1
|
Guzmán-Flores JM, Pérez-Vázquez V, Martínez-Esquivias F, Isiordia-Espinoza MA, Viveros-Paredes JM. Molecular Docking Integrated with Network Pharmacology Explores the Therapeutic Mechanism of Cannabis sativa against Type 2 Diabetes. Curr Issues Mol Biol 2023; 45:7228-7241. [PMID: 37754241 PMCID: PMC10529732 DOI: 10.3390/cimb45090457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The incidence of type 2 diabetes (T2D) is rising, and finding new treatments is important. C. sativa is a plant suggested as a potential treatment for T2D, but how it works needs to be clarified. This study explored the pharmacological mechanism of C. sativa in treating T2D. We identified the active compounds in C. sativa and their targets. From there, we examined the genes associated with T2D and found overlapping genes. We conducted an enrichment analysis and created a protein-protein and target-compound interactions network. We confirmed the binding activities of the hub proteins and compounds with molecular docking. We identified thirteen active compounds from C. sativa, which have 150 therapeutic targets in T2D. The enrichment analysis showed that these proteins are involved in the hormone, lipid, and stress responses. They bind transcription factors and metals and participate in the insulin, PI3K/Akt, HIF-1, and FoxO signaling pathways. We found four hub proteins (EGFR, ESR1, HSP90AA1, and SRC) that bind to the thirteen bioactive compounds. This was verified using molecular docking. Our findings suggest that C. sativa's antidiabetic action is carried out through the insulin signaling pathway, with the participation of HIF-1 and FoxO.
Collapse
Affiliation(s)
- Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos C.P. 47620, Jalisco, Mexico;
| | - Victoriano Pérez-Vázquez
- Department of Medical Sciences, University of Guanajuato, Campus León, León C.P. 37220, Guanajuato, Mexico;
| | - Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos C.P. 47620, Jalisco, Mexico;
| | - Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlan de Morelos C.P. 47620, Jalisco, Mexico;
| | - Juan Manuel Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara C.P. 44430, Jalisco, Mexico;
| |
Collapse
|
2
|
Al-Ani Z, Ko J, Petrov MS. Relationship of Serum Bile Acids with Fat Deposition in the Pancreas, Liver, and Skeletal Muscle. Clin Exp Gastroenterol 2023; 16:137-146. [PMID: 37605644 PMCID: PMC10440115 DOI: 10.2147/ceg.s422995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Introduction Ectopic fat deposition is well appreciated as a key contributor to digestive and liver diseases. Bile acids have emerged as pleiotropic signalling molecules involved in numerous metabolic pathways. The aim was to study the associations of bile acids with ectopic fat deposition and lipid panel. Methods A single 3.0 Tesla magnetic resonance imaging scanner was employed to measure fat deposition in the pancreas, liver, and skeletal muscle in 76 adults. Blood samples were drawn to determine total bile acids and lipid panel. Linear regression analyses were run, taking into account age, sex, body mass index, and other covariates. Results The studied ectopic fat depots were not significantly associated with levels of total bile acids in serum. Total bile acids were significantly associated high-density lipoprotein cholesterol - consistently in both the unadjusted (p = 0.018) and all adjusted models (p = 0.012 in the most adjusted model). Low-density lipoprotein cholesterol, total cholesterol, and triglycerides were not significantly associated with total bile acids in both the unadjusted and all adjusted models. Conclusion Fat deposition in the pancreas, liver, and skeletal muscle is not associated with circulating levels of total bile acids. High-density lipoprotein cholesterol is the only component of lipid panel that is associated with total bile acids.
Collapse
Affiliation(s)
- Zena Al-Ani
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juyeon Ko
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Al-Ani Z, Ko J, Petrov MS. Intra-pancreatic fat deposition across the pancreatitis spectrum and the influence of gut hormones. Dig Liver Dis 2023; 55:1081-1090. [PMID: 36878840 DOI: 10.1016/j.dld.2023.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND AND AIMS Acute pancreatitis (AP) and chronic pancreatitis (CP) often represent parts of the spectrum of disease. While growing evidence indicates that intra-pancreatic fat deposition (IPFD) plays an important role in the pathogenesis of pancreatitis, no study of living individuals has investigated IPFD in both AP and CP. Further, the associations between IPFD and gut hormones remain to be elucidated. The aims were to investigate the associations of IPFD with AP, CP, and health; and to study whether gut hormones affect these associations. METHODS Magnetic resonance imaging on the same 3.0 Tesla scanner was used to determine IPFD in 201 study participants. These participants were arranged into the health, AP, and CP groups. Gut hormones (ghrelin, glucagon-like peptide-1, gastric inhibitory peptide, peptide YY, and oxyntomodulin) were measured in blood, both after an 8-hour overnight fasting and after ingestion of a standardised mixed meal. A series of linear regression analyses was run, accounting for age, sex, ethnicity, body mass index, glycated haemoglobin, and triglycerides. RESULTS Both the AP group and CP group had significantly higher IPFD in comparison with the health group, consistently across all models (p for trend 0.027 in the most adjusted model). Ghrelin in the fasted state had a significant positive association with IPFD in the AP group (but not the CP or health group), consistently across all models (p = 0.019 in the most adjusted model). None of the studied gut hormones in the postprandial state was significantly associated with IPFD. CONCLUSION Fat deposition in the pancreas is similarly high in individuals with AP and those with CP. The gut-brain axis, and more specifically overexpression of ghrelin, may contribute to increased IPFD in individuals with AP.
Collapse
Affiliation(s)
- Zena Al-Ani
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Petrov MS. Fatty change of the pancreas: the Pandora's box of pancreatology. Lancet Gastroenterol Hepatol 2023; 8:671-682. [PMID: 37094599 DOI: 10.1016/s2468-1253(23)00064-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 04/26/2023]
Abstract
Prevention of common diseases of the pancreas or interception of their progression is as attractive in theory as it is elusive in practice. The fundamental challenge has been an incomplete understanding of targets coupled with a multitude of intertwined factors that are associated with the development of pancreatic diseases. Evidence over the past decade has shown unique morphological features, distinctive biomarkers, and complex relationships of intrapancreatic fat deposition. Fatty change of the pancreas has also been shown to affect at least 16% of the global population. This knowledge has solidified the pivotal role of fatty change of the pancreas in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. The pancreatic diseases originating from intrapancreatic fat (PANDORA) hypothesis advanced in this Personal View cuts across traditional disciplinary boundaries with a view to tackling these diseases. New holistic understanding of pancreatic diseases is well positioned to propel pancreatology through lasting research breakthroughs and clinical advances.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Niki A, Baden MY, Kato S, Mitsushio K, Horii T, Ozawa H, Ishibashi C, Fujita S, Kimura T, Fujita Y, Tokunaga A, Nammo T, Fukui K, Kozawa J, Shimomura I. Consumption of two meals per day is associated with increased intrapancreatic fat deposition in patients with type 2 diabetes: a retrospective study. BMJ Open Diabetes Res Care 2022; 10:10/5/e002926. [PMID: 36126992 PMCID: PMC9490586 DOI: 10.1136/bmjdrc-2022-002926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION This study aimed to identify the associations between lifestyle factors and intrapancreatic fat deposition in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS The participants were 185 patients with type 2 diabetes who were hospitalized at Osaka University Hospital between 2008 and 2020 and underwent abdominal CT during hospitalization. Information regarding lifestyle factors, including the number of meals consumed per day, snacking habits, exercise habits, exercise at work, smoking habits, alcohol intake, insomnia, sleep apnea syndrome, and night-shift working, was acquired from self-administered questionnaires or medical records. We measured the mean CT values for the pancreas (P), liver (L), and spleen (S), and the visceral fat area (VFA), and quantified intrapancreatic and liver ectopic fat accumulation as P-S and L-S, respectively. RESULTS After adjustment for age, sex, hemoglobin A1c, and body mass index (BMI), participants who consumed two meals per day had significantly lower P-S (higher intrapancreatic fat deposition, p=0.02) than those who consumed three meals per day. There were no significant associations between the number of meals consumed and liver ectopic fat accumulation and VFA (p=0.73 and p=0.67, respectively). CONCLUSIONS Patients with diabetes who consumed two meals per day showed greater intrapancreatic fat deposition than those who consumed three meals per day, even after adjustment for BMI. These findings support the current guideline for diabetes treatment that skipping meals should be avoided.
Collapse
Affiliation(s)
- Akiko Niki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Megu Y Baden
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Lifestyle Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sarasa Kato
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kento Mitsushio
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomomi Horii
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Harutoshi Ozawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Lifestyle Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chisaki Ishibashi
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shingo Fujita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takekazu Kimura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukari Fujita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayumi Tokunaga
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Fukui
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
6
|
Effect of Gray Value Discretization and Image Filtration on Texture Features of the Pancreas Derived from Magnetic Resonance Imaging at 3T. J Imaging 2022; 8:jimaging8080220. [PMID: 36005463 PMCID: PMC9409719 DOI: 10.3390/jimaging8080220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Radiomics of pancreas magnetic resonance (MR) images is positioned well to play an important role in the management of diseases characterized by diffuse involvement of the pancreas. The effect of image pre-processing configurations on these images has been sparsely investigated. Fifteen individuals with definite chronic pancreatitis (an exemplar diffuse disease of the pancreas) and 15 healthy individuals were included in this age- and sex-matched case-control study. MR images of the pancreas were acquired using a single 3T scanner. A total of 93 first-order and second-order texture features of the pancreas were compared between the study groups, by subjecting MR images of the pancreas to 7 image pre-processing configurations related to gray level discretization and image filtration. The studied parameters of intensity discretization did not vary in terms of their effect on the number of significant first-order texture features. The number of statistically significant first-order texture features varied after filtering (7 with the use of logarithm filter and 3 with the use of Laplacian of Gaussian filter with 5 mm σ). Intensity discretization generally affected the number of significant second-order texture features more markedly than filtering. The use of fixed bin number of 16 yielded 42 significant second-order texture features, fixed bin number of 128–38 features, fixed bin width of 6–24 features, and fixed bin width of 42–26 features. The specific parameters of filtration and intensity discretization had differing effects on radiomics signature of the pancreas. Relative discretization with fixed bin number of 16 and use of logarithm filter hold promise as pre-processing configurations of choice in future radiomics studies in diffuse diseases of the pancreas.
Collapse
|
7
|
Factors Affecting the Circulating Levels of Oxyntomodulin in Health and After Acute Pancreatitis. Pancreas 2022; 51:774-783. [PMID: 36395403 DOI: 10.1097/mpa.0000000000002114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To investigate the factors associated with the circulating levels of oxyntomodulin in healthy individuals and individuals after an episode of acute pancreatitis (AP). METHODS Blood samples were collected from all participants after an overnight fast and analyzed for 28 biomarkers. Participants also underwent comprehensive body composition analysis on a 3-T magnetic resonance imaging scanner. Regression analyses were done to investigate the associations between oxyntomodulin and the studied factors. RESULTS The study included 105 individuals who had a primary diagnosis of AP and 58 healthy individuals. Peptide YY (B coefficient, 0.094; 95% confidence interval [95% CI], 0.164-0.123), pancreatic polypeptide (0.048; 95% CI, 0.030-0.066), and leptin (0.394; 95% CI, 0.128-0.661) had significant associations with oxyntomodulin in healthy individuals. Peptide YY was the most prominent factor associated with oxyntomodulin, explaining 60% of its variance in health. Cholecystokinin (0.014; 95% CI, 0.010-0.018), amylin (-0.107; 95% CI, -0.192 to -0.021), and glycated hemoglobin (-0.761; 95% CI, -1.249 to -0.273) had significant associations with oxyntomodulin in individuals after AP. Cholecystokinin was the most prominent factor associated with oxyntomodulin, explaining 44% of its variance after AP. CONCLUSIONS Factors affecting the circulating levels of oxyntomodulin are different in health and after AP. These insights will enable the determination of populations that benefit from oxyntomodulin therapeutics in the future.
Collapse
|
8
|
Abunahel BM, Pontre B, Ko J, Petrov MS. Towards developing a robust radiomics signature in diffuse diseases of the pancreas: Accuracy and stability of features derived from T1-weighted magnetic resonance imaging. J Med Imaging Radiat Sci 2022; 53:420-428. [DOI: 10.1016/j.jmir.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
9
|
Petrov MS, Taylor R. Intra-pancreatic fat deposition: bringing hidden fat to the fore. Nat Rev Gastroenterol Hepatol 2022; 19:153-168. [PMID: 34880411 DOI: 10.1038/s41575-021-00551-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Development of advanced modalities for detection of fat within the pancreas has transformed understanding of the role of intra-pancreatic fat deposition (IPFD) in health and disease. There is now strong evidence for the presence of minimal (but not negligible) IPFD in healthy human pancreas. Diffuse excess IPFD, or fatty pancreas disease (FPD), is more frequent than type 2 diabetes mellitus (T2DM) (the most common disease of the endocrine pancreas) and acute pancreatitis (the most common disease of the exocrine pancreas) combined. FPD is not strictly a function of high BMI; it can result from the excess deposition of fat in the islets of Langerhans, acinar cells, inter-lobular stroma, acinar-to-adipocyte trans-differentiation or replacement of apoptotic acinar cells. This process leads to a wide array of diseases characterized by excess IPFD, including but not limited to acute pancreatitis, chronic pancreatitis, pancreatic cancer, T2DM, diabetes of the exocrine pancreas. There is ample evidence for FPD being potentially reversible. Weight loss-induced decrease of intra-pancreatic fat is tightly associated with remission of T2DM and its re-deposition with recurrence of the disease. Reversing FPD will open up opportunities for preventing or intercepting progression of major diseases of the exocrine pancreas in the future.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| | - Roy Taylor
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Abdominal fat distribution modulates the metabolic effects of exogenous ketones in individuals with new-onset prediabetes after acute pancreatitis: Results from a randomized placebo-controlled trial. Clin Nutr ESPEN 2021; 43:117-129. [DOI: 10.1016/j.clnesp.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
|
11
|
Ko J, Skudder-Hill L, Cho J, Bharmal SH, Petrov MS. The Relationship between Abdominal Fat Phenotypes and Insulin Resistance in Non-Obese Individuals after Acute Pancreatitis. Nutrients 2020; 12:nu12092883. [PMID: 32967240 PMCID: PMC7551376 DOI: 10.3390/nu12092883] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Both type 2 prediabetes/diabetes (T2DM) and new-onset prediabetes/diabetes after acute pancreatitis (NODAP) are characterized by impaired tissue sensitivity to insulin action. Although the outcomes of NODAP and T2DM are different, it is unknown whether drivers of insulin resistance are different in the two types of diabetes. This study aimed to investigate the associations between abdominal fat phenotypes and indices of insulin sensitivity in non-obese individuals with NODAP, T2DM, and healthy controls. Indices of insulin sensitivity (homeostasis model assessment of insulin sensitivity (HOMA-IS), Raynaud index, triglyceride and glucose (TyG) index, Matsuda index) were calculated in fasting and postprandial states. Fat phenotypes (intra-pancreatic fat, intra-hepatic fat, skeletal muscle fat, visceral fat, and subcutaneous fat) were determined using magnetic resonance imaging and spectroscopy. Linear regression and relative importance analyses were conducted. Age, sex, and glycated hemoglobin A1c were adjusted for. A total of 78 non-obese individuals (26 NODAP, 20 T2DM, and 32 healthy controls) were included. Intra-pancreatic fat was significantly associated with all the indices of insulin sensitivity in the NODAP group, consistently in both the unadjusted and adjusted models. Intra-pancreatic fat was not significantly associated with any index of insulin sensitivity in the T2DM and healthy controls groups. The variance in HOMA-IS was explained the most by intra-pancreatic fat (R2 = 29%) in the NODAP group and by visceral fat (R2 = 21%) in the T2DM group. The variance in the Raynaud index was explained the most by intra-pancreatic fat (R2 = 18%) in the NODAP group and by visceral fat (R2 = 15%) in the T2DM group. The variance in the TyG index was explained the most by visceral fat in both the NODAP group (R2 = 49%) and in the T2DM group (R2 = 25%). The variance in the Matsuda index was explained the most by intra-pancreatic fat (R2 = 48%) in the NODAP group and by visceral fat (R2 = 38%) in the T2DM group. The differing association between intra-pancreatic fat and insulin resistance can be used to differentiate NODAP from T2DM. Insulin resistance in NODAP appears to be predominantly driven by increased intra-pancreatic fat deposition.
Collapse
|
12
|
Ko J, Stuart CE, Modesto AE, Cho J, Bharmal SH, Petrov MS. Chronic Pancreatitis Is Characterized by Elevated Circulating Periostin Levels Related to Intra-Pancreatic Fat Deposition. J Clin Med Res 2020; 12:568-578. [PMID: 32849945 PMCID: PMC7430919 DOI: 10.14740/jocmr4279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Periostin is a matricellular protein that induces fibrillogenesis and activates cell migration. It is overexpressed in common fibrotic diseases and is also associated with abdominal adiposity/ectopic fat phenotypes. The study aimed to investigate circulating levels of periostin in health and after an attack of pancreatitis, as well as their associations with abdominal adiposity/ectopic fat phenotypes. Methods Blood samples were obtained from healthy controls, as well as definite chronic pancreatitis (CP) and acute pancreatitis (AP) individuals during follow-up visits. Fat depositions in the pancreas, liver, skeletal muscle, as well as visceral and subcutaneous fat volumes, were quantified with the use of magnetic resonance imaging. A series of multivariable analyses were conducted, accounting for possible confounders. Results A total of 121 individuals were included. Periostin levels were significantly higher in the CP group compared with the other groups in both unadjusted (F = 3.211, P = 0.044) and all adjusted models (F = 4.165, P = 0.019 in the most adjusted model). Intra-pancreatic fat deposition (but not the other fat phenotypes) was significantly associated with periostin concentration in the CP group (β = 49.63, P = 0.034) and explained most of its variance (32.0%). Conclusions Individuals with CP, but not healthy individuals or those after clinical resolution of AP, are characterized by elevated circulating levels of periostin that are positively associated with intra-pancreatic fat deposition.
Collapse
Affiliation(s)
- Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Andre E Modesto
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Jaelim Cho
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.,Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
13
|
Reduced Skeletal Muscle Volume and Increased Skeletal Muscle Fat Deposition Characterize Diabetes in Individuals after Pancreatitis: A Magnetic Resonance Imaging Study. Diseases 2020; 8:diseases8030025. [PMID: 32630360 PMCID: PMC7565190 DOI: 10.3390/diseases8030025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Skeletal muscle has been implicated in the pathogenesis of type 2 diabetes but it has never been investigated in diabetes after pancreatitis. The aim was to investigate the relationship between psoas muscle volume (PMV) and diabetes in individuals after pancreatitis, as well as its associations with ectopic fat phenotypes and insulin traits. Methods: Individuals after an attack of pancreatitis and healthy individuals were studied in a cross-sectional fashion. All participants underwent magnetic resonance imaging, based on which PMV, skeletal muscle fat deposition (SMFD), as well as liver and intra-pancreatic fat depositions were derived. Fasting and postprandial blood samples were collected to calculate indices of insulin sensitivity and secretion. Linear regression analyses were conducted, adjusting for possible confounders (age, sex, body composition, comorbidities, use of insulin, and others). Results: A total of 153 participants were studied. PMV was significantly decreased in the diabetes group compared with healthy controls (β = −30.0, p = 0.034 in the most adjusted model). SMFD was significantly inversely associated with PMV (β = −3.1, p < 0.001 in the most adjusted model). The Matsuda index of insulin sensitivity was significantly directly associated with PMV (β = 1.6, p = 0.010 in the most adjusted model). Conclusions: Diabetes in individuals after pancreatitis is characterized by reduced PMV. Reduced PMV is associated with increased SMFD and decreased insulin sensitivity in individuals after pancreatitis.
Collapse
|