1
|
Telesca M, De Angelis A, Donniacuo M, Bellocchio G, Riemma MA, Mele E, Canonico F, Cianflone E, Torella D, D'Amario D, Patti G, Liantonio A, Imbrici P, De Luca A, Castaldo G, Rossi F, Cappetta D, Urbanek K, Berrino L. Effects of sacubitril-valsartan on aging-related cardiac dysfunction. Eur J Pharmacol 2024; 978:176794. [PMID: 38968980 DOI: 10.1016/j.ejphar.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.
Collapse
Affiliation(s)
- Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy.
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
2
|
Hu N, Lv N, Chen Y. Treatment with Sacubitril/Valsartan Effectively Manages Hypertension and Ameliorates Left Ventricular Hypertrophy in Hemodialysis Patients. Blood Purif 2024; 53:657-664. [PMID: 38824921 DOI: 10.1159/000538899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/09/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION The aim of this study was to investigate the role of sacubitril/valsartan in managing hypertension and cardiac remodeling in patients undergoing hemodialysis. METHODS Hemodialysis patients with stable blood pressure control were enrolled in the study. Sacubitril/valsartan was prescribed to replace previously used angiotensin-converting enzyme inhibitor/angiotensin receptor blocker or other antihypertensive drugs. During a 6-month follow-up period, pre-dialysis blood pressure, routine biochemical markers, and N-terminal pro-brain natriuretic peptide levels were measured. Volume status was assessed using bioelectrical impedance analysis. Endothelial damage was evaluated by measuring asymmetric dimethylarginine expression, while echocardiography and life quality assessed by Short Form-12 Health Survey were conducted at baseline and after treatment. RESULTS The median daily dose of sacubitril/valsartan in 32 participants was 200 mg, and no obvious adverse reactions were reported. The defined daily dose of other antihypertensive drugs (baseline 2.00 ± 1.18, end point 1.46 ± 1.30, t = 3.216, p = 0.003) reduced significantly. After treatment with sacubitril/valsartan, left ventricular ejection fraction significantly increased from 64.81 ± 8.16% to 67.55 ± 5.85% (t = -4.022, p ≤ 0.001) and the thickness of posterior wall of the left ventricle reduced from 1.05 ± 0.14 cm to 1.00 ± 0.11 cm (t = 2.063, p = 0.048). The interventricular septal thickness (baseline 1.08 ± 0.16 cm, endpoint 1.02 ± 0.12 cm, t = 2.260, p = 0.031) remarkably reduced by the end of follow-up. The tricuspid regurgitation pressure gradient decreased from 28.47 ± 8.26 mm Hg at baseline to 23.79 ± 6.61 mm Hg (t = 2.531, p = 0.020) after treatment. CONCLUSION Sacubitril/valsartan effectively manages hypertension in hemodialysis patients and may also independently improve left ventricular hypertrophy and systolic function, regardless of changes in the blood pressure or the volume load.
Collapse
Affiliation(s)
- Nan Hu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,
- Institute of Nephrology, Peking University, Beijing, China,
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China,
| | - Nan Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yuqing Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Simko F, Stanko P, Repova K, Baka T, Krajcirovicova K, Aziriova S, Domenig O, Zorad S, Adamcova M, Paulis L. Effect of sacubitril/valsartan on the hypertensive heart in continuous light-induced and lactacystin-induced pre-hypertension: Interactions with the renin-angiotensin-aldosterone system. Biomed Pharmacother 2024; 173:116391. [PMID: 38461685 DOI: 10.1016/j.biopha.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
This study investigated whether sacubitril/valsartan or valsartan are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in two experimental models of pre-hypertension induced by continuous light (24 hours/day) exposure or by chronic lactacystin treatment, and how this potential protection interferes with the renin-angiotensin-aldosterone system (RAAS). Nine groups of three-month-old male Wistar rats were treated for six weeks as follows: untreated controls (C), sacubitril/valsartan (ARNI), valsartan (Val), continuous light (24), continuous light plus sacubitril/valsartan (24+ARNI) or valsartan (24+Val), lactacystin (Lact), lactacystin plus sacubitil/valsartan (Lact+ARNI) or plus valsartan (Lact+Val). Both the 24 and Lact groups developed a mild but significant systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, as well as LV systolic and diastolic dysfunction. Yet, no changes in serum renin-angiotensin were observed either in the 24 or Lact groups, though aldosterone was increased in the Lact group compared to the controls. In both models, sacubitril/valsartan and valsartan reduced elevated SBP, LV hypertrophy and fibrosis and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan and valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7 in the 24 and Lact groups and reduced aldosterone in the Lact group. We conclude that both continuous light exposure and lactacystin treatment induced normal-to-low serum renin-angiotensin models of pre-hypertension, whereas aldosterone was increased in lactacystin-induced pre-hypertension. The protection by ARNI or valsartan in the hypertensive heart in either model was related to the Ang II blockade and the protective Ang 1-7, while in lactacystin-induced pre-hypertension this protection seems to be additionally related to the reduced aldosterone level.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava 83305, Slovak Republic; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic.
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; Department of Pneumology, Phthisiology and Functional Diagnostics, Slovak Medical University and Bratislava University Hospital, Bratislava, Slovak Republic
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic
| | | | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic
| | - Michaela Adamcova
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81108, Slovak Republic; Centre of Experimental Medicine SAS, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava 813 71, Slovak Republic
| |
Collapse
|
4
|
Stanko P, Repova K, Baka T, Krajcirovicova K, Aziriova S, Barta A, Zorad S, Adamcova M, Simko F. Sacubitril/Valsartan Alleviates Cardiac Remodeling and Dysfunction in L-NAME-Induced Hypertension and Hypertensive Heart Disease. Biomedicines 2024; 12:733. [PMID: 38672089 PMCID: PMC11047969 DOI: 10.3390/biomedicines12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
There is ample evidence on the benefit of angiotensin receptor-neprilysin inhibitors (ARNIs) in heart failure, yet data regarding the potential protective action of ARNIs in hypertensive heart disease are sparse. The aim of this study was to show whether an ARNI exerts a protective effect in a model of Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension with a hypertensive heart and to compare this potential benefit with an angiotensin-converting enzyme inhibitor, captopril. Five groups of adult male Wistar rats were studied (14 per group) for four weeks: untreated controls; ARNI (68 mg/kg/day); L-NAME (40 mg/kg/day); L-NAME treated with ARNI; and L-NAME treated with captopril (100 mg/kg/day). L-NAME administration induced hypertension, accompanied by increased left ventricular (LV) weight and fibrotic rebuilding of the LV in terms of increased concentration and content of hydroxyproline in insoluble collagen and in total collagen and with a histological finding of fibrosis. These alterations were associated with a compromised systolic and diastolic LV function. Treatment with either an ARNI or captopril reduced systolic blood pressure (SBP), alleviated LV hypertrophy and fibrosis, and prevented the development of both systolic and diastolic LV dysfunction. Moreover, the serum levels of prolactin and prolactin receptor were reduced significantly by ARNI and slightly by captopril. In conclusion, in L-NAME-induced hypertension, the dual inhibition of neprilysin and AT1 receptors by ARNI reduced SBP and prevented the development of LV hypertrophy, fibrosis, and systolic and diastolic dysfunction. These data suggest that ARNI could provide protection against LV structural remodeling and functional disorders in hypertensive heart disease.
Collapse
Affiliation(s)
- Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
- Department of Pneumology, Phthisiology and Functional Diagnostics, Slovak Medical University and Bratislava University Hospital, 82606 Bratislava, Slovakia
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Andrej Barta
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia;
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
| |
Collapse
|
5
|
Xu W, Billon C, Li H, Wilderman A, Qi L, Graves A, Rideb JRDC, Zhao Y, Hayes M, Yu K, Losby M, Hampton CS, Adeyemi CM, Hong SJ, Nasiotis E, Fu C, Oh TG, Fan W, Downes M, Welch RD, Evans RM, Milosavljevic A, Walker JK, Jensen BC, Pei L, Burris T, Zhang L. Novel Pan-ERR Agonists Ameliorate Heart Failure Through Enhancing Cardiac Fatty Acid Metabolism and Mitochondrial Function. Circulation 2024; 149:227-250. [PMID: 37961903 PMCID: PMC10842599 DOI: 10.1161/circulationaha.123.066542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Cyrielle Billon
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St Louis, MO (C.B., M.H., T.B.)
- Center for Clinical Pharmacology, St Louis College of Pharmacy, Washington University School of Medicine, St Louis, MO (C.B., M.H., T.B.)
| | - Hui Li
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Andrea Wilderman
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Lei Qi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Andrea Graves
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Jernie Rae Dela Cruz Rideb
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Yuanbiao Zhao
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Matthew Hayes
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St Louis, MO (C.B., M.H., T.B.)
- Center for Clinical Pharmacology, St Louis College of Pharmacy, Washington University School of Medicine, St Louis, MO (C.B., M.H., T.B.)
| | - Keyang Yu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - McKenna Losby
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Carissa S Hampton
- Department of Pharmacology and Physiology, St Louis University School of Medicine, MO (C.S.H., C.M.A., J.K.W.)
| | - Christiana M Adeyemi
- Department of Pharmacology and Physiology, St Louis University School of Medicine, MO (C.S.H., C.M.A., J.K.W.)
| | - Seok Jae Hong
- McAllister Heart Institute (S.J.H., B.C.J.), University of North Carolina, Chapel Hill
| | - Eleni Nasiotis
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA (C.F.)
- University Hospitals Cleveland Medical Center, OH (C.F.)
| | - Tae Gyu Oh
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA (T.G.O., W.F., M.D., R.M.E.)
| | - Weiwei Fan
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA (T.G.O., W.F., M.D., R.M.E.)
| | - Michael Downes
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA (T.G.O., W.F., M.D., R.M.E.)
| | - Ryan D Welch
- Biology and Chemistry Department, Blackburn College, Carlinville, IL (R.D.W.)
| | - Ronald M Evans
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA (T.G.O., W.F., M.D., R.M.E.)
| | - Aleksandar Milosavljevic
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| | - John K Walker
- Department of Pharmacology and Physiology, St Louis University School of Medicine, MO (C.S.H., C.M.A., J.K.W.)
| | - Brian C Jensen
- McAllister Heart Institute (S.J.H., B.C.J.), University of North Carolina, Chapel Hill
- Department of Medicine, Division of Cardiology (B.C.J.), University of North Carolina, Chapel Hill
| | - Liming Pei
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, and University of Pennsylvania, Philadelphia (L.P.)
| | - Thomas Burris
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St Louis, MO (C.B., M.H., T.B.)
- Center for Clinical Pharmacology, St Louis College of Pharmacy, Washington University School of Medicine, St Louis, MO (C.B., M.H., T.B.)
| | - Lilei Zhang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.)
| |
Collapse
|
6
|
Jeremic J, Govoruskina N, Bradic J, Milosavljevic I, Srejovic I, Zivkovic V, Jeremic N, Nikolic Turnic T, Tanaskovic I, Bolevich S, Jakovljevic V, Bolevich S, Zivanovic MN, Okwose N, Seklic D, Milivojevic N, Grujic J, Velicki L, MacGowan G, Jakovljevic DG, Filipovic N. Sacubitril/valsartan reverses cardiac structure and function in experimental model of hypertension-induced hypertrophic cardiomyopathy. Mol Cell Biochem 2023; 478:2645-2656. [PMID: 36997815 DOI: 10.1007/s11010-023-04690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
This study evaluated the effect of sacubtril/valsartan on cardiac remodeling, molecular and cellular adaptations in experimental (rat) model of hypertension-induced hypertrophic cardiomyopathy. Thirty Wistar Kyoto rats, 10 healthy (control) and 20 rats with confirmed hypertension-induced hypertrophic cardiomyopathy (HpCM), were used for this study. The HpCM group was further subdivided into untreated and sacubitril/valsartan-treated groups. Myocardial structure and function were assessed using echocardiography, Langendorff's isolated heart experiment, blood sampling and qualitative polymerase chain reaction. Echocardiographic examinations revealed protective effects of sacubitril/valsartan by improving left ventricular internal diameter in systole and diastole and fractional shortening. Additionally, sacubitril/valsartan treatment decreased systolic and diastolic blood pressures in comparison with untreated hypertensive rats. Moreover, sacubitril/valsartan treatment reduced oxidative stress and apoptosis (reduced expression of Bax and Cas9 genes) compared to untreated rats. There was a regular histomorphology of cardiomyocytes, interstitium, and blood vessels in treated rats compared to untreated HpCM rats which expressed hypertrophic cardiomyocytes, with polymorphic nuclei, prominent nucleoli and moderately dilated interstitium. In experimental model of hypertension-induced hypertrophic cardiomyopathy, sacubitril/valsartan treatment led to improved cardiac structure, haemodynamic performance, and reduced oxidative stress and apoptosis. Sacubitril/valsartan thus presents as a potential therapeutic strategy resulted in hypertension-induced hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Natalia Govoruskina
- Federal Clinical Center for High Medical, Technologies Federal Health Biological Agency, Moscow, Russia
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Isidora Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Ivan Srejovic
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Zivkovic
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- F.F. Erismann Institute of Public Health, N.A. Semashko Public Health and Healthcare Department, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Irena Tanaskovic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Stefani Bolevich
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Kragujevac, Serbia.
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia.
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Sergey Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marko N Zivanovic
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
- BioIRC - Bioengineering Research and Development Center, University of Kragujevac, Kragujevac, Serbia
| | - Nduka Okwose
- Translational and Clinical Research Instutute, Faculty of Medical Sciences, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Dragana Seklic
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Grujic
- Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Guy MacGowan
- Translational and Clinical Research Instutute, Faculty of Medical Sciences, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Djordje G Jakovljevic
- Translational and Clinical Research Instutute, Faculty of Medical Sciences, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Faculty Research Centre (CSELS), Faculty of Health and Life Sciences, Institute for Health and Wellbeing (CSELS), Coventry University, London, UK
| | - Nenad Filipovic
- BioIRC - Bioengineering Research and Development Center, University of Kragujevac, Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
7
|
Sobiborowicz-Sadowska AM, Kamińska K, Cudnoch-Jędrzejewska A. Neprilysin Inhibition in the Prevention of Anthracycline-Induced Cardiotoxicity. Cancers (Basel) 2023; 15:312. [PMID: 36612307 PMCID: PMC9818213 DOI: 10.3390/cancers15010312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Anthracycline-induced cardiotoxicity (AIC) poses a clinical challenge in the management of cancer patients. AIC is characterized by myocardial systolic dysfunction and remodeling, caused by cardiomyocyte DNA damage, oxidative stress, mitochondrial dysfunction, or renin-angiotensin-aldosterone system (RAAS) dysregulation. In the past decade, after positive results of a PARADIGM-HF trial, a new class of drugs, namely angiotensin receptor/neprilysin inhibitors (ARNi), was incorporated into the management of patients with heart failure with reduced ejection fraction. As demonstrated in a variety of preclinical studies of cardiovascular diseases, the cardioprotective effects of ARNi administration are associated with decreased oxidative stress levels, the inhibition of myocardial inflammatory response, protection against mitochondrial damage and endothelial dysfunction, and improvement in the RAAS imbalance. However, data on ARNi's effectiveness in the prevention of AIC remains limited. Several reports of ARNi administration in animal models of AIC have shown promising results, as ARNi prevented ventricular systolic dysfunction and electrocardiographic changes and ameliorated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and the inflammatory response associated with anthracyclines. There is currently an ongoing PRADAII trial aimed to assess the efficacy of ARNi in patients receiving breast cancer treatment, which is expected to be completed by late 2025.
Collapse
Affiliation(s)
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
8
|
Bhullar SK, Dhalla NS. Angiotensin II-Induced Signal Transduction Mechanisms for Cardiac Hypertrophy. Cells 2022; 11:cells11213336. [PMID: 36359731 PMCID: PMC9657342 DOI: 10.3390/cells11213336] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Although acute exposure of the heart to angiotensin (Ang II) produces physiological cardiac hypertrophy and chronic exposure results in pathological hypertrophy, the signal transduction mechanisms for these effects are of complex nature. It is now evident that the hypertrophic response is mediated by the activation of Ang type 1 receptors (AT1R), whereas the activation of Ang type 2 receptors (AT2R) by Ang II and Mas receptors by Ang-(1-7) exerts antihypertrophic effects. Furthermore, AT1R-induced activation of phospholipase C for stimulating protein kinase C, influx of Ca2+ through sarcolemmal Ca2+- channels, release of Ca2+ from the sarcoplasmic reticulum, and activation of sarcolemmal NADPH oxidase 2 for altering cardiomyocytes redox status may be involved in physiological hypertrophy. On the other hand, reduction in the expression of AT2R and Mas receptors, the release of growth factors from fibroblasts for the occurrence of fibrosis, and the development of oxidative stress due to activation of mitochondria NADPH oxidase 4 as well as the depression of nuclear factor erythroid-2 activity for the occurrence of Ca2+-overload and activation of calcineurin may be involved in inducing pathological cardiac hypertrophy. These observations support the view that inhibition of AT1R or activation of AT2R and Mas receptors as well as depression of oxidative stress may prevent or reverse the Ang II-induced cardiac hypertrophy.
Collapse
|
9
|
Endothelial and Vascular Smooth Muscle Dysfunction in Hypertension. Biochem Pharmacol 2022; 205:115263. [PMID: 36174768 DOI: 10.1016/j.bcp.2022.115263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/11/2022]
Abstract
The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.
Collapse
|
10
|
Elshenawy DSA, Ramadan NM, Abdo VB, Ashour RH. Sacubitril/valsartan combination enhanced cardiac glycophagy and prevented the progression of murine diabetic cardiomyopathy. Biomed Pharmacother 2022; 153:113382. [DOI: 10.1016/j.biopha.2022.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
|
11
|
Mustafa NH, Jalil J, Zainalabidin S, Saleh MS, Asmadi AY, Kamisah Y. Molecular mechanisms of sacubitril/valsartan in cardiac remodeling. Front Pharmacol 2022; 13:892460. [PMID: 36003518 PMCID: PMC9393311 DOI: 10.3389/fphar.2022.892460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases have become a major clinical burden globally. Heart failure is one of the diseases that commonly emanates from progressive uncontrolled hypertension. This gives rise to the need for a new treatment for the disease. Sacubitril/valsartan is a new drug combination that has been approved for patients with heart failure. This review aims to detail the mechanism of action for sacubitril/valsartan in cardiac remodeling, a cellular and molecular process that occurs during the development of heart failure. Accumulating evidence has unveiled the cardioprotective effects of sacubitril/valsartan on cellular and molecular modulation in cardiac remodeling, with recent large-scale randomized clinical trials confirming its supremacy over other traditional heart failure treatments. However, its molecular mechanism of action in cardiac remodeling remains obscure. Therefore, comprehending the molecular mechanism of action of sacubitril/valsartan could help future research to study the drug's potential therapy to reduce the severity of heart failure.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed S.M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Simko F, Baka T, Stanko P, Repova K, Krajcirovicova K, Aziriova S, Domenig O, Zorad S, Adamcova M, Paulis L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines 2022; 10:1844. [PMID: 36009391 PMCID: PMC9405404 DOI: 10.3390/biomedicines10081844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction. However, no changes in serum RAAS were observed in SHRs compared with the controls. Elevated SBP in SHRs was decreased by sacubitril/valsartan but not by ivabradine, and only sacubitril/valsartan attenuated LV hypertrophy. Both sacubitril/valsartan and ivabradine reduced LV collagen content and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7, and aldosterone, while ivabradine did not affect the RAAS. We conclude that the SHR is a normal-to-low serum RAAS model of experimental hypertension. While the protection of the hypertensive heart in SHRs by sacubitril/valsartan may be related to an Ang II blockade and the protective Ang 1-7, the benefits of ivabradine were not associated with RAAS modulation.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | | | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| |
Collapse
|
13
|
Verma K, Pant M, Paliwal S, Dwivedi J, Sharma S. An Insight on Multicentric Signaling of Angiotensin II in Cardiovascular system: A Recent Update. Front Pharmacol 2021; 12:734917. [PMID: 34489714 PMCID: PMC8417791 DOI: 10.3389/fphar.2021.734917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The multifaceted nature of the renin-angiotensin system (RAS) makes it versatile due to its involvement in pathogenesis of the cardiovascular disease. Angiotensin II (Ang II), a multifaceted member of RAS family is known to have various potential effects. The knowledge of this peptide has immensely ameliorated after meticulous research for decades. Several studies have evidenced angiotensin I receptor (AT1 R) to mediate the majority Ang II-regulated functions in the system. Functional crosstalk between AT1 R mediated signal transduction cascades and other signaling pathways has been recognized. The review will provide an up-to-date information and recent discoveries involved in Ang II receptor signal transduction and their functional significance in the cardiovascular system for potential translation in therapeutics. Moreover, the review also focuses on the role of stem cell-based therapies in the cardiovascular system.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|