B. LncRNA-p23154 promotes the invasion-metastasis potential of oral squamous cell carcinoma by regulating Glut1-mediated glycolysis. Cancer Lett 2018; 434:172-183. [PMID: 30026052 DOI: 10.1016/j.canlet.2018.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/09/2023]
Abstract
The dysregulation of glycolysis has been suggested to lead to alteration of cell drug resistance signals, proliferation and metastasis. Emerging evidence indicates that lncRNAs play a key role in the cellular processes of tumor cells, including glycolysis, growth, and movement. However, the role and potential mechanism of lncRNAs in glycolysis-mediated metastasis has not been explored. In this study, we identified a novel lncRNA lnc-p23154 which is associated with OSCC patient metastasis and the promotion of OSCC cell migration and invasion in vitro and in vivo. Furthermore, we found that lnc-p23154 also participates in OSCC glycolysis by facilitating Glut1 expression. Rescue of lnc-p23154 reversed the suppression of OSCC cell migration and invasion induced by Glut1 knockdown. In addition, lnc-p23154 is mainly located in the nucleus and binds to the promoter region of miR-378a-3p, which represses Glut1 expression by targeting to its 3'UTR directly. Therefore, we concluded that lnc-p23154 may play an important role in Glut1-mediated glycolysis by inhibiting miR-378a-3p transcription and accelerate OSCC metastasis.
Collapse
Affiliation(s)
- Yun Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojie Zhang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qinchao Hu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Wu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianyue Ren
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoan Tao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobing Chen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxu Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Xia
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Zhang K, Zhang M, Jiang H, Liu F, Liu H, Li Y. Down-regulation of miR-214 inhibits proliferation and glycolysis in non-small-cell lung cancer cells via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2. Biomed Pharmacother 2018; 105:545-552. [PMID: 29886375 DOI: 10.1016/j.biopha.2018.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 01/07/2023] Open
Abstract
Glycolysis is a metabolic pathway that is enhanced in cancer cells. miR-214 plays an important role in cancer development and can modulate glycolysis. However, whether miR-214 can regulate glycolysis in non-small-cell lung cancer (NSCLC) cells has not yet been investigated. The expression levels of miR-214 in 7 NSCLC cell lines were measured by qRT-PCR. MTT assay was performed to evaluate the cell proliferation. Glucose consumption and lactate production were measured to assess the level of glycolysis. The expression of hexokinase 2 (HK2) and pyruvate kinase isozyme M2 (PKM2) was measured by qRT-PCR and western blot analysis. Luciferase reporter assay was carried out to confirm the target gene of miR-214. The levels of PTEN, p-Akt, Akt, p-mTOR, mTOR, p-S6K, and S6K were assessed by western blot analysis. Results showed that miR-214 levels were significantly increased in the 7 NSCLC cell lines compared with those in the human bronchial epithelial cell line. Down-regulation of miR-214 inhibited cell proliferation, glucose consumption, lactate production, and expression of HK2 and PKM2 in NSCLC cells. We also confirmed that miR-214 directly targeted PTEN and regulated the PTEN/Akt/mTOR pathway. Inhibition of the PTEN/Akt/mTOR pathway attenuated the effect of miR-214 mimics on glucose consumption, lactate production, and expression of HK2 and PKM2 in NSCLC cells. These results demonstrated that miR-214 down-regulation inhibited cell proliferation and glycolysis by down-regulating the expression of HK2 and PKM2 via the PTEN/Akt/mTOR pathway in NSCLC cells. Hence, our findings suggested that miR-214 might serve as a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Kejian Zhang
- Department of Thoracic Surgery, Jilin Cancer Hospital, Changchun 130021, Jilin, PR China
| | - Mingrui Zhang
- Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, PR China
| | - Hui Jiang
- Department of Thoracic Surgery, Jilin Cancer Hospital, Changchun 130021, Jilin, PR China
| | - Fenglin Liu
- Department of Thoracic Surgery, Jilin Cancer Hospital, Changchun 130021, Jilin, PR China
| | - Hongwei Liu
- Department of Thoracic Surgery, Jilin Cancer Hospital, Changchun 130021, Jilin, PR China
| | - Yang Li
- Department of Thoracic Surgery, First Hospital of Jilin University, No.71 Xinmin Street, Changchun 130021, Jilin, PR China.
| |
Collapse
|