1
|
Zeng Q, Jiang T. Molecular mechanisms of ferroptosis in cardiovascular disease. Mol Cell Biochem 2024; 479:3181-3193. [PMID: 38374233 DOI: 10.1007/s11010-024-04940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024]
Abstract
Ferroptosis is a newly recognized type of regulated cell death that is characterized by the accumulation of iron and lipid peroxides in cells. Studies have shown that ferroptosis plays a significant role in the pathogenesis of various diseases, including cardiovascular diseases. In cardiovascular disease, ferroptosis is associated with ischemia-reperfusion injury, myocardial infarction, heart failure, and atherosclerosis. The molecular mechanisms underlying ferroptosis include the iron-dependent accumulation of lipid peroxidation products, glutathione depletion, and dysregulation of lipid metabolism, among others. This review aims to summarize the current knowledge of the molecular mechanisms of ferroptosis in cardiovascular disease and discuss the potential therapeutic strategies targeting ferroptosis as a treatment for cardiovascular disease.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Tingting Jiang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
2
|
Quagliariello V, Canale ML, Bisceglia I, Iovine M, Paccone A, Maurea C, Scherillo M, Merola A, Giordano V, Palma G, Luciano A, Bruzzese F, Zito Marino F, Montella M, Franco R, Berretta M, Gabrielli D, Gallucci G, Maurea N. Sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents ejection fraction reduction, reduces myocardial and renal NF-κB expression and systemic pro-inflammatory biomarkers in models of short-term doxorubicin cardiotoxicity. Front Cardiovasc Med 2024; 11:1289663. [PMID: 38818214 PMCID: PMC11138344 DOI: 10.3389/fcvm.2024.1289663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
Background Anthracycline-mediated adverse cardiovascular events are among the leading causes of morbidity and mortality in patients with cancer. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) exert multiple cardiometabolic benefits in patients with/without type 2 diabetes, chronic kidney disease, and heart failure with reduced and preserved ejection fraction. We hypothesized that the SGLT2i dapagliflozin administered before and during doxorubicin (DOXO) therapy could prevent cardiac dysfunction and reduce pro-inflammatory pathways in preclinical models. Methods Cardiomyocytes were exposed to DOXO alone or combined with dapagliflozin (DAPA) at 10 and 100 nM for 24 h; cell viability, iATP, and Ca++ were quantified; lipid peroxidation products (malondialdehyde and 4-hydroxy 2-hexenal), NLRP3, MyD88, and cytokines were also analyzed through selective colorimetric and enzyme-linked immunosorbent assay (ELISA) methods. Female C57Bl/6 mice were treated for 10 days with a saline solution or DOXO (2.17 mg/kg), DAPA (10 mg/kg), or DOXO combined with DAPA. Systemic levels of ferroptosis-related biomarkers, galectin-3, high-sensitivity C-reactive protein (hs-CRP), and pro-inflammatory chemokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IL-18, IFN-γ, TNF-α, G-CSF, and GM-CSF) were quantified. After treatments, immunohistochemical staining of myocardial and renal p65/NF-kB was performed. Results DAPA exerts cytoprotective, antioxidant, and anti-inflammatory properties in human cardiomyocytes exposed to DOXO by reducing iATP and iCa++ levels, lipid peroxidation, NLRP-3, and MyD88 expression. Pro-inflammatory intracellular cytokines were also reduced. In preclinical models, DAPA prevented the reduction of radial and longitudinal strain and ejection fraction after 10 days of treatment with DOXO. A reduced myocardial expression of NLRP-3 and MyD-88 was seen in the DOXO-DAPA group compared to DOXO mice. Systemic levels of IL-1β, IL-6, TNF-α, G-CSF, and GM-CSF were significantly reduced after treatment with DAPA. Serum levels of galectine-3 and hs-CRP were strongly enhanced in the DOXO group; on the other hand, their expression was reduced in the DAPA-DOXO group. Troponin-T, B-type natriuretic peptide (BNP), and N-Terminal Pro-BNP (NT-pro-BNP) were strongly reduced in the DOXO-DAPA group, revealing cardioprotective properties of SGLT2i. Mice treated with DOXO and DAPA exhibited reduced myocardial and renal NF-kB expression. Conclusion The overall picture of the study encourages the use of DAPA in the primary prevention of cardiomyopathies induced by anthracyclines in patients with cancer.
Collapse
Affiliation(s)
- V. Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - M. L. Canale
- Cardiology Division, Azienda USL Toscana Nord-Ovest, Versilia Hospital, Lido di Camaiore, Italy
| | - I. Bisceglia
- Integrated Cardiology Services, Department of Cardio-Thoracic-Vascular, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - M. Iovine
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - A. Paccone
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - C. Maurea
- ASL NA1, UOC Neurology and Stroke Unit, Ospedale del Mare, Naples, Italy
| | - M. Scherillo
- Cardiology Department, San Pio Hospital, Benevento, Italy
| | - A. Merola
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - V. Giordano
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| | - G. Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - A. Luciano
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - F. Bruzzese
- SSD Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italy
| | - F. Zito Marino
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - M. Montella
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - R. Franco
- Pathology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - M. Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - D. Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlani-ni, Roma—Fondazione per il Tuo Cuore—Heart Care Foundation, Firenze, Italy
| | - G. Gallucci
- Cardio-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - N. Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Napoli, Italia
| |
Collapse
|
3
|
Domínguez Romero Y, Montoya Ortiz G, Novoa Herrán S, Osorio Mendez J, Gomez Grosso LA. miRNA Expression Profiles in Isolated Ventricular Cardiomyocytes: Insights into Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2024; 25:5272. [PMID: 38791311 PMCID: PMC11121573 DOI: 10.3390/ijms25105272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3β. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3β molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential.
Collapse
Affiliation(s)
- Yohana Domínguez Romero
- Doctorate in Biotechnology Program, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Gladis Montoya Ortiz
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Susana Novoa Herrán
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Jhon Osorio Mendez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
- Master in Biochemistry Program, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Luis A. Gomez Grosso
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
4
|
Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117264. [PMID: 37776941 DOI: 10.1016/j.envres.2023.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Nanoparticles are fascinating and encouraging carriers for cancer treatment due to their extraordinary properties and potential applications in targeted drug delivery, treatment, and diagnosis. Experimental studies including in vitro and in vivo examinations show that nanoparticles can cause a revolution in different aspects of cancer therapy. Normal tissue toxicity and early and late consequences are the major limitations of cancer therapy by radiotherapy and chemotherapy. However, the delivery of drugs into tumors or reducing the accumulation of drugs in normal tissues can permit a more satisfactory response of malignancies to therapy with more inferior side effects. Cardiac toxicity is one of the major problems for chemotherapy and radiotherapy. Therefore, several experimental studies have been performed to minimize the degenerative impacts of cancer treatment on the heart and also enhance the influences of radiotherapy and chemotherapy agents in cancers. This review article emphasizes the benefits of nanoparticle-based drug delivery techniques, including minimizing the exposure of the heart to anticancer drugs, enhancing the accumulation of drugs in cancers, and expanding the effectiveness of radiotherapy. The article also discusses the challenges and problems accompanied with nanoparticle-based drug delivery techniques such as toxicity, which need to be addressed through further research. Moreover, the article emphasizes the importance of developing safe and effective nanoparticle-based therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Ketao Li
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing, 400051, China
| | - Liping Ma
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Laixing Yan
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Bing Wang
- Department of Cardiology, Zouping People's Hospital, Zouping, shandong, 256299, China.
| |
Collapse
|
5
|
Suero-Abreu GA, Lim P, Raza A, Tysarowski M, Mehta K, Kortbawi M, Feldman S, Waller AH. Effect of variable left ventricular ejection fraction assessed by equilibrium radionuclide angiocardiography using different software packages on the diagnosis of cardiotoxicity in patients with cancer. J Nucl Cardiol 2024; 31:101782. [PMID: 38216410 DOI: 10.1016/j.nuclcard.2023.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
BACKGROUND The equilibrium radionuclide angiocardiography (ERNA) scan is an established imaging modality for assessing left ventricular ejection fraction (LVEF) in oncology patients. This study aimed to explore the interchangeability of two commercially available software packages (MIM and JS) for LVEF measurement for a cancer-therapy-related cardiac dysfunction (CTRCD) diagnosis. METHODS This is a single-center retrospective study among 322 patients who underwent ERNA scans. A total of 582 scans were re-processed using MIM and JS for cross-sectional and longitudinal LVEF measurements. RESULTS The median LVEF for MIM and JS were 56% and 66%, respectively (P < 0.001). LVEF processed by JS was 9.91% higher than by MIM. In 87 patients with longitudinal ERNA scans, serial studies processed by MIM were classified as having CTRCD in a higher proportion than serial studies processed by JS (26.4% vs 11.4%, P = 0.020). There were no significant differences in intra- or inter-observer LVEF measurement variability (R = 0.99, P < 0.001). CONCLUSIONS Software packages for processing ERNA studies are not interchangeable; thus, reports of ERNA studies should include details on the post-processing software. Serial ERNA studies should be processed on the same software when feasible to avoid discrepancies in the diagnosis and management of CTRCD.
Collapse
Affiliation(s)
| | - Phillip Lim
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Anoshia Raza
- Division of Cardiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Khyati Mehta
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Michael Kortbawi
- Department of Nuclear Medicine, University Hospital, Newark, NJ, USA
| | - Stephanie Feldman
- Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alfonso H Waller
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Division of Cardiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Nuclear Medicine, University Hospital, Newark, NJ, USA.
| |
Collapse
|
6
|
Bhagat AA, Kalogeropoulos AP, Baer L, Lacey M, Kort S, Skopicki HA, Butler J, Bloom MW. Biomarkers and Strain Echocardiography for the Detection of Subclinical Cardiotoxicity in Breast Cancer Patients Receiving Anthracyclines. J Pers Med 2023; 13:1710. [PMID: 38138937 PMCID: PMC10744645 DOI: 10.3390/jpm13121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The optimal surveillance and management strategies for breast cancer patients receiving anthracycline therapy are limited by our incomplete understanding of the role of biomarkers heralding the onset of cardiotoxicity. The purpose of this study was to determine whether there is a temporal correlation between cardiac biomarkers and subclinical left ventricular dysfunction in breast cancer patients receiving anthracycline chemotherapy. Thirty-one females between 46 and 55 years old with breast cancer treated with anthracycline chemotherapy were prospectively enrolled. Cardiac biomarkers were correlated with echocardiography with speckle tracking at baseline, post-anthracycline therapy, and 6 months post-anthracycline chemotherapy. Subclinical cardiotoxicity was defined as ≥ 10% reduction in global longitudinal strain (GLS). There was a relative reduction in left ventricular ejection fraction (LVEF) ≥ 10% in 5/30 (17%) and 7/27 (26%) patients post-anthracycline therapy and 6 months post-anthracycline therapy, respectively. Subclinical cardiotoxicity was noted in 8/30 (27%) and 10/26 (38%) patients post-anthracycline and 6 months post-anthracycline therapy, respectively. Baseline N-terminal pro B-type natriuretic peptide (NT-proBNP) was the strongest predictor of LVEF (ρ = -0.45; p = 0.019), with post-therapy NT-proBNP values illustrating similar predictive value (ρ = -0.40; p = 0.038). Interim changes in suppression of tumorigenicity 2 (ST2) and galectin-3 correlated with a 6-month change in LVEF (ρ = -0.48; p = 0.012 and ρ = -0.45; p = 0.018, for ST2 and galectin-3, respectively). Changes in galectin-3 from baseline to mid-therapy paralleled changes in GLS. NT-proBNP, ST2, and galectin-3 correlate with reduced LVEF among breast cancer patients receiving anthracycline therapy. Additional trials focusing on a cardiac biomarker approach may provide guidance in the early diagnosis and management of anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Aditi A. Bhagat
- Division of Cardiology, Stony Brook University, Stony Brook, NY 11794, USA; (A.A.B.); (A.P.K.); (S.K.); (H.A.S.)
| | - Andreas P. Kalogeropoulos
- Division of Cardiology, Stony Brook University, Stony Brook, NY 11794, USA; (A.A.B.); (A.P.K.); (S.K.); (H.A.S.)
| | - Lea Baer
- Division of Oncology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Matthew Lacey
- Division of Cardiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA;
| | - Smadar Kort
- Division of Cardiology, Stony Brook University, Stony Brook, NY 11794, USA; (A.A.B.); (A.P.K.); (S.K.); (H.A.S.)
| | - Hal A. Skopicki
- Division of Cardiology, Stony Brook University, Stony Brook, NY 11794, USA; (A.A.B.); (A.P.K.); (S.K.); (H.A.S.)
| | - Javed Butler
- Division of Cardiology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Michelle Weisfelner Bloom
- Division of Cardiology, Stony Brook University, Stony Brook, NY 11794, USA; (A.A.B.); (A.P.K.); (S.K.); (H.A.S.)
| |
Collapse
|
7
|
Zheng Y, Chen Z, Huang S, Zhang N, Wang Y, Hong S, Chan JSK, Chen KY, Xia Y, Zhang Y, Lip GY, Qin J, Tse G, Liu T. Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline. Rev Cardiovasc Med 2023; 24:296. [PMID: 39077576 PMCID: PMC11273149 DOI: 10.31083/j.rcm2410296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/31/2024] Open
Abstract
A growing body of evidence on a wide spectrum of adverse cardiac events following oncologic therapies has led to the emergence of cardio-oncology as an increasingly relevant interdisciplinary specialty. This also calls for better risk-stratification for patients undergoing cancer treatment. Machine learning (ML), a popular branch discipline of artificial intelligence that tackles complex big data problems by identifying interaction patterns among variables, has seen increasing usage in cardio-oncology studies for risk stratification. The objective of this comprehensive review is to outline the application of ML approaches in cardio-oncology, including deep learning, artificial neural networks, random forest and summarize the cardiotoxicity identified by ML. The current literature shows that ML has been applied for the prediction, diagnosis and treatment of cardiotoxicity in cancer patients. In addition, role of ML in gender and racial disparities for cardiac outcomes and potential future directions of cardio-oncology are discussed. It is essential to establish dedicated multidisciplinary teams in the hospital and educate medical professionals to become familiar and proficient in ML in the future.
Collapse
Affiliation(s)
- Yi Zheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular
Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second
Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Ziliang Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular
Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second
Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Shan Huang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular
Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second
Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular
Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second
Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Yueying Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular
Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second
Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Shenda Hong
- National Institute of Health Data Science at Peking University, Peking
University, 100871 Beijing, China
- Institute of Medical Technology, Peking University Health Science Center,
100871 Beijing, China
| | - Jeffrey Shi Kai Chan
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, PowerHealth Limited, 999077 Hong
Kong, China
| | - Kang-Yin Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular
Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second
Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical
University, 116011 Dalian, Liaoning, China
| | - Yuhui Zhang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease,
Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Gregory Y.H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool,
Liverpool John Moores University and Liverpool Heart & Chest Hospital, L69 3BX
Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine,
Aalborg University, 999017 Aalborg, Denmark
| | - Juan Qin
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the
Cardiovascular Research Institute, University of California San Francisco, San
Francisco, CA 94143, USA
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular
Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second
Hospital of Tianjin Medical University, 300211 Tianjin, China
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, PowerHealth Limited, 999077 Hong
Kong, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University,
999077 Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular
Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second
Hospital of Tianjin Medical University, 300211 Tianjin, China
| |
Collapse
|
8
|
Alkhatib D, DeCarr K, Pour-Ghaz I, Al-Taweel O, Alhwarat B, Bond A, Wineinger T, Alexander J, Kayali S, Yedlapati N, Rhea I. A Case of Low Ejection Fraction Unrelated to Anthracycline Therapy: Chemo Tells a Fib. Kans J Med 2023; 16:176-178. [PMID: 37539373 PMCID: PMC10395767 DOI: 10.17161/kjm.vol16.19669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 08/05/2023] Open
Affiliation(s)
- Deya Alkhatib
- Division of Cardiovascular Disease, University of Tennessee Health Science Center, Memphis, TN
| | - Kimberly DeCarr
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Issa Pour-Ghaz
- Division of Cardiovascular Disease, University of Tennessee Health Science Center, Memphis, TN
| | - Omar Al-Taweel
- Division of Cardiovascular Medicine, University of Nevada-Las Vegas, Kirk Kerkorian School of Medicine, Las Vegas, NV
| | | | - Addison Bond
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Tracy Wineinger
- Division of Cardiovascular Medicine, Kansas College of Osteopathic Medicine, Wichita, KS
| | - John Alexander
- Division of Cardiovascular Disease, University of Tennessee Health Science Center, Memphis, TN
| | - Sharif Kayali
- Division of Cardiovascular Disease, University of Tennessee Health Science Center, Memphis, TN
| | - Neeraja Yedlapati
- Division of Cardiovascular Disease, University of Tennessee Health Science Center, Memphis, TN
| | - Isaac Rhea
- Division of Cardiovascular Disease, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
9
|
Lax A, Soler F, Fernandez del Palacio MJ, Pascual-Oliver S, Ballester MR, Fuster JJ, Pascual-Figal D, Asensio-Lopez MDC. Silencing of microRNA-106b-5p prevents doxorubicin-mediated cardiotoxicity through modulation of the PR55α/YY1/sST2 signaling axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:704-720. [PMID: 37234747 PMCID: PMC10208836 DOI: 10.1016/j.omtn.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Clinical use of doxorubicin (Dox), an anthracycline with potent anti-tumor effects, is limited because of its highly chemotherapy-induced cardiotoxicity (CIC). After myocardial infarction (MI), we have recently identified Yin Yang-1 (YY1) and histone deacetylase 4 (HDAC4) as two factors involved in the overexpression of the isoform soluble suppression of tumorigenicity 2 (sST2) protein, which acts as a decoy receptor blocking the favorable effects of IL-33. Therefore, high levels of sST2 are associated with increased fibrosis, remodeling, and worse cardiovascular outcomes. No data exist on the role of the YY1/HDAC4/sST2 axis in CIC. This study aimed to evaluate the pathophysiological implication of the molecular YY1/HDAC4/sST2 axis in remodeling that is developed in patients treated with Dox as well as to suggest a novel molecular therapy to prevent anthracycline-induced cardiotoxicity. Here, we have characterized a novel nexus between miR106b-5p (miR-106b) levels and the YY1/HDAC4 axis in relation to the cardiac expression of sST2 using two experimental models with Dox-induced cardiotoxicity. The addition of Dox (5 μM) to human induced pluripotent stem cell-derived cardiomyocytes induced cellular apoptotic death via upregulation of miR-106b-5p (miR-106b), which was confirmed by specific mimic sequences. A functional blockage of miR-106b using the locked nucleic acid antagomir inhibited Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Antonio Lax
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Fernando Soler
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | | | - Silvia Pascual-Oliver
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Miriam Ruiz Ballester
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Jose Javier Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Domingo Pascual-Figal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | |
Collapse
|
10
|
Jiang Y, Jiang Y, Li M, Yu Q. Will nanomedicine become a good solution for the cardiotoxicity of chemotherapy drugs? Front Pharmacol 2023; 14:1143361. [PMID: 37214453 PMCID: PMC10194942 DOI: 10.3389/fphar.2023.1143361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and with the continuous development of life sciences and pharmaceutical technology, more and more antitumor drugs are being used in clinics to benefit cancer patients. However, the incidence of chemotherapy-induced cardiotoxicity has been continuously increasing, threatening patients' long-term survival. Cardio-oncology has become a research hot spot, and the combination of nanotechnology and biomedicine has brought about an unprecedented technological revolution. Nanomaterials have the potential to maximize the efficacy and reduce the side effects of chemotherapeutic drugs when used as their carriers, and several nano-formulations of frequently used chemotherapeutic drugs have already been approved for marketing. In this review, we summarize chemotherapeutic drugs that are highly associated with cardiotoxicity and evaluate the role of nano-delivery systems in reducing cardiotoxicity based on studies of their marketed or R&D nano-formulations. Some of the marketed chemotherapy drugs are combined with nano-delivery systems that can effectively deliver chemotherapy drugs to tumors and cannot easily penetrate the endothelial barrier of the heart, thus decreasing their distribution in the heart and reducing the cardiotoxicity to some extent. However, many chemotherapy nanomedicines that are marketed or in R&D have not received enough attention in determining their cardiotoxicity. In general, nanomedicine is an effective method to reduce the cardiotoxicity of traditional chemotherapy drugs. However, cardiovascular complications in cancer treatment are very complex diseases, requiring the application of multiple measures to achieve effective management and prevention.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
11
|
Kobus K, Bohmann B, Wilbring M, Kapalla M, Eckstein HH, Bassermann F, Stratmann JA, Wahida A, Reeps C, Schwaiger BJ, Busch A, von Rose AB. Cancer, cancer treatment and aneurysmatic ascending aorta growth within a retrospective single center study. VASA 2023; 52:38-45. [PMID: 36373268 DOI: 10.1024/0301-1526/a001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Multi-morbidity poses a substantial challenge for health care in an aging population. Recent studies did not provide evidence for general side effects of anti-cancer therapy regarding the growth rate of coincident abdominal aortic aneurysms, although it was suggested that specific therapeutic substances might accelerate growth. Aneurysm pathology, however, differs with respect to localization. Hence, we present the first ever analysis on the association of cancer and cancer therapy with growth alteration of aneurysms of the ascending aorta (AscAA). Patients and methods: A retrospective single-center identification of AscAA+cancer patients was performed in the institutional picture archiving and communication system (PACS). Included were all patients with ≥2 CT angiograms over ≥6 months and additional malignancy. Clinical data and aneurysm diameters were retrieved and analyzed for an association of cancer (stratified by tumor entity) or cancer therapy (stratified by several classes of chemotherapeutic agents and radiation therapy) with annual growth rate, respectively. Statistics included t-test, Wilcoxon test, and a linear regression model accounting for initial AscAA diameter and type of treatment. Results: From 2003 to 2021, 151 patients (median age 70 years; 85% male) with AscAA and coincident 163 malignancies were identified. Prostate (37%) and hematologic cancer (17%) were most frequent. One-hundred-eleven patients (74%) received chemotherapy and 75 patients (50%) had radiation. After exclusion of six patients with an initial AscAA diameter >55 mm, the average annual AscAA growth rate was 0.18±0.64 mm/year, with only 12 patients experiencing a growth rate >1mm/year. Neither tumor entity nor radiation or chemotherapy - alone or in combination - were significantly associated with an alteration of the annual AscAA growth rate. Likewise, a subanalysis for singular chemotherapeutic agents did not reveal a specific association with AscAA growth alteration. Conclusions: Growth rates of AscAA are low in this cohort with coincident malignancy. Cancer and/or chemotherapy or radiation are not associated with an alteration of the annual growth rate. Additional control examinations seem unnecessary.
Collapse
Affiliation(s)
- Kathrin Kobus
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany
| | - Bianca Bohmann
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany
| | - Manuel Wilbring
- Department of Cardiac Surgery, University Heart Center Dresden, Germany
| | - Marvin Kapalla
- Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany
| | - Florian Bassermann
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, Germany
| | - Jan A Stratmann
- Department of Hematology and Oncology, Johann Wolfgang Goethe University of Frankfurt, Frankfurt am Main, Germany
| | - Adam Wahida
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Germany
| | - Benedikt J Schwaiger
- Department of Radiology and Department of Neuroradiology, School of Medicine, Technical University of Munich, Germany
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany.,Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Germany
| | - Aaron Becker von Rose
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technical University Munich, Germany
| |
Collapse
|
12
|
Lee MS, Tsai WT, Yang HJ, Hung SK, Chiou WY, Liu DW, Chen LC, Chew CH, Yu BH, Hsu FC, Wu TH, Lin HY. Hazard-based risk grouping effectively stratifying breast cancer patients in post-irradiation long-term heart diseases: a population-based cohort study. Front Cardiovasc Med 2023; 10:980101. [PMID: 37180774 PMCID: PMC10172475 DOI: 10.3389/fcvm.2023.980101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background Even though advanced radiotherapy techniques provide a better protective effect on surrounding normal tissues, the late sequelae from radiation exposure to the heart are still considerable in breast cancer patients. The present population-based study explored the role of cox-regression-based hazard risk grouping and intended to stratify patients with post-irradiation long-term heart diseases. Materials and methods The present study investigated the Taiwan National Health Insurance (TNHI) database. From 2000 to 2017, we identified 158,798 breast cancer patients. Using a propensity score match of 1:1, we included 21,123 patients in each left and right breast irradiation cohort. Heart diseases, including heart failure (HF), ischemic heart disease (IHD), and other heart diseases (OHD), and anticancer agents, including epirubicin, doxorubicin, and trastuzumab, were included for analysis. Results Patients received left breast irradiation demonstrated increased risks on IHD (aHR, 1.16; 95% CI, 1.06-1.26; p < 0.01) and OHD (aHR, 1.08; 95% CI, 1.01-1.15; p < 0.05), but not HF (aHR, 1.11; 95% CI, 0.96-1.28; p = 0.14), when compared with patients received right breast irradiation. In patients who received left breast irradiation dose of >6,040 cGy, subsequent epirubicin might have a trend to increase the risk of heart failure (aHR, 1.53; 95% CI, 0.98-2.39; p = 0.058), while doxorubicin (aHR, 0.59; 95% CI, 0.26-1.32; p = 0.19) and trastuzumab (aHR, 0.93; 95% CI, 0.33-2.62; p = 0.89) did not. Older age was the highest independent risk factor for post-irradiation long-term heart diseases. Conclusion Generally, systemic anticancer agents are safe in conjunction with radiotherapy for managing post-operative breast cancer patients. Hazard-based risk grouping may help stratify breast cancer patients associated with post-irradiation long-term heart diseases. Notably, radiotherapy should be performed cautiously for elderly left breast cancer patients who received epirubicin. Limited irradiation dose to the heart should be critically considered. Regular monitoring of potential signs of heart failure may be conducted.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Ta Tsai
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Departments of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Computer Science and Information Engineering, National Cheng Kung University, Chiayi, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ben-Hui Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Tung-Hsin Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Correspondence: Tung-Hsin Wu Hon-Yi Lin
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
- Correspondence: Tung-Hsin Wu Hon-Yi Lin
| |
Collapse
|
13
|
Kassaian SE, Gandhi B, Barac A. Cardio-oncology: Implications for Clinical Practice for Women. Curr Cardiol Rep 2022; 24:1685-1698. [PMID: 36112292 DOI: 10.1007/s11886-022-01779-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Clinical cardio-oncology considerations specific to women span across many areas and are particularly relevant for management of patients with sex-specific cancers, such as breast cancer. RECENT FINDINGS Major improvement in breast cancer survivorship over the last decade and the recognition of CV disease as the second leading cause of death among survivors point to the relevance of long-term cardiovascular (CV) safety. This review summarizes the CV effects associated with multimodality breast cancer treatments and contemporary approach to CV risk stratification, prevention, early detection, monitoring, and management at the time of cancer diagnosis, during and after completion of treatment. We highlight the growing role of a multidisciplinary, team-based approach for comprehensive CV and oncology care through the entire cancer treatment continuum, from diagnosis through survivorship.
Collapse
Affiliation(s)
- Seyed Ebrahim Kassaian
- J.D. Murphy Jr. Cardio-Oncology Fellowship Program, MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Georgetown University, 110 Irving Street, NW, Suite 1A130, Washington, DC, 20010, USA
| | - Bhumika Gandhi
- Cancer Survivorship Program, MedStar Georgetown University Hospital, 3800 Reservoir Road, Washington, DC, 20007, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Georgetown University, 110 Irving Street, NW, Suite 1A130, Washington, DC, 20010, USA.
| |
Collapse
|
14
|
Lasica R, Spasic J, Djukanovic L, Trifunovic-Zamaklar D, Orlic D, Nedeljkovic-Arsenovic O, Asanin M. Case report: Acute toxic myocardial damage caused by 5-fluorouracil—from enigma to success. Front Cardiovasc Med 2022; 9:991886. [PMID: 36330002 PMCID: PMC9622946 DOI: 10.3389/fcvm.2022.991886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/23/2022] [Indexed: 11/15/2022] Open
Abstract
Considering the pandemic of both cardiovascular diseases and oncological diseases, there is an increasing need for the use of chemotherapy, which through various pathophysiological mechanisms leads to damage to heart function. Cardio toxicity of chemotherapy drugs can manifest itself in a variety of clinical manifestations, which is why establishing a valid diagnosis is a real mystery for clinicians. Acute systolic heart failure (AHF) due to the use of 5-fluorouracil (5-FU) is a rare occurrence if it is not associated with myocardial infarction, myocarditis or Takotsubo cardiomyopathy. Therefore, we decided to present a case of an 52-year-old male who was diagnosed with stage IV RAS wild-type adenocarcinoma of the rectum and in whom the direct toxic effect 5-FU is the main reason for the appearance of toxic cardiomyopathy.
Collapse
Affiliation(s)
- Ratko Lasica
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, Belgrade, Serbia
- *Correspondence: Ratko Lasica
| | - Jelena Spasic
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Lazar Djukanovic
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, Belgrade, Serbia
| | | | - Dejan Orlic
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
| | | | - Milika Asanin
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
15
|
Disclosing an In-Frame Deletion of the Titin Gene as the Possible Predisposing Factor of Anthracycline-Induced Cardiomyopathy: A Case Report. Int J Mol Sci 2022; 23:ijms23169261. [PMID: 36012532 PMCID: PMC9408849 DOI: 10.3390/ijms23169261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Anthracycline-induced cardiomyopathy has been noted as a non-neglectable issue in the field of clinical oncology. Remarkable progress has been achieved in searching for inherited susceptible genetic deficits underlying anthracycline cardiotoxicity in the past several years. In this case report, we present the preliminary results of a genetic study in a young male patient who was treated with standard dose anthracycline-based chemotherapy for his acute myeloid leukemia and attacked by acute congestive heart failure after just two courses of therapy. After a survey of 76 target genes, an in-frame deletion of the titin gene was recognized as the most possible genetic defect responsible for his cardiomyopathy caused by anthracycline. This defect proved to pass down from the patient′s mother and did not exist in seven unrelated chemotherapy-treated cancer patients without chemotherapy-induced cardiomyopathy and four other healthy volunteer DNA donors.
Collapse
|
16
|
Dong Y, Wu Q, Hu C. Early Predictive Value of NT-proBNP Combined With Echocardiography in Anthracyclines Induced Cardiotoxicity. Front Surg 2022; 9:898172. [PMID: 35846969 PMCID: PMC9283786 DOI: 10.3389/fsurg.2022.898172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Determine the predictive value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) combined with echocardiography in the diagnosis of anthracyclines-induced chronic cardiotoxicity. Methods A total of 80 female breast cancer patients from January 2019 to October 2021 were included in our hospital. Twenty-six patients with cardiotoxicity were divided into the cardiac impairment group, and the 54 patients without cardiotoxicity were classified into the normal control group. NT-proBNP levels and cardiac echocardiography were measured before the start of the chemotherapy cycle, in cycle 3 of the chemotherapy, and after the chemotherapy cycle in all patients. Results After three cycles of chemotherapy and chemotherapy, the levels of NT-proBNP in patients of the two groups were significantly higher than those before chemotherapy (P < 0.05). The levels of NT-proBNP in the cardiac injury group after three cycles of chemotherapy and chemotherapy were higher than those in the normal control group at the same time point (P < 0.05). The LVEF of patients in the cardiac impairment group after chemotherapy was lower than that before chemotherapy, and the LVEF after chemotherapy was lower than that in the normal control group (P < 0.05). NT-proBNP had a negative correlation with LVEF (r = −0.549, P < 0.001). The AUC of NT-proBNP in combination with LVEF for predicting cardiotoxicity in our patient was 0.898(95%CI:0.829–0.966). Conclusion NT-proBNP combined with echocardiography has clinical significance in the detection of anthracyclines-induced cardiotoxicity, and it can detect early myocardial injury induced by anthracyclines, with early prediction value. It is important to protect heart function and judge prognosis.
Collapse
Affiliation(s)
- Yingjun Dong
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qiong Wu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Changqing Hu
- Department of Cardiology, Shanxi Provincial People’s Hospital, Taiyuan, China
- Correspondence: Changqing Hu
| |
Collapse
|
17
|
Scholten M, Midlöv P, Halling A. Disparities in prevalence of heart failure according to age, multimorbidity level and socioeconomic status in southern Sweden: a cross-sectional study. BMJ Open 2022; 12:e051997. [PMID: 35351700 PMCID: PMC8966525 DOI: 10.1136/bmjopen-2021-051997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The aim of this study was to compare the prevalence of heart failure (HF) in relation to age, multimorbidity and socioeconomic status of primary healthcare centres in southern Sweden. DESIGN A cross-sectional study. SETTING The data were collected concerning diagnoses at each consultation in all primary healthcare centres and secondary healthcare in the southernmost county of Sweden at the end of 2015. PARTICIPANTS The individuals living in southern Sweden in 2015 aged 20 years and older. The study population of 981 383 inhabitants was divided into different categories including HF, multimorbidity, different levels of multimorbidity and into 10 CNI (Care Need Index) groups depending on the socioeconomic status of their listed primary healthcare centre. OUTCOMES Prevalence of HF was presented according to age, multimorbidity level and socioeconomic status. Logistic regression was used to further analyse the associations between HF, age, multimorbidity level and socioeconomic status in more complex models. RESULTS The total prevalence of HF in the study population was 2.06%. The prevalence of HF increased with advancing age and the multimorbidity level. 99.07% of the patients with HF fulfilled the criteria for multimorbidity. The total prevalence of HF among the multimorbid patients was only 5.30%. HF had a strong correlation with the socioeconomic status of the primary healthcare centres with the most significant disparity between 40 and 80 years of age: the prevalence of HF in primary healthcare centres with the most deprived CNI percentile was approximately twice as high as in the most affluent CNI percentile. CONCLUSION The patients with HF were strongly associated with having multimorbidity. HF patients was a small group of the multimorbid population associated with socioeconomic deprivation that challenges efficient preventive strategies and health policies.
Collapse
Affiliation(s)
- Mia Scholten
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Patrik Midlöv
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Anders Halling
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
18
|
Herrmann J, Lenihan D, Armenian S, Barac A, Blaes A, Cardinale D, Carver J, Dent S, Ky B, Lyon AR, López-Fernández T, Fradley MG, Ganatra S, Curigliano G, Mitchell JD, Minotti G, Lang NN, Liu JE, Neilan TG, Nohria A, O'Quinn R, Pusic I, Porter C, Reynolds KL, Ruddy KJ, Thavendiranathan P, Valent P. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur Heart J 2022; 43:280-299. [PMID: 34904661 PMCID: PMC8803367 DOI: 10.1093/eurheartj/ehab674] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/28/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
The discipline of Cardio-Oncology has seen tremendous growth over the past decade. It is devoted to the cardiovascular (CV) care of the cancer patient, especially to the mitigation and management of CV complications or toxicities of cancer therapies, which can have profound implications on prognosis. To that effect, many studies have assessed CV toxicities in patients undergoing various types of cancer therapies; however, direct comparisons have proven difficult due to lack of uniformity in CV toxicity endpoints. Similarly, in clinical practice, there can be substantial differences in the understanding of what constitutes CV toxicity, which can lead to significant variation in patient management and outcomes. This document addresses these issues and provides consensus definitions for the most commonly reported CV toxicities, including cardiomyopathy/heart failure and myocarditis, vascular toxicity, and hypertension, as well as arrhythmias and QTc prolongation. The current document reflects a harmonizing review of the current landscape in CV toxicities and the definitions used to define these. This consensus effort aims to provide a structure for definitions of CV toxicity in the clinic and for future research. It will be important to link the definitions outlined herein to outcomes in clinical practice and CV endpoints in clinical trials. It should facilitate communication across various disciplines to improve clinical outcomes for cancer patients with CV diseases.
Collapse
Affiliation(s)
- Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55902, USA
| | - Daniel Lenihan
- International Cardio-Oncology Society, 465 Lucerne Ave., Tampa, FL 33606, USA
| | - Saro Armenian
- City of Hope Comprehensive Cancer Center, Department of Population Sciences, 500 E Duarte Rd, Duarte, CA 91010, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, Georgetown University, 10 Irving Street Northwest Suite NW, Washington, DC 20010, USA
| | - Anne Blaes
- University of Minnesota, Division of Hematology/Oncology, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Daniela Cardinale
- Cardioncology Unit, European Institute of Oncology, IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Joseph Carver
- Abraham Cancer Center, University of Pennsylvania, Philadelphia, 3400 Civic Center Boulevard, Pavilion 2nd Floor, Philadelphia, PA 19104, USA
| | - Susan Dent
- Duke Cancer Institute, Department of Medicine, Duke University, 20 Duke Medicine Circle, Durham, NA 27704, USA
| | - Bonnie Ky
- Division of Cardiology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, Imperial College, Sydney St, London SW3 6NP, United Kingdom
| | - Teresa López-Fernández
- Division of Cardiology; Cardiac Imaging and Cardio-Oncology Unit; La Paz University Hospital, IdiPAZ Research Institute, CIBER CV, C. de Pedro Rico, 6, 28029 Madrid, Spain
| | - Michael G Fradley
- Division of Cardiology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Sarju Ganatra
- Cardio-Oncology Program, Department of Cardiovascular Medicine, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, MA 01805, USA
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milano, Via Festa del Perdono 7. 20122 Milano, Italy
- European Institute of Oncology, IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Washington University, 4921 Parkview Pl, St. Louis, MO 63110, USA
| | - Giorgio Minotti
- Department of Medicine, University Campus Bio-Medico, Via Álvaro del Portillo, 21, 00128 Roma, Italy
| | - Ninian N Lang
- British Heart Foundation Centre for Cardiovascular Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA Scotland, United Kingdom
| | - Jennifer E Liu
- Memorial Sloan Kettering Cancer Center, Department of Medicine/Cardiology Service, 1275 York Ave, New York, NY 10065, USA
| | - Tomas G Neilan
- Cardio-oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Anju Nohria
- Cardio-Oncology Program, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Rupal O'Quinn
- Division of Cardiology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Iskra Pusic
- Washington University School of Medicine, Division of Oncology, 4921 Parkview Place, St. Louis, MO 63110, USA
| | - Charles Porter
- Cardiovascular Medicine, Cardio-Oncology Unit, University of Kansas Medical Center, 4000 Cambridge Street, Kansas City, KS 66160, USA
| | - Kerry L Reynolds
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Kathryn J Ruddy
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55902, USA
| | - Paaladinesh Thavendiranathan
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, University Health Network, University of Toronto, 585 University Ave, Toronto, ON M5G 2N2, Canada
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
19
|
Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8858165. [PMID: 33688366 PMCID: PMC7920721 DOI: 10.1155/2021/8858165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022]
Abstract
Materials and Methods Bark extracts of these plants (1 and 25 µg/mL) were added 3 hours before coincubating H9c2 cardiomyoblasts with Dox (0.5 and 1 µM) for 24 hours more. We measured cell mass and metabolic viability, mitochondrial transmembrane potential, superoxide anion content, and activity-like of caspase-3 and caspase-9 following treatment with the extracts and/or Dox. Also, selenium and vitamin C contents were measured in the plant extracts. Results The results confirmed that Dox treatment decreased cell mass, mitochondrial membrane potential and metabolic viability, increased mitochondrial superoxide anion, and stimulated caspase-3 and caspase-9-like activities. Pretreatment of the cells with the plant extracts significantly inhibited Dox cytotoxicity, with more significant results at the higher concentration. Measurements of selenium and vitamin C in the extracts revealed higher concentration of both when compared with other Cameroonian spices. Conclusion Both extracts of A. lepidophyllus and M. myristica were effective against Dox-induced cytotoxicity, most likely due to their content in antioxidants.
Collapse
|
20
|
Kala P, Bartušková H, Piťha J, Vaňourková Z, Kikerlová S, Jíchová Š, Melenovský V, Hošková L, Veselka J, Kompanowska-Jezierska E, Sadowski J, Gawrys O, Maxová H, Červenka L. Deleterious Effects of Hyperactivity of the Renin-Angiotensin System and Hypertension on the Course of Chemotherapy-Induced Heart Failure after Doxorubicin Administration: A Study in Ren-2 Transgenic Rat. Int J Mol Sci 2020; 21:E9337. [PMID: 33302374 PMCID: PMC7762559 DOI: 10.3390/ijms21249337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Doxorubicin's (DOX) cardiotoxicity contributes to the development of chemotherapy-induced heart failure (HF) and new treatment strategies are in high demand. The aim of the present study was to characterize a DOX-induced model of HF in Ren-2 transgenic rats (TGR), those characterized by hypertension and hyperactivity of the renin-angiotensin-aldosterone system, and to compare the results with normotensive transgene-negative, Hannover Sprague-Dawley (HanSD) rats. DOX was administered for two weeks in a cumulative dose of 15 mg/kg. In HanSD rats DOX administration resulted in the development of an early phase of HF with the dominant symptom of bilateral cardiac atrophy demonstrable two weeks after the last DOX injection. In TGR, DOX caused substantial impairment of systolic function already at the end of the treatment, with further progression observed throughout the experiment. Additionally, two weeks after the termination of DOX treatment, TGR exhibited signs of HF characteristic for the transition stage between the compensated and decompensated phases of HF. In conclusion, we suggest that DOX-induced HF in TGR is a suitable model to study the pathophysiological aspects of chemotherapy-induced HF and to evaluate novel therapeutic strategies to combat this form of HF, which are urgently needed.
Collapse
Affiliation(s)
- Petr Kala
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic;
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (J.P.); (Z.V.); (S.K.); (Š.J.); (O.G.); (L.Č.)
| | - Hana Bartušková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (J.P.); (Z.V.); (S.K.); (Š.J.); (O.G.); (L.Č.)
| | - Jan Piťha
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (J.P.); (Z.V.); (S.K.); (Š.J.); (O.G.); (L.Č.)
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (J.P.); (Z.V.); (S.K.); (Š.J.); (O.G.); (L.Č.)
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (J.P.); (Z.V.); (S.K.); (Š.J.); (O.G.); (L.Č.)
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (J.P.); (Z.V.); (S.K.); (Š.J.); (O.G.); (L.Č.)
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (V.M.); (L.H.)
| | - Lenka Hošková
- Department of Cardiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (V.M.); (L.H.)
| | - Josef Veselka
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic;
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 01-224 Warsaw, Poland; (E.K.-J.); (J.S.)
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 01-224 Warsaw, Poland; (E.K.-J.); (J.S.)
| | - Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (J.P.); (Z.V.); (S.K.); (Š.J.); (O.G.); (L.Č.)
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 01-224 Warsaw, Poland; (E.K.-J.); (J.S.)
| | - Hana Maxová
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, 110 00 Prague, Czech Republic;
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (J.P.); (Z.V.); (S.K.); (Š.J.); (O.G.); (L.Č.)
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, 110 00 Prague, Czech Republic;
| |
Collapse
|
21
|
Sachinidis A. Cardiotoxicity and Heart Failure: Lessons from Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Anticancer Drugs. Cells 2020; 9:cells9041001. [PMID: 32316481 PMCID: PMC7226145 DOI: 10.3390/cells9041001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are discussed as disease modeling for optimization and adaptation of therapy to each individual. However, the fundamental question is still under debate whether stem-cell-based disease modeling and drug discovery are applicable for recapitulating pathological processes under in vivo conditions. Drug treatment and exposure to different chemicals and environmental factors can initiate diseases due to toxicity effects in humans. It is well documented that drug-induced cardiotoxicity accelerates the development of heart failure (HF). Until now, investigations on the understanding of mechanisms involved in HF by anticancer drugs are hindered by limitations of the available cellular models which are relevant for human physiology and by the fact that the clinical manifestation of HF often occurs several years after its initiation. Recently, we identified similar genomic biomarkers as observed by HF after short treatment of hiPSCs-derived cardiomyocytes (hiPSC-CMs) with different antitumor drugs such as anthracyclines and etoposide (ETP). Moreover, we identified common cardiotoxic biological processes and signal transduction pathways which are discussed as being crucial for the survival and function of cardiomyocytes and, therefore, for the development of HF. In the present review, I discuss the applicability of the in vitro cardiotoxicity test systems as modeling for discovering preventive mechanisms/targets against cardiotoxicity and, therefore, for novel HF therapeutic concepts.
Collapse
Affiliation(s)
- Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| |
Collapse
|