1
|
Heimer MM, Sun Y, Grosu S, Cyran CC, Bonitatibus PJ, Okwelogu N, Bales BC, Meyer DE, Yeh BM. Novel intravascular tantalum oxide-based contrast agent achieves improved vascular contrast enhancement and conspicuity compared to Iopamidol in an animal multiphase CT protocol. Eur Radiol Exp 2024; 8:108. [PMID: 39365418 PMCID: PMC11452362 DOI: 10.1186/s41747-024-00509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND To assess thoracic vascular computed tomography (CT) contrast enhancement of a novel intravenous tantalum oxide nanoparticle contrast agent (carboxybetaine zwitterionic tantalum oxide, TaCZ) compared to a conventional iodinated contrast agent (Iopamidol) in a rabbit multiphase protocol. METHODS Five rabbits were scanned inside a human-torso-sized encasement on a clinical CT system at various scan delays after intravenous injection of 540 mg element (Ta or I) per kg of bodyweight of TaCZ or Iopamidol. Net contrast enhancement of various arteries and veins, as well as image noise, were measured. Randomized scan series were reviewed by three independent readers on a clinical workstation and assessed for vascular conspicuity and image artifacts on 5-point Likert scales. RESULTS Overall, net vascular contrast enhancement achieved with TaCZ was superior to Iopamidol (p ≤ 0.036 with the exception of the inferior vena cava at 6 s (p = 0.131). Vascular contrast enhancement achieved with TaCZ at delays of 6 s, 40 s, and 75 s was superior to optimum achieved Iopamidol contrast enhancement at 6 s (p ≤ 0.036. Vascular conspicuity was higher for TaCZ in 269 of 300 (89.7%) arterial and 269 of 300 (89.7%) venous vessel assessments, respectively (p ≤ 0.005), with substantial inter-reader reliability (κ = 0.61; p < 0.001) and strong positive monotonic correlation between conspicuity scores and contrast enhancement measurements (ρ = 0.828; p < 0.001). CONCLUSION TaCZ provides absolute and relative contrast advantages compared to Iopamidol for improved visualization of thoracic arteries and veins in a multiphase CT protocol. RELEVANCE STATEMENT The tantalum-oxide nanoparticle is an experimental intravenous CT contrast agent with superior cardiovascular and venous contrast capacity per injected elemental mass in an animal model, providing improved maximum contrast enhancement and prolonged contrast conspicuity. Further translational research on promising high-Z and nanoparticle contrast agents is warranted. KEY POINTS There have been no major advancements in intravenous CT contrast agents over decades. Iodinated CT contrast agents require optimal timing for angiography and phlebography. Tantalum-oxide demonstrated increased CT attenuation per elemental mass compared to Iopamidol. Nanoparticle contrast agent design facilitates prolonged vascular conspicuity.
Collapse
Affiliation(s)
- Maurice M Heimer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Yuxin Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sergio Grosu
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Nikki Okwelogu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Brian C Bales
- GE HealthCare Technology & Innovation Center, Niskayuna, NY, USA
| | - Dan E Meyer
- GE HealthCare Technology & Innovation Center, Niskayuna, NY, USA
| | - Benjamin M Yeh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Hatami H, Rahiman N, Mohammadi M. Oligonucleotide based nanogels for cancer therapeutics. Int J Biol Macromol 2024; 267:131401. [PMID: 38582467 DOI: 10.1016/j.ijbiomac.2024.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Oligonucleotide-based nanogels, as nascent biomaterials, possess several unique functional, structural, and physicochemical features with excellent drug-loading capacity and high potential for cancer gene therapy. Ongoing studies utilizing oligonucleotide-based nanogels hold great promise, as these cutting-edge nanoplatforms can be elegantly developed with predesigned oligonucleotide sequences and complementary strands which are self-assembled or chemically crosslinked leading to the development of nanogels with predictable shape and tunable size with the desired functional properties. Current paper provides a summary of the properties, preparation methods, and applications of oligonucleotide-based nanogels in cancer therapy. The review is focused on both conventional and modified forms of oligonucleotide-based nanogels, including targeted nanogels, smart release nanogels (responsive to stimuli such as pH, temperature, and enzymes), as well as nanogels used for gene delivery. Their application in cancer immunotherapy and vaccination, photodynamic therapy, and diagnostic applications when combined with other nanoparticles is further discussed. Despite emerging designs in the development of oligonucleotide based nanogels, this field of study is still in its infancy, and clinical translation of these versatile nano-vehicles might face challenges. Hence, extensive research must be performed on in vivo behavior of such platforms determining their biodistribution, biological fate, and acute/subacute toxicity.
Collapse
Affiliation(s)
- Hooman Hatami
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Geng Y, Zou H, Li Z, Wu H. Recent advances in nanomaterial-driven strategies for diagnosis and therapy of vascular anomalies. J Nanobiotechnology 2024; 22:120. [PMID: 38500178 PMCID: PMC10949774 DOI: 10.1186/s12951-024-02370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Nanotechnology has demonstrated immense potential in various fields, especially in biomedical field. Among these domains, the development of nanotechnology for diagnosing and treating vascular anomalies has garnered significant attention. Vascular anomalies refer to structural and functional anomalies within the vascular system, which can result in conditions such as vascular malformations and tumors. These anomalies can significantly impact the quality of life of patients and pose significant health concerns. Nanoscale contrast agents have been developed for targeted imaging of blood vessels, enabling more precise identification and characterization of vascular anomalies. These contrast agents can be designed to bind specifically to abnormal blood vessels, providing healthcare professionals with a clearer view of the affected areas. More importantly, nanotechnology also offers promising solutions for targeted therapeutic interventions. Nanoparticles can be engineered to deliver drugs directly to the site of vascular anomalies, maximizing therapeutic effects while minimizing side effects on healthy tissues. Meanwhile, by incorporating functional components into nanoparticles, such as photosensitizers, nanotechnology enables innovative treatment modalities such as photothermal therapy and photodynamic therapy. This review focuses on the applications and potential of nanotechnology in the imaging and therapy of vascular anomalies, as well as discusses the present challenges and future directions.
Collapse
Affiliation(s)
- Yiming Geng
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Huwei Zou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Zhaowei Li
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, 271000, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
4
|
Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: State-of-the-art. Adv Drug Deliv Rev 2022; 189:114524. [PMID: 36058350 PMCID: PMC9664656 DOI: 10.1016/j.addr.2022.114524] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 01/24/2023]
Abstract
Recently, spectral computed tomography (CT) technology has received great interest in the field of radiology. Spectral CT imaging utilizes the distinct, energy-dependent X-ray absorption properties of substances in order to provide additional imaging information. Dual-energy CT and multi-energy CT (Spectral CT) are capable of constructing monochromatic energy images, material separation images, energy spectrum curves, constructing effective atomic number maps, and more. However, poor contrast, due to neighboring X-ray attenuation of organs and tissues, is still a challenge to spectral CT. Hence, contrast agents (CAs) are applied for better differentiation of a given region of interest (ROI). Currently, many different kinds of inorganic nanoparticulate CAs for spectral CT have been developed due to the limitations of clinical iodine (I)-based contrast media, leading to the conclusion that inorganic nanomedicine applied to spectral CT will be a powerful collaboration both in basic research and in clinics. In this review, the underlying principles and types of spectral CT techniques are discussed, and some evolving clinical diagnosis applications of spectral CT techniques are introduced. In particular, recent developments in inorganic CAs used for spectral CT are summarized. Finally, the challenges and future developments of inorganic nanomedicine in spectral CT are briefly discussed.
Collapse
Affiliation(s)
- Yuhan Li
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Bldg 8, No. 406 Guilin Rd, Shanghai 200233, PR China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China.
| |
Collapse
|
5
|
Clark D, Badea C. Advances in micro-CT imaging of small animals. Phys Med 2021; 88:175-192. [PMID: 34284331 PMCID: PMC8447222 DOI: 10.1016/j.ejmp.2021.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Micron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive three-dimensional imaging modality. We review recent developments and applications of micro-CT for preclinical research. METHODS Based on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the-art hardware and ongoing challenges and promising research directions in the field. RESULTS Representative features of commercially available micro-CT scanners and some new applications for both in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to density variations in soft tissues than standard absorption imaging. We further review the impact of deep learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro-CT data, and we outline several challenges specific to micro-CT. CONCLUSIONS All of these advancements establish micro-CT imaging at the forefront of preclinical research, able to provide anatomical, functional, and even molecular information while serving as a testbench for translational research.
Collapse
Affiliation(s)
- D.P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710
| | - C.T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
6
|
Troy AM, Cheng HM. Human microvascular reactivity: a review of vasomodulating stimuli and non-invasive imaging assessment. Physiol Meas 2021; 42. [PMID: 34325417 DOI: 10.1088/1361-6579/ac18fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature serves an imperative function in regulating perfusion and nutrient exchange throughout the body, adaptively altering blood flow to preserve hemodynamic and metabolic homeostasis. Its normal functioning is vital to tissue health, whereas its dysfunction is present in many chronic conditions, including diabetes, heart disease, and cognitive decline. As microvascular dysfunction often appears early in disease progression, its detection can offer early diagnostic information. To detect microvascular dysfunction, one uses imaging to probe the microvasculature's ability to react to a stimulus, also known as microvascular reactivity (MVR). An assessment of MVR requires an integrated understanding of vascular physiology, techniques for stimulating reactivity, and available imaging methods to capture the dynamic response. Practical considerations, including compatibility between the selected stimulus and imaging approach, likewise require attention. In this review, we provide a comprehensive foundation necessary for informed imaging of MVR, with a particular focus on the challenging endeavor of assessing microvascular function in deep tissues.
Collapse
Affiliation(s)
- Aaron M Troy
- Institute of Biomedical Engineering, University of Toronto, Toronto, CANADA
| | | |
Collapse
|
7
|
Tao S, Rajendran K, McCollough CH, Leng S. Feasibility of multi-contrast imaging on dual-source photon counting detector (PCD) CT: An initial phantom study. Med Phys 2019; 46:4105-4115. [PMID: 31215659 DOI: 10.1002/mp.13668] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Photon-counting-detector-computed tomography (PCD-CT) allows separation of multiple, simultaneously imaged contrast agents, such as iodine (I), gadolinium (Gd), and bismuth (Bi). However, PCDs suffer from several technical limitations such as charge sharing, K-edge escape, and pulse pile-up, which compromise spectral separation of multi-energy data and degrade multi-contrast imaging performance. The purpose of this work was to determine the performance of a dual-source (DS) PCD-CT relative to a single-source (SS) PCD-CT for the separation of simultaneously imaged I, Gd, and Bi contrast agents. METHODS Phantom experiments were performed using a research whole-body PCD-CT and head/abdomen-sized phantoms containing vials of different I, Gd, Bi concentrations. To emulate a DS-PCD-CT, the phantoms were scanned twice on the SS-PCD-CT using different tube potentials for each scan. A tube potential of 80 kV (energy thresholds = 25/50 keV) was used for low-energy tube, while the high-energy tube used Sn140 kV (Sn indicates tin filter) and thresholds of 25/90 keV. The same phantoms were scanned also on the SS-PCD-CT using the chess acquisition mode. In chess mode, the 4 × 4 subpixels within a macro detector pixel are split into two sets based on a chess-board pattern. With each subpixel set having two energy thresholds, chess mode allows four energy-bin data sets, which permits simultaneous multi-contrast imaging. Because of this design, only 50% area of each detector pixel is configured to receive photons of a pre-defined threshold, leading to 50% dose utilization efficiency. To compensate for this dose inefficiency, the radiation dose for this scan was doubled compared to DS-PCD-CT. A 140 kV tube potential and thresholds = 25/50/75/90 keV were used. These settings were determined based on the K-edges of Gd, and Bi, and were found to yield good differentiation of I/Gd/Bi based on phantom experiments and other literature. The energy-bin images obtained from each scan (scan pair) were used to generate I-, Gd-, Bi-specific image via material decomposition. Root-mean-square-error (RMSE) between the known and measured concentrations was calculated for each scenario. A 20-cm water cylinder phantom was scanned on both systems, which was used for evaluating the magnitude of noise, and noise power spectra (NPS) of I/Gd/Bi-specific images. RESULTS Phantom results showed that DS-PCD-CT reduced noise in material-specific images for both head and body phantoms compared to SS-PCD-CT. The noise level of SS-PCD was reduced from 2.55 to 0.90 mg/mL (I), 1.97 to 0.78 mg/mL (Gd), and 0.85 to 0.74 mg/mL (Bi) using DS-PCD. NPS analysis showed that the noise texture of images acquired on both systems is similar. For the body phantom, the RMSE for SS-PCD-CT was reduced relative to DS-PCD-CT from 10.52 to 2.76 mg/mL (I), 7.90 to 2.01 mg/mL (Gd), and 1.91 to 1.16 mg/mL (Bi). A similar trend was observed for the head phantom: RMSE reduced from 2.59 (SS-PCD) to 0.72 (DS-PCD) mg/mL (I), 2.02 to 0.58 mg/mL (Gd), and 0.85 to 0.57 mg/mL (Bi). CONCLUSION We demonstrate the feasibility of performing simultaneous imaging of I, Gd, and Bi materials on DS-PCD-CT. Under the condition without cross scattering, DS-PCD reduced the RMSE for quantification of material concentration in relative to a SS-PCD-CT system using chess mode.
Collapse
Affiliation(s)
- Shengzhen Tao
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Leng S, Bruesewitz M, Tao S, Rajendran K, Halaweish AF, Campeau NG, Fletcher JG, McCollough CH. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019; 39:729-743. [PMID: 31059394 PMCID: PMC6542627 DOI: 10.1148/rg.2019180115] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 01/01/2023]
Abstract
Photon-counting detector (PCD) CT is an emerging technology that has shown tremendous progress in the last decade. Various types of PCD CT systems have been developed to investigate the benefits of this technology, which include reduced electronic noise, increased contrast-to-noise ratio with iodinated contrast material and radiation dose efficiency, reduced beam-hardening and metal artifacts, extremely high spatial resolution (33 line pairs per centimeter), simultaneous multienergy data acquisition, and the ability to image with and differentiate among multiple CT contrast agents. PCD technology is described and compared with conventional CT detector technology. With the use of a whole-body research PCD CT system as an example, PCD technology and its use for in vivo high-spatial-resolution multienergy CT imaging is discussed. The potential clinical applications, diagnostic benefits, and challenges associated with this technology are then discussed, and examples with phantom, animal, and patient studies are provided. ©RSNA, 2019.
Collapse
Affiliation(s)
- Shuai Leng
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Michael Bruesewitz
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Shengzhen Tao
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Kishore Rajendran
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Ahmed F. Halaweish
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Norbert G. Campeau
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Joel G. Fletcher
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| | - Cynthia H. McCollough
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (S.L., M.B., S.T., K.R., N.G.C., J.G.F., C.H.M.); and Siemens Healthcare, Malvern, Pa (A.F.H.)
| |
Collapse
|
9
|
Badea CT, Clark DP, Holbrook M, Srivastava M, Mowery Y, Ghaghada KB. Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys Med Biol 2019; 64:065007. [PMID: 30708357 PMCID: PMC6607440 DOI: 10.1088/1361-6560/ab03e2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in computed tomography (CT) hardware have propelled the development of novel CT contrast agents. In particular, the spectral capabilities of x-ray CT can facilitate simultaneous imaging of multiple contrast agents. This approach is particularly useful for functional imaging of solid tumors by simultaneous visualization of multiple targets or architectural features that govern cancer development and progression. Nanoparticles are a promising platform for contrast agent development. While several novel imaging moieties based on high atomic number elements are being explored, iodine (I) and gadolinium (Gd) are particularly attractive because of their existing approval for clinical use. In this work, we investigate the in vivo discrimination of I and Gd nanoparticle contrast agents using both dual energy micro-CT with energy integrating detectors (DE-EID) and photon counting detector (PCD)-based spectral micro-CT. Simulations and phantom experiments were performed using varying concentrations of I and Gd to determine the imaging performance with optimized acquisition parameters. Quantitative spectral micro-CT imaging using liposomal-iodine (Lip-I) and liposomal-Gd (Lip-Gd) nanoparticle contrast agents was performed in sarcoma bearing mice for anatomical and functional imaging of tumor vasculature. Iterative reconstruction provided high sensitivity to detect and discriminate relatively low I and Gd concentrations. According to the Rose criterion applied to the experimental results, the detectability limits for I and Gd were approximately 2.5 mg ml-1 for both DE-EID CT and PCD micro-CT, even if the radiation dose was approximately 3.8 times lower with PCD micro-CT. The material concentration maps confirmed expected biodistributions of contrast agents in the blood, liver, spleen and kidneys. The PCD provided lower background signal and better simultaneous visualization of tumor vasculature and intratumoral distribution patterns of nanoparticle contrast agent compared to DE-EID decompositions. Preclinical spectral CT systems such as this could be useful for functional characterization of solid tumors, simultaneous quantitative imaging of multiple targets and for identifying clinically-relevant applications that benefit from the use of spectral imaging. Additionally, it could aid in the development nanoparticles that show promise in the developing field of cancer theranostics (therapy and diagnostics) by measuring vascular tumor biomarkers such as fractional blood volume and the delivery of liposomal chemotherapeutics.
Collapse
Affiliation(s)
- C T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University, Durham, NC 27710, United States of America.,http://civm.duhs.duke.edu/.,Author to whom any correspondence should be addressed
| | - D P Clark
- Department of Radiology, Center for In Vivo Microscopy, Duke University, Durham, NC 27710, United States of America
| | - M Holbrook
- Department of Radiology, Center for In Vivo Microscopy, Duke University, Durham, NC 27710, United States of America
| | - M Srivastava
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, United States of America
| | - Y Mowery
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States of America
| | - K B Ghaghada
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, United States of America
| |
Collapse
|
10
|
Ghaghada KB, Starosolski ZA, Bhayana S, Stupin I, Patel CV, Bhavane RC, Gao H, Bednov A, Yallampalli C, Belfort M, George V, Annapragada AV. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta. Placenta 2017; 57:60-70. [DOI: 10.1016/j.placenta.2017.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/03/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022]
|
11
|
Savla R, Minko T. Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value. Adv Drug Deliv Rev 2017; 113:122-140. [PMID: 27374457 DOI: 10.1016/j.addr.2016.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
The present review analyzes various approaches for the design and synthesis of different nanoparticles for imaging and therapy. Nanoparticles for computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and optical imaging are discussed. The influence of nanoparticle size, shape, surface charge, composition, surface functionalization, active targeting and other factors on imaging and therapeutic efficacy is analyzed. Cyto- and genotoxicity of nanoparticles are also discussed. Special attention in the review is paid to the imaging of apoptotic tissues and cells in different diseases.
Collapse
Affiliation(s)
- Ronak Savla
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States; Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, United States.
| |
Collapse
|
12
|
Abstract
In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Stanford University , 3155 Porter Drive, #1214, Palo Alto, California 94304-5483, United States
| | - Sanjiv Sam Gambhir
- The James H. Clark Center , 318 Campus Drive, First Floor, E-150A, Stanford, California 94305-5427, United States
| |
Collapse
|
13
|
Mehta A, Ghaghada K, Mukundan S. Molecular Imaging of Brain Tumors Using Liposomal Contrast Agents and Nanoparticles. Magn Reson Imaging Clin N Am 2016; 24:751-763. [PMID: 27742115 DOI: 10.1016/j.mric.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first generation of cross-sectional brain imaging using computed tomography (CT), ultrasonography, and eventually MR imaging focused on determining structural or anatomic changes associated with brain disorders. The current state-of-the-art imaging, functional imaging, uses techniques such as CT and MR perfusion that allow determination of physiologic parameters in vivo. In parallel, tissue-based genomic, transcriptomic, and proteomic profiling of brain tumors has created several novel and exciting possibilities for molecular targeting of brain tumors. The next generation of imaging translates these molecular in vitro techniques to in vivo, noninvasive, targeted reconstruction of tumors and their microenvironments.
Collapse
Affiliation(s)
- Arnav Mehta
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, 757 Westwood Plaza, Los Angeles, CA 90095, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ketan Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Srinivasan Mukundan
- Division of Neuroradiology, Department of Radiology, Brigham and Woman's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Ghaghada KB, Sato AF, Starosolski ZA, Berg J, Vail DM. Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer. PLoS One 2016; 11:e0152718. [PMID: 27031614 PMCID: PMC4816501 DOI: 10.1371/journal.pone.0152718] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/17/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Companion dogs with naturally occurring cancer serve as an important large animal model in translational research because they share strong similarities with human cancers. In this study, we investigated a long circulating liposomal-iodine contrast agent (Liposomal-I) for computed tomography (CT) imaging of solid tumors in companion dogs with naturally occurring cancer. MATERIALS AND METHODS The institutional animal ethics committees approved the study and written informed consent was obtained from all owners. Thirteen dogs (mean age 10.1 years) with a variety of masses including primary and metastatic liver tumors, sarcomas, mammary carcinoma and lung tumors, were enrolled in the study. CT imaging was performed pre-contrast and at 15 minutes and 24 hours after intravenous administration of Liposomal-I (275 mg/kg iodine dose). Conventional contrast-enhanced CT imaging was performed in a subset of dogs, 90 minutes prior to administration of Liposomal-I. Histologic or cytologic diagnosis was obtained for each dog prior to admission into the study. RESULTS Liposomal-I resulted in significant (p < 0.05) enhancement and uniform opacification of the vascular compartment. Non-renal, reticulo-endothelial systemic clearance of the contrast agent was demonstrated. Liposomal-I enabled visualization of primary and metastatic liver tumors. Sub-cm sized liver lesions grossly appeared as hypo-enhanced compared to the surrounding normal parenchyma with improved lesion conspicuity in the post-24 hour scan. Large liver tumors (> 1 cm) demonstrated a heterogeneous pattern of intra-tumoral signal with visibly higher signal enhancement at the post-24 hour time point. Extra-hepatic, extra-splenic tumors, including histiocytic sarcoma, anaplastic sarcoma, mammary carcinoma and lung tumors, were visualized with a heterogeneous enhancement pattern in the post-24 hour scan. CONCLUSIONS The long circulating liposomal-iodine contrast agent enabled prolonged visualization of small and large tumors in companion dogs with naturally occurring cancer. The study warrants future work to assess the sensitivity and specificity of the Liposomal-I agent in various types of naturally occurring canine tumors.
Collapse
Affiliation(s)
- Ketan B. Ghaghada
- The Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| | - Amy F. Sato
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Zbigniew A. Starosolski
- The Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - John Berg
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - David M. Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
15
|
Mannheim JG, Schlichthaerle T, Kuebler L, Quintanilla-Martinez L, Kohlhofer U, Kneilling M, Pichler BJ. Comparison of small animal CT contrast agents. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:272-84. [PMID: 26991457 DOI: 10.1002/cmmi.1689] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/21/2015] [Accepted: 01/16/2016] [Indexed: 11/09/2022]
Abstract
Non-invasive in vivo small animal computed tomography (CT) imaging provides high resolution bone scans but cannot differentiate between soft tissues. For most applications injections of contrast agents (CAs) are necessary. Aim of this study was to uncover the advantages and disadvantages of commercially available CT CAs (ExiTron nano 12 000 and 6000, eXIA 160 and 160XL, Fenestra VC and LC) regarding their pharmacokinetics, toxicological side-effects and the influence of anesthesia on the biodistribution, based on an injection volume of 100 μL/25 g body weight. The pharmacokinetics of the CAs were determined for up to five days. The CA-induced toxicological/physiological side-effects were evaluated by determining blood counts, liver enzymes, thyroxine and total protein values, pro-inflammatory mediators (messenger ribonucleic acid (mRNA)), histology and immunohistochemistry. ExiTron nano 12 000 and 6000 yielded a long-term contrast enhancement (CE) in the liver and spleen for up to five days. Some of the evaluated CAs did not show any CE at all. Anesthesia did not impair the CAs' biodistribution. The CAs differentially affected the body weight, blood counts, liver enzymes, thyroxine and total protein values. ExiTron nano 12 000 and 6000 induced histiocytes in the liver and spleen. Moreover, ExiTron nano 12 000 and eXIA 160 enhanced tumor necrosis factor (TNF) mRNA expression levels in the kidneys. Thus, we recommend ExiTron nano 12 000 and 6000 when multiple injections should be avoided. We recommend careful selection of the employed CA in order to achieve an acceptable CE in the organs of interest and to avoid influences on the animal physiology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Julia G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Thomas Schlichthaerle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura Kuebler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | | | - Ursula Kohlhofer
- Institute of Pathology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Department of Dermatology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
16
|
Das NM, Hatsell S, Nannuru K, Huang L, Wen X, Wang L, Wang LH, Idone V, Meganck JA, Murphy A, Economides A, Xie L. In Vivo Quantitative Microcomputed Tomographic Analysis of Vasculature and Organs in a Normal and Diseased Mouse Model. PLoS One 2016; 11:e0150085. [PMID: 26910759 PMCID: PMC4765930 DOI: 10.1371/journal.pone.0150085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1–2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models.
Collapse
Affiliation(s)
- Nanditha Mohan Das
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Sarah Hatsell
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Kalyan Nannuru
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Lily Huang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Xialing Wen
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Lili Wang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Li-Hsien Wang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Vincent Idone
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Jeffrey A. Meganck
- Research and Development, PerkinElmer, Hopkinton, Massachusetts, United States of America
| | - Andrew Murphy
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Aris Economides
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - LiQin Xie
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
18
|
Cerebral vascular leak in a mouse model of amyloid neuropathology. J Cereb Blood Flow Metab 2014; 34:1646-54. [PMID: 25052555 PMCID: PMC4269723 DOI: 10.1038/jcbfm.2014.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/28/2014] [Accepted: 06/15/2014] [Indexed: 11/08/2022]
Abstract
In Alzheimer's disease (AD), there is increasing evidence of blood-brain barrier (BBB) compromise, usually observed as 'microbleeds' correlated with amyloid plaque deposition and apoE-ɛ4 status, raising the possibility of nanotherapeutic delivery. Molecular probes have been used to study neurovascular leak, but this approach does not adequately estimate vascular permeability of nanoparticles. We therefore characterized cerebrovascular leaks in live APP+ transgenic animals using a long circulating ∼100 nm nanoparticle computed tomography (CT) contrast agent probe. Active leaks fell into four categories: (1) around the dorsomedial cerebellar artery (DMCA), (2) around other major vessels, (3) nodular leaks in the cerebral cortex, and (4) diffuse leaks. Cortical leaks were uniformly more frequent in the transgenic animals than in age-matched controls. Leaks around vessels other than the DMCA were more frequent in older transgenics compared with younger ones. All other leaks were equally prevalent across genotypes independent of age. Ten days after injection, 4 to 5 μg of the dose was estimated to be present in the brain, roughly a half of which was in locations other than the leaky choroid plexus, and associated with amyloid deposition in older animals. These results suggest that amyloid deposition and age increase delivery of nanoparticle-borne reagents to the brain, in therapeutically relevant amounts.
Collapse
|
19
|
Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2641-60. [PMID: 23553799 DOI: 10.1002/adma.201300081] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Indexed: 05/20/2023]
Abstract
Computed tomography (CT) is one of the most widely used clinical imaging modalities. In order to increase the sensitivity of CT, small iodinated compounds are used as injectable contrast agents. However, the iodinated contrast agents are excreted through the kidney and have short circulation times. This rapid renal clearance not only restricts in vivo applications that require long circulation times but also sometimes induces serious adverse effects related to the excretion pathway. In addition, the X-ray attenuation of iodine is not efficient for clinical CT that uses high-energy X-ray. Due to these limitations, nano-sized iodinated CT contrast agents have been developed that can increase the circulation time and decrease the adverse effects. In addition to iodine, nanoparticles based on heavy atoms such as gold, lanthanides, and tantalum are used as more efficient CT contrast agents. In this review, we summarize the recent progresses made in nano-sized CT contrast agents.
Collapse
Affiliation(s)
- Nohyun Lee
- Center for Nanoparticle Research, Institute for Basic Science and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744 South Korea
| | | | | |
Collapse
|