1
|
Wang K, Su X, Song Q, Chen Z, Chen H, Han Y, Zhu C, Shen H. The circ_006573/miR-376b-3p Axis Advances Spinal Cord Functional Recovery after Injury by Modulating Vascular Regeneration. Mol Neurobiol 2023; 60:4983-4999. [PMID: 37209265 DOI: 10.1007/s12035-023-03357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/18/2023] [Indexed: 05/22/2023]
Abstract
Abnormal expression of non-coding RNAs after spinal cord injury (SCI) is associated with pathophysiological outcomes. We bioinformatically predicted a circRNA-miRNA-mRNA axis in SCI. A total of 4690 mRNAs, 17 miRNAs, and 3928 circRNAs were differentially expressed, with co-expressed RNAs predicted to regulate pathways related to wound healing. Among the most highly differentially expressed circRNAs, circ_006573, but not circ_016395, weakened the viability and migration of rat aortic endothelial cells, and its biological effects were rescued with miR-376b-3p mimics. Furthermore, circ_006573 overexpression induced changes in Cebpb, IL-18, and Plscr1 expression that were reversed by miR-376b-3p. In a rat model, circ_006573 shRNA administration improved the pathological manifestations of SCI and ameliorated motor function. Moreover, the expression of CD31, CD34, and VEGF-A in spinal cord tissues was significantly elevated after circ_006573 shRNA treatment, indicating that circ_006573 may be involved in vascular regeneration and functional recovery after SCI. Thus, the circ_006573-miR-376b-3p axis offers a foundation for understanding pathophysiological mechanisms and predicting strategies for treating SCI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjin Su
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxin Song
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingchao Han
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongxing Shen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Khan FB, Uddin S, Elderdery AY, Goh KW, Ming LC, Ardianto C, Palakot AR, Anwar I, Khan M, Owais M, Huang CY, Daddam JR, Khan MA, Shoaib S, Khursheed M, Reshadat S, Khayat Kashani HR, Mirza S, Khaleel AA, Ayoub MA. Illuminating the Molecular Intricacies of Exosomes and ncRNAs in Cardiovascular Diseases: Prospective Therapeutic and Biomarker Potential. Cells 2022; 11:cells11223664. [PMID: 36429092 PMCID: PMC9688392 DOI: 10.3390/cells11223664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Accumulating evidences have highlighted the importance of exosomes and non-coding RNAs (ncRNAs) in cardiac physiology and pathology. It is in general consensus that exosomes and ncRNAs play a crucial role in the maintenance of normal cellular function; and interestingly it is envisaged that their potential as prospective therapeutic candidates and biomarkers are increasing rapidly. Considering all these aspects, this review provides a comprehensive overview of the recent understanding of exosomes and ncRNAs in CVDs. We provide a great deal of discussion regarding their role in the cardiovascular system, together with providing a glimpse of ideas regarding strategies exploited to harness their potential as a therapeutic intervention and prospective biomarker against CVDs. Thus, it could be envisaged that a thorough understanding of the intricacies related to exosomes and ncRNA would seemingly allow their full exploration and may lead clinical settings to become a reality in near future.
Collapse
Affiliation(s)
- Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence: (F.B.K.); (M.A.A.); (C.A.)
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Sciences and Information Technology, INTI International University, Nilai 78100, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: (F.B.K.); (M.A.A.); (C.A.)
| | - Abdul Rasheed Palakot
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohsina Khan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel
| | - Meraj Alam Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children & DigiBiomics Inc, Toronto, ON M51X8, Canada
| | - Shoaib Shoaib
- Department Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Sara Reshadat
- Department of Internal Medicine, Semnan University of Medical Sciences, Semnan 3513119111, Iran
| | | | - Sameer Mirza
- Department of Chemistry, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Abbas A. Khaleel
- Department of Chemistry, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Correspondence: (F.B.K.); (M.A.A.); (C.A.)
| |
Collapse
|
3
|
Dutta P, Sengupta A, Chakraborty S. Epigenetics: a new warrior against cardiovascular calcification, a forerunner in modern lifestyle diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62093-62110. [PMID: 34601672 DOI: 10.1007/s11356-021-15718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arterial and aortic valve calcifications are the most prevalent pathophysiological conditions among all the reported cases of cardiovascular calcifications. It increases with several risk factors like age, hypertension, external stimuli, mechanical forces, lipid deposition, malfunction of genes and signaling pathways, enhancement of naturally occurring calcium inhibitors, and many others. Modern-day lifestyle is affected by numerous environmental factors and harmful toxins that impair our health rather than providing benefits. Applying the combinatorial approach or targeting the exact mechanism could be a new strategy for drug designing or attenuating the severity of calcification. Most of the non-communicable diseases are life-threatening; thus, altering the phenotype and not the genotype may reveal the gateway for fighting with upcoming hurdles. Overall, this review summarizes the reason behind the generation of arterial and aortic valve calcification and its related signaling pathways and also the detrimental effects of calcification. In addition, the individual process of epigenetics and how the implementation of this process becomes a novel approach for diminishing the harmful effect of calcification are discussed. Noteworthy, as epigenetics is linked with genetics and environmental factors necessitates further clinical trials for complete and in-depth understanding and application of this strategy in a more specific and prudent manner.
Collapse
Affiliation(s)
- Parna Dutta
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India
| | - Arunima Sengupta
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, 700032, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
4
|
Lin S, Li H, Wu B, Shang J, Jiang N, Peng R, Xing B, Xu X, Lu H. TGF-β1 regulates chondrocyte proliferation and extracellular matrix synthesis via circPhf21a-Vegfa axis in osteoarthritis. Cell Commun Signal 2022; 20:75. [PMID: 35637489 PMCID: PMC9150374 DOI: 10.1186/s12964-022-00881-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Background The transforming growth factor-beta (TGF-β) signaling pathway is an important pathway associated with the pathogenesis of osteoarthritis (OA). This study was to investigate the involvement of circRNAs in the TGF-β signaling pathway. Methods Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2′-deoxyuridine (EdU) assay were used to detect the proliferation of primary mouse chondrocytes (PMCs). RNA-sequencing together with bioinformatics analysis were used to systematically clarify TGF-β1 induced alternations of circRNAs in PMCs. The regulatory and functional role of circPhf21a was examined in PMCs. Downstream targets of circPhf21a were explored by RNA-sequencing after overexpression of circPhf21a and verified by RT-qPCR in PMCs. Finally, the role and mechanism of circPhf21a in OA were explored in mouse models. Results We found that TGF-β1 promoted the proliferation of PMCs. Meanwhile, RT-qPCR and western blotting indicated that TGF-β1 promoted extracellular matrix (ECM) anabolism. RNA-sequencing revealed that a total of 36 circRNAs were differentially expressed between PMCs treated with and without TGF-β1. Of these, circPhf21a was significantly decreased by TGF-β1. Furthermore, circPhf21a knockdown promoted the proliferation and ECM synthesis of PMCs, whereas overexpression of circPhf21a showed the opposite effects. Mechanically, the expression profiles of the mRNAs revealed that Vegfa may be the target of circPhf21a. Additionally, we found that circPhf21a was significantly upregulated in the mouse OA model, and inhibition of circPhf21a significantly relieved the progression of OA. Conclusions Our results found that TGF-β1 promoted the proliferation and ECM synthesis of PMCs via the circPhf21a-Vegfa axis, which may provide novel therapeutic targets for OA treatment. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00881-9.
Collapse
Affiliation(s)
- Shiyuan Lin
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China
| | - Huizi Li
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China.,Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China
| | - Rong Peng
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China
| | - Baizhou Xing
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China
| | - Xianghe Xu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China.
| | - Huading Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
5
|
The emerging role of circular RNAs in cardiovascular diseases. J Physiol Biochem 2021; 77:343-353. [PMID: 33772724 DOI: 10.1007/s13105-021-00807-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/03/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease (CVD) is one of the vital causes of morbidity and mortality, and the number of deaths from CVD has increased worldwide. Circular RNAs (circRNAs) is a novel type of endogenous noncoding RNA, which can form covalent closed continuous rings and are highly expressed in the eukaryotic transcriptome. In recent years, research on circRNAs have been increasing and the researchers have also become cumulatively aware of the association between circRNAs and CVD. This review highlights the biogenesis and functions of circRNAs and the role in cardiovascular diseases.
Collapse
|
6
|
Altered circular RNA expression profiles in the non-ischemic thalamus in focal cortical infarction mice. Aging (Albany NY) 2020; 12:13206-13219. [PMID: 32639948 PMCID: PMC7377861 DOI: 10.18632/aging.103424] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Focal cerebral infarction leads to secondary changes in non-ischemic areas remote from but connected to the infarct site. Circular RNAs (circRNAs) are involved in the pathophysiological processes of many diseases. However, the expression and roles of circRNAs in non-ischemic remote regions after ischemic stroke remain unknown. In this study, adult male C57BL/6J mice were subjected to permanent distal middle cerebral artery occlusion (MCAO) to establish focal cortical infarction. High-throughput sequencing was used to profile the circRNA expression in the mouse ipsilateral thalamus at 7 and 14 d after MCAO. Bioinformatics analyses were conducted to predict the function of the differential expressed circRNAs' host and target genes. Compared with sham group, a total of 2659 circRNAs were significantly altered in the ipsilateral thalamus at 7 or 14 d after MCAO in mice. Among them, 73 circRNAs were significantly altered at both two time points after stroke. GO and KEGG analyses indicated that circRNAs plays important roles in secondary thalamic neurodegeneration and remodeling after focal cortical infarction. This is the first study to profile the circRNA expression in non-ischemic region of ischemic stroke, suggesting that circRNAs may be therapeutic targets for reducing post-stroke secondary remote neurodegeneration.
Collapse
|
7
|
Hulshoff MS, del Monte-Nieto G, Kovacic J, Krenning G. Non-coding RNA in endothelial-to-mesenchymal transition. Cardiovasc Res 2019; 115:1716-1731. [PMID: 31504268 PMCID: PMC6755356 DOI: 10.1093/cvr/cvz211] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is the process wherein endothelial cells lose their typical endothelial cell markers and functions and adopt a mesenchymal-like phenotype. EndMT is required for development of the cardiac valves, the pulmonary and dorsal aorta, and arterial maturation, but activation of the EndMT programme during adulthood is believed to contribute to several pathologies including organ fibrosis, cardiovascular disease, and cancer. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, modulate EndMT during development and disease. Here, we review the mechanisms by which non-coding RNAs facilitate or inhibit EndMT during development and disease and provide a perspective on the therapeutic application of non-coding RNAs to treat fibroproliferative cardiovascular disease.
Collapse
Affiliation(s)
- Melanie S Hulshoff
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen, The Netherlands
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | | | - Jason Kovacic
- Dept. Cardiology, Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen, The Netherlands
| |
Collapse
|
8
|
Wang W, Wang Y, Piao H, Li B, Huang M, Zhu Z, Li D, Wang T, Xu R, Liu K. Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ 2019; 7:e6831. [PMID: 31119072 PMCID: PMC6511224 DOI: 10.7717/peerj.6831] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are genetic regulators that were earlier considered as "junk". In contrast to linear RNAs, they have covalently linked ends with no polyadenylated tails. CircRNAs can act as RNA-binding proteins, sequestering agents, transcriptional regulators, as well as microRNA sponges. In addition, it is reported that some selected circRNAs are transformed into functional proteins. These RNA molecules always circularize through covalent bonds, and their presence has been demonstrated across species. They are usually abundant and stable as well as evolutionarily conserved in tissues (liver, lung, stomach), saliva, exosomes, and blood. Therefore, they have been proposed as the "next big thing" in molecular biomarkers for several diseases, particularly in cancer. Recently, circRNAs have been investigated in cardiovascular diseases (CVD) and reported to play important roles in heart failure, coronary artery disease, and myocardial infarction. Here, we review the recent literature and discuss the impact and the diagnostic and prognostic values of circRNAs in CVD.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Maoxun Huang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Rihao Xu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
9
|
Li A, Sun Y, Drummer C, Lu Y, Yu D, Zhou Y, Li X, Pearson SJ, Johnson C, Yu C, Yang WY, Mastascusa K, Jiang X, Sun J, Rogers T, Hu W, Wang H, Yang X. Increasing Upstream Chromatin Long-Range Interactions May Favor Induction of Circular RNAs in LysoPC-Activated Human Aortic Endothelial Cells. Front Physiol 2019; 10:433. [PMID: 31057422 PMCID: PMC6482593 DOI: 10.3389/fphys.2019.00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that form covalently closed continuous loops, and act as gene regulators in physiological and disease conditions. To test our hypothesis that proatherogenic lipid lysophosphatidylcholine (LPC) induce a set of circRNAs in human aortic endothelial cell (HAEC) activation, we performed circRNA analysis by searching our RNA-Seq data from LPC-activated HAECs, and found: (1) LPC induces significant modulation of 77 newly characterized cirRNAs, among which 47 circRNAs (61%) are upregulated; (2) 34 (72%) out of 47 upregulated circRNAs are upregulated when the corresponding mRNAs are downregulated, suggesting that the majority of circRNAs are upregulated presumably via LPC-induced “abnormal splicing” when the canonical splicing for generation of corresponding mRNAs is suppressed; (3) Upregulation of 47 circRNAs is temporally associated with mRNAs-mediated LPC-upregulated cholesterol synthesis-SREBP2 pathway and LPC-downregulated TGF-β pathway; (4) Increase in upstream chromatin long-range interaction sites to circRNA related genes is associated with preferred circRNA generation over canonical splicing for mRNAs, suggesting that shifting chromatin long-range interaction sites from downstream to upstream may promote induction of a list of circRNAs in lysoPC-activated HAECs; (5) Six significantly changed circRNAs may have sponge functions for miRNAs; and (6) 74% significantly changed circRNAs contain open reading frames, suggesting that putative short proteins may interfere with the protein interaction-based signaling. Our findings have demonstrated for the first time that a new set of LPC-induced circRNAs may contribute to homeostasis in LPC-induced HAEC activation. These novel insights may lead to identifications of new therapeutic targets for treating metabolic cardiovascular diseases, inflammations, and cancers.
Collapse
Affiliation(s)
- Angus Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Xinyuan Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Simone J Pearson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Catherine Yu
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kevin Mastascusa
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Philadelphia University - Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Piera-Velazquez S, Jimenez SA. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev 2019; 99:1281-1324. [PMID: 30864875 DOI: 10.1152/physrev.00021.2018] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|