1
|
Bach AJE, Cunningham SJK, Morris NR, Xu Z, Rutherford S, Binnewies S, Meade RD. Experimental research in environmentally induced hyperthermic older persons: A systematic quantitative literature review mapping the available evidence. Temperature (Austin) 2024; 11:4-26. [PMID: 38567267 PMCID: PMC7615797 DOI: 10.1080/23328940.2023.2242062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 04/04/2024] Open
Abstract
The heat-related health burden is expected to persist and worsen in the coming years due to an aging global population and climate change. Defining the breadth and depth of our understanding of age-related changes in thermoregulation can identify underlying causes and strategies to protect vulnerable individuals from heat. We conducted the first systematic quantitative literature review to provide context to the historical experimental research of healthy older adults - compared to younger adults or unhealthy age matched cases - during exogenous heat strain, focusing on factors that influence thermoregulatory function (e.g. co-morbidities). We identified 4,455 articles, with 147 meeting eligibility criteria. Most studies were conducted in the US (39%), Canada (29%), or Japan (12%), with 71% of the 3,411 participants being male. About 71% of the studies compared younger and older adults, while 34% compared two groups of older adults with and without factors influencing thermoregulation. Key factors included age combined with another factor (23%), underlying biological mechanisms (18%), age independently (15%), influencing health conditions (15%), adaptation potential (12%), environmental conditions (9%), and therapeutic/pharmacological interventions (7%). Our results suggest that controlled experimental research should focus on the age-related changes in thermoregulation in the very old, females, those with overlooked chronic heat-sensitive health conditions (e.g. pulmonary, renal, mental disorders), the impact of multimorbidity, prolonged and cumulative effects of extreme heat, evidence-based policy of control measures (e.g. personal cooling strategies), pharmaceutical interactions, and interventions stimulating protective physiological adaptation. These controlled studies will inform the directions and use of limited resources in ecologically valid fieldwork studies.
Collapse
Affiliation(s)
- Aaron J. E. Bach
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sarah J. K. Cunningham
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Norman R. Morris
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Metro North Hospital and Health Service, The Prince Charles Hospital. Allied Health Research Collaborative, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Shannon Rutherford
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sebastian Binnewies
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
2
|
Fujii N, McGarr GW, Amano T, Boulay P, Nishiyasu T, Kenny GP. Does aging alter skin vascular function in humans when spatial variation is considered? Microcirculation 2021; 29:e12743. [PMID: 34874589 DOI: 10.1111/micc.12743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Reports evaluating age-related impairments in cutaneous vascular function assessed by either the venoarteriolar reflex (VAR) induced by venous congestion, or post-occlusive reactive hyperemia (PORH) activated by arterial occlusion, have yielded mixed findings. This may be due to region-specific variability that occurs when assessing local cutaneous vascular responses. We evaluated the hypothesis that aging attenuates VAR and PORH responses in forearm skin assessed across four adjacent sites, each separated by ~4 cm to account for inter-site variability. METHODS In twenty young (24 ± 4 years, 10 females) and twenty older (60 ± 7 years, 9 females) adults, VAR and PORH were achieved by a 3-min venous occlusion and 5-min arterial occlusion, each induced by inflating a pressure cuff to 45 and 240 mmHg, respectively. Cutaneous blood flow at all skin sites was measured by laser-Doppler flowmetry with the average response from all sites used for between-group comparisons. RESULTS VAR and PORH responses were similar between groups with the exception that the time required to achieve peak PORH was delayed in older adults (mean difference of 5.5 ± 4.4 s, p = 0.003, Cohen's d = 0.812). CONCLUSIONS We showed that aging had a negligible influence on VAR and PORH responses in forearm skin even when controlling for region-specific variability.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Ravanelli N, Gendron P, Gagnon D. Revisiting the evaluation of central versus peripheral thermoregulatory control in humans. Am J Physiol Regul Integr Comp Physiol 2021; 321:R91-R99. [PMID: 34075801 DOI: 10.1152/ajpregu.00321.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human thermoregulatory control is often evaluated through the relationship between thermoeffector output and core or mean body temperature. In addition to providing a general indication of whether a variable of interest alters thermoregulatory control, this relationship is often used to determine how this alteration may occur. This latter interpretation relies upon two parameters of the thermoeffector output-body temperature relationship: the onset threshold and thermosensitivity. Traditionally, changes in the onset threshold and thermosensitivity are interpreted as "central" or "peripheral" modulation of thermoregulatory control, respectively. This mini-review revisits the origins of the thermoeffector output-body temperature relationship and its use to interpret "central" or "peripheral" modulation of thermoregulatory control. Against this background, we discuss the strengths and weaknesses of this approach and highlight that "central" thermoregulatory control reflects the neural control of body temperature whereas "peripheral" thermoregulatory control reflects properties specific to the thermoeffector organs. We highlight studies that employed more direct approaches to investigate the neural control of body temperature and peripheral properties of thermoeffector organs. We conclude by encouraging future investigations interested in studying thermoregulatory control to more directly investigate the component of the thermoeffector loop under investigation.heat; human; skin blood flow; sweat; thermoregulatory.
Collapse
Affiliation(s)
| | - Philippe Gendron
- Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Daniel Gagnon
- Montreal Heart Institute, Montreal, Quebec, Canada.,School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Amano T, Fujii N, Kenny GP, Nishiyasu T, Inoue Y, Kondo N. The relative contribution of α- and β-adrenergic sweating during heat exposure and the influence of sex and training status. Exp Dermatol 2020; 29:1216-1224. [PMID: 33015872 DOI: 10.1111/exd.14208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 02/04/2023]
Abstract
While human eccrine sweat glands respond to adrenergic agonists, there remains a paucity of information on the factors modulating this response. Thus, we assessed the relative contribution of α- and β-adrenergic sweating during a heat exposure and as a function of individual factors of sex and training status. α- and β-adrenergic sweating was assessed in forty-eight healthy young men (n = 35) and women (n = 13) including endurance-trained (n = 12) and untrained men (n = 12) under non-heat exposure (temperate, 25°C; n = 17) and heat exposure (hot, 35°C; n = 48) conditions using transdermal iontophoresis of phenylephrine (α-adrenergic agonist) and salbutamol (β-adrenergic agonist) on the ventral forearm, respectively. Adrenergic sweating was also measured after iontophoretic administration of atropine (muscarinic receptor antagonist) or saline (control) to evaluate how changes in muscarinic receptor activity modulate the adrenergic response to a heat exposure (n = 12). α- and β-adrenergic sweating was augmented in hot compared with temperate conditions (both P ≤ .014), albeit the relative increase was greater in β (~5.4-fold)- as compared to α (~1.5-fold)-adrenergic-mediated sweating response. However, both α- and β-adrenergic sweating was abolished by atropinization (P = .001). Endurance-trained men showed an augmentation in α- (P = .043) but not β (P = .960)-adrenergic sweating as compared to untrained men. Finally, a greater α- and β-adrenergic sweating response (both P ≤ .001) was measured in habitually active men than in women. We show that heat exposure augments α-and β-adrenergic sweating differently via mechanisms associated with altered muscarinic receptor activity. Sex and training status modulate this response.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
5
|
Fujii N, McGarr GW, Amano T, Sigal RJ, Boulay P, Nishiyasu T, Kenny GP. Ageing augments β-adrenergic cutaneous vasodilatation differently in men and women, with no effect on β-adrenergic sweating. Exp Physiol 2020; 105:1720-1729. [PMID: 32818310 DOI: 10.1113/ep088583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/10/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? β-Adrenergic receptor activation modulates cutaneous vasodilatation and sweating in young adults. In this study, we assessed whether age-related differences in β-adrenergic regulation of these responses exist and whether they differ between men and women. What is the main finding and its importance? We showed that ageing augmented β-adrenergic cutaneous vasodilatation, although the pattern of response differed between men and women. Ageing had no effect on β-adrenergic sweating in men or women. Our findings advance our understanding of age-related changes in the regulation of cutaneous vasodilatation and sweating and provide new directions for research on the significance of enhanced β-adrenergic cutaneous vasodilatation in older adults. ABSTRACT β-Adrenergic receptor agonists, such as isoprenaline, can induce cutaneous vasodilatation and sweating in young adults. Given that cutaneous vasodilatation and sweating responses to whole-body heating and to pharmacological agonists, such as acetylcholine, ATP and nicotine, can differ in older adults, we assessed whether ageing also modulates β-adrenergic cutaneous vasodilatation and sweating and whether responses differ between men and women. In the context of the latter, prior reports showed that the effects of ageing on cutaneous vasodilatation (evoked with ATP and nicotine) and sweating (stimulated by acetylcholine) were sex dependent. Thus, in the present study, we assessed the role of β-adrenergic receptor activation on forearm cutaneous vasodilatation and sweating in 11 young men (24 ± 4 years of age), 11 young women (23 ± 5 years of age), 11 older men (61 ± 8 years of age) and 11 older women (60 ± 8 years of age). Initially, a high dose (100 µm) of isoprenaline was administered via intradermal microdialysis for 5 min to induce maximal β-adrenergic sweating. Approximately 60 min after the washout period, three incremental doses of isoprenaline were administered (1, 10 and 100 µm, each for 25 min) to assess dose-dependent cutaneous vasodilatation. Isoprenaline-mediated cutaneous vasodilatation was greater in both older men and older women relative to their young counterparts. Augmented cutaneous vasodilatory responses were observed at 1 and 10 µm in women and at 100 µm in men. Isoprenaline-mediated sweating was unaffected by ageing, regardless of sex. We show that ageing augments β-adrenergic cutaneous vasodilatation differently in men and women, without influencing β-adrenergic sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Niigata, Japan
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Notley SR, Flouris AD, Kenny GP. Occupational heat stress management: Does one size fit all? Am J Ind Med 2019; 62:1017-1023. [PMID: 30791115 DOI: 10.1002/ajim.22961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 01/20/2023]
Abstract
Heat stress is a deadly occupational hazard that is projected to increase in severity with global warming. While upper limits for heat stress designed to protect all workers have been recommended by occupational safety institutes for some time, heat stress continues to compromise health and productivity. In our view, this is largely explained by the inability of existing guidelines to consider the inter-individual (age, sex, disease, others) and intra-individual (medication use, fitness, hydration, others) factors that cause extensive variability in physiological tolerance to a given heat stress. In conditions that do not exceed the recommended limits, this 'one size fits all' approach to heat stress management can lead to reductions in productivity in more heat-tolerant workers, while compromising safety in less heat-tolerant workers who may develop heat-related illness, even in temperate conditions. Herein, we discuss future directions in occupational heat stress management that consider this individual variability.
Collapse
Affiliation(s)
- Sean R. Notley
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
| | - Andreas D. Flouris
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
- FAME LaboratoryDepartment of Exercise Science, University of Thessaly TrikalaGreece
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
| |
Collapse
|
7
|
Fujii N, Amano T, Kenny GP, Honda Y, Kondo N, Nishiyasu T. Nicotinic receptors modulate skin perfusion during normothermia, and have a limited role in skin vasodilatation and sweating during hyperthermia. Exp Physiol 2019; 104:1808-1818. [DOI: 10.1113/ep088072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/11/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport SciencesUniversity of Tsukuba Tsukuba Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental PhysiologyFaculty of EducationNiigata University Niigata Japan
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitUniversity of Ottawa Ottawa Canada
| | - Yasushi Honda
- Faculty of Health and Sport SciencesUniversity of Tsukuba Tsukuba Japan
| | - Narihiko Kondo
- Laboratory for Applied Human PhysiologyGraduate School of Human Development and EnvironmentKobe University Kobe Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport SciencesUniversity of Tsukuba Tsukuba Japan
| |
Collapse
|
8
|
Fujii N, McGarr GW, Sigal RJ, Boulay P, Nishiyasu T, Kenny GP. Ageing augments nicotinic and adenosine triphosphate-induced, but not muscarinic, cutaneous vasodilatation in women. Exp Physiol 2019; 104:1801-1807. [PMID: 31602716 DOI: 10.1113/ep088144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does ageing augment muscarinic, nicotinic and/or ATP-mediated cutaneous vasodilatation in women? What is the main finding and its importance? Ageing augments nicotinic and ATP-induced, but not muscarinic, cutaneous vasodilatation in women. This will stimulate future studies assessing the pathophysiological significance of the augmented microvascular responsiveness in older women compared to their young counterparts. ABSTRACT We previously reported that ageing attenuates adenosine triphosphate (ATP)-induced, but not muscarinic and nicotinic, cutaneous vasodilatation in men, and that ageing may augment cutaneous vascular responses in women. In the present study, we evaluated the hypothesis that ageing augments muscarinic, nicotinic and/or ATP-mediated cutaneous vasodilatation in healthy women. In 11 young (23 ± 5 years) and 11 older (60 ± 8 years) women, cutaneous vascular conductance was evaluated at three forearm skin sites that were perfused with (1) methacholine (muscarinic receptor agonist, 5 doses: 0.0125, 0.25, 5, 100, 2000 mm), (2) nicotine (nicotinic receptor agonist, 5 doses: 1.2, 3.6, 11, 33, 100 mm), or (3) ATP (purinergic receptor agonist, 5 doses: 0.03, 0.3, 3, 30, 300 mm). Each agonist was administered for 25 min per dose. Methacholine-induced increases in cutaneous vascular conductance were not different between groups at all doses (all P > 0.05). However, a nicotine-induced elevation in cutaneous vascular conductance at the lowest concentration (1.2 mm) was greater in older vs. young women (43 ± 15 vs. 26 ± 10%max, P = 0.04). ATP-induced increases in cutaneous vascular conductance at moderate and high doses (3 and 30 mm) were also greater in older relative to young women (3 mm, 44 ± 11 vs. 28 ± 10%max, P = 0.02; 30 mm, 83 ± 14 vs. 64 ± 17%max, P = 0.05). Therefore, ageing augments nicotinic and ATP-induced, but not muscarinic, cutaneous vasodilatation in women.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Fujii N, Hatam K, McGarr GW, Meade RD, Boulay P, Nishiyasu T, Kenny GP. Exogenous Activation of Protease-Activated Receptor 2 Attenuates Cutaneous Vasodilatation and Sweating in Older Men Exercising in the Heat. Skin Pharmacol Physiol 2019; 32:235-243. [PMID: 31220834 DOI: 10.1159/000500643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Protease-activated receptor 2 (PAR2) exists in the cutaneous vasculature and eccrine sweat glands. We previously showed that in young habitually active men, exogenous PAR2 activation via the agonist SLIGKV-NH2 had no effect on heat loss responses of cutaneous vasodilatation and sweating during rest or exercise in the heat. However, ageing is associated with altered mechanisms governing these responses. Thus, the effect of exogenous PAR2 activation on cutaneous vasodilatation and sweating in older individuals may differ from that in young adults. METHODS Local cutaneous vascular conductance (CVC) and sweat rate were measured in 9 older males (62 ± 4 years) at four forearm skin sites treated with the following: (1) lactated Ringer solution (control), (2) 0.05 mM, (3) 0.5 mM, or (4) 5 mM SLIGKV-NH2. Measurements were performed while participants rested in a non-heat-stress environment (25°C) for ∼60 min and an additional 50 min thereafter in the heat (40°C). Participants then performed 50 min of cycling at a fixed metabolic heat load of 200 W/m2 (to maintain the same thermal drive for heat loss between participants) followed by a 30-min recovery. RESULTS CVC during non-heat-stress resting was elevated from the control site with 5 mM SLIGKV-NH2 (p ≤ 0.05), but this response was not observed during ambient heat exposure. By contrast, 5 mM SLIGKV-NH2 lowered CVC during the early stage (10 and 20 min) of exercise compared to the control site (all p ≤ 0.05). Although sweating during non-heat-stressed and heat-stressed resting was not affected by any dose of SLIGKV-NH2, it was reduced with all SLIGKV-NH2 doses relative to the control site during and following exercise (all p ≤ 0.05). CONCLUSION We show that while exogenous PAR2 activation induces cutaneous vasodilatation at rest under non-heat-stressed conditions, it attenuates cutaneous vasodilatation and sweating during and following an exercise-induced heat stress in older men.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada, .,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan,
| | - Kion Hatam
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Fujii N, McGarr GW, Nishiyasu T, Sigal RJ, Boulay P, Kenny GP. Ageing attenuates muscarinic‐mediated sweating differently in men and women with no effect on nicotinic‐mediated sweating. Exp Dermatol 2019; 28:968-971. [DOI: 10.1111/exd.13878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/03/2018] [Accepted: 01/01/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport SciencesUniversity of Tsukuba Tsukuba Japan
- Human and Environmental Physiology Research UnitUniversity of Ottawa Ottawa Ontario Canada
| | - Gregory W. McGarr
- Human and Environmental Physiology Research UnitUniversity of Ottawa Ottawa Ontario Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport SciencesUniversity of Tsukuba Tsukuba Japan
| | - Ronald J. Sigal
- Human and Environmental Physiology Research UnitUniversity of Ottawa Ottawa Ontario Canada
- Departments of MedicineCardiac Sciences and Community Health SciencesFaculties of Medicine and KinesiologyUniversity of Calgary Calgary Alberta Canada
- Clinical Epidemiology ProgramOttawa Hospital Research Institute Ottawa Ontario Canada
| | - Pierre Boulay
- Faculty of Physical Activity SciencesUniversity of Sherbrooke Sherbrooke Quebec Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitUniversity of Ottawa Ottawa Ontario Canada
- Clinical Epidemiology ProgramOttawa Hospital Research Institute Ottawa Ontario Canada
| |
Collapse
|
11
|
Tseng MF, Chou CL, Chung CH, Chien WC, Chen YK, Yang HC, Chu P. Association between heat stroke and ischemic heart disease: A national longitudinal cohort study in Taiwan. Eur J Intern Med 2019; 59:97-103. [PMID: 30297250 DOI: 10.1016/j.ejim.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The purpose of this study is to determine the relationship between heat stroke and ischemic heart disease (IHD), in a nationwide population using a longitudinal approach. We retrospectively examined the data from the National Health Insurance Research Database (NHIRD) in Taiwan, for patients examined between 2000 and 2013. In total, 628 patients with a heat stroke episode were enrolled and matched with 1256 patients without any history of a heat stroke episode by propensity score matching at a ratio of 1:2. The mean follow-up years of the heat stroke group was 11.89 years and the mean follow up of the control group was 11.51 years. An association between heat stroke episodes and IHD (log-rank p < .001) was found in a univariate cox regression analysis. After multivariate adjustment, age, comorbidities (hypertension, diabetes, stroke), and lower insurance premiums were associated with IHD events in patients who had a heat stroke. IHD was independently associated with heat stroke following cox multivariate regression analysis and patients with a heat stroke episode had a higher incidence of IHD events compared to those without any heat stroke episode (2598.41/105 person-years vs. 1286.14/105 person-years, adjusted hazard ratio 3.527, 95% CI: 2.078-4.032, p < .001). The onset of IHD in patients who suffered a heat stroke was earlier than in those without a heat stroke episode (2.08 ± 3.45 vs. 3.61 ± 3.25 years, p < .001). In conclusion, clinicians should be aware about evaluating the IHD risk following a heat stroke episode in a patient.
Collapse
Affiliation(s)
- Min-Feng Tseng
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Medical Research, Ping-Tung Christian Hospital, Ping-Tung, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan; Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Ying-Kai Chen
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Hsiu-Chien Yang
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Huang LN, Zhong YP, Liu D, Wang XH, Gong CY, Wen S, Elias PM, Yang B, Man MQ. Adverse cutaneous reactions to skin care products on the face vary with age, but not with sex. Contact Dermatitis 2018; 79:365-369. [PMID: 30206954 PMCID: PMC6234074 DOI: 10.1111/cod.13102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adverse skin reactions to skin care products have been increasing in recent years. However, to date, these reactions have not been well characterized. OBJECTIVE To describe the symptoms, clinical signs and frequency of adverse cutaneous reactions to skin care products on the face in males vs females of various ages. PATIENTS AND METHODS All outpatients diagnosed with adverse cutaneous reactions to skin care products on the face examined by dermatologists at the Dermatology Hospital of South Medical University between November 1, 2016 and October 31, 2017, employing a questionnaire and an interview, were eligible. The associations of adverse cutaneous reactions with age and sex were analysed. RESULTS A total of 433 outpatients, accounting for 0.12% of all outpatients, were assessed. Of these, 223 patients, including 204 females and 19 males, aged 4 to 75 years, were eventually diagnosed with adverse reactions to skin care products on the face. Eighty-two per cent of patients experienced pruritus, 80% showed erythema, and 48% showed visible swelling. The incidence rates of both xerosis and oedema correlated positively with age, whereas acne-like lesions were negatively associated with age, but not with sex. CONCLUSIONS Our results indicate that pruritus, xerosis and erythema are common adverse cutaneous reactions to facial skin care products. These reactions vary with age, but not with sex. Vigorous safety testing should precede the marketing of skin care products.
Collapse
Affiliation(s)
- Li-ning Huang
- Dermatology Hospital, Southern Medical University, Guangdong, P.R. China
| | - Yi-ping Zhong
- Dermatology Hospital, Southern Medical University, Guangdong, P.R. China
| | - Dan Liu
- Dermatology Hospital, Southern Medical University, Guangdong, P.R. China
| | - Xiao-hua Wang
- Dermatology Hospital, Southern Medical University, Guangdong, P.R. China
| | - Can-yi Gong
- Dermatology Hospital, Southern Medical University, Guangdong, P.R. China
| | - Si Wen
- Dermatology Hospital, Southern Medical University, Guangdong, P.R. China
| | - Peter M. Elias
- Dermatology Services, Veterans Affairs Medical Center and University of California San Francisco, California
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangdong, P.R. China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangdong, P.R. China
- Dermatology Services, Veterans Affairs Medical Center and University of California San Francisco, California
| |
Collapse
|
13
|
Fujii N, Pastore OL, McGarr GW, Meade RD, McNeely BD, Nishiyasu T, Kenny GP. Cyclooxygenase-1 and -2 modulate sweating but not cutaneous vasodilation during exercise in the heat in young men. Physiol Rep 2018; 6:e13844. [PMID: 30175553 PMCID: PMC6119687 DOI: 10.14814/phy2.13844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
We recently reported that the nonselective cyclooxygenase (COX) inhibitor ketorolac attenuated sweating but not cutaneous vasodilation during moderate-intensity exercise in the heat. However, the specific contributions of COX-1 and COX-2 to the sweating response remained to be determined. We tested the hypothesis that COX-1 but not COX-2 contributes to sweating with no role for either COX isoform in cutaneous vasodilation during moderate-intensity exercise in the heat. In thirteen young males (22 ± 2 years), sweat rate and cutaneous vascular conductance were measured at three forearm skin sites that were continuously treated with (1) lactated Ringer's solution (Control), (2) 150 μmmol·L-1 celecoxib, a selective COX-2 inhibitor, or (3) 10 mmol L-1 ketorolac, a nonselective COX inhibitor. Participants first rested in a non heat stress condition (≥85 min, 25°C) followed by a further 70-min rest period in the heat (35°C). They then performed 50 min of moderate-intensity cycling (~55% peak oxygen uptake) followed by a 30-min recovery period. At the end of exercise, sweat rate was lower at the 150 μmol·L-1 celecoxib (1.51 ± 0.25 mg·min-1 ·cm-2 ) and 10 mmol·L-1 ketorolac (1.30 ± 0.30 mg·min-1 ·cm-2 ) treated skin sites relative to the Control site (1.89 ± 0.27 mg·min-1 ·cm-2 ) (both P ≤ 0.05). Additionally, sweat rate at the ketorolac site was attenuated relative to the celecoxib site (P ≤ 0.05). Neither celecoxib nor ketorolac influenced cutaneous vascular conductance throughout the experiment (both P > 0.05). We showed that both COX-1 and COX-2 contribute to sweating but not cutaneous vasodilation during moderate-intensity exercise in the heat in young men.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Olivia L. Pastore
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Gregory W. McGarr
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Robert D. Meade
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Brendan D. McNeely
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| |
Collapse
|
14
|
Fujii N, Nishiyasu T, Sigal RJ, Boulay P, McGarr GW, Kenny GP. Aging attenuates adenosine triphosphate-induced, but not muscarinic and nicotinic, cutaneous vasodilation in men. Microcirculation 2018; 25:e12462. [PMID: 29846993 DOI: 10.1111/micc.12462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We evaluated the hypothesis that aging attenuates muscarinic, nicotinic, and ATP-related cutaneous vasodilation. METHODS In 11 young (24 ± 4 years) and 11 older males (61 ± 8 years), CVC was assessed at 3 forearm skin sites that were infused with either: (i) methacholine (muscarinic receptor agonist, 5 doses: 0.0125, 0.25, 5, 100, 2000 mmol/L), (ii) nicotine (nicotinic receptor agonist, 5 doses: 1.2, 3.6, 11, 33, 100 mmol/L), or (iii) ATP (purinergic receptor agonist, 5 doses: 0.03, 0.3, 3, 30, 300 mmol/L). Each agonist was administered for 25 minutes per dose. RESULTS We showed that CVC at all doses of methacholine did not differ between groups. Similarly, no between-group differences in CVC were observed during nicotine administration at all doses administered. By contrast, while no differences in CVC were measured during the administration of ATP at low (0.03 and 0.3 mmol/L) or high (300 mmol/L) concentrations, CVC was reduced in the older relative to the young males at moderate concentrations of ATP (3 mmol/L: 23 ± 6 vs 40 ± 13%max, 30 mmol/L: 62 ± 11 vs 83 ± 8%max, both P ≤ .05). CONCLUSIONS We show that aging attenuates ATP-induced, but not muscarinic or nicotinic, cutaneous vasodilation in men.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
15
|
Fujii N, Meade RD, McNeely BD, Nishiyasu T, Sigal RJ, Kenny GP. Type 2 diabetes specifically attenuates purinergic skin vasodilatation without affecting muscarinic and nicotinic skin vasodilatation and sweating. Exp Physiol 2018; 103:212-221. [DOI: 10.1113/ep086694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences; University of Tsukuba; Tsukuba Japan
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
| | - Brendan D. McNeely
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences; University of Tsukuba; Tsukuba Japan
| | - Ronald J. Sigal
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
- Department of Medicine; Cumming School of Medicine, University of Calgary; Calgary Alberta Canada
- Clinical Epidemiology Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
- Clinical Epidemiology Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
| |
Collapse
|
16
|
Fujii N, McNeely BD, Nishiyasu T, Kenny GP. Intradermal administration of atrial natriuretic peptide has no effect on sweating and cutaneous vasodilator responses in young male adults. Temperature (Austin) 2017; 4:406-413. [PMID: 29435479 DOI: 10.1080/23328940.2017.1356433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 01/27/2023] Open
Abstract
Atrial natriuretic peptide (ANP) increases during exercise in the heat wherein heat loss responses of sweating and cutaneous vasodilatation are activated. Hence ANP might be involved in the regulation of sweating and cutaneous vasodilatation. However, whether ANP directly mediates sweating and cutaneous vasodilatation needs to be clarified. Also, muscarinic receptor activation induces sweating and cutaneous vasodilatation, however, it remains to be determined whether ANP modulates these responses. In this study, in 11 young males (25 ± 5 years), cutaneous vascular conductance and sweat rate were assessed at intradermal microdialysis sites that were continuously perfused with either lactated Ringer (Control) or 3 different concentrations of ANP (0.1, 1, 10 µM). All 4 sites were co-administrated with methacholine, a muscarinic receptor agonist, in a dose-dependent fashion (0.0125, 0.25, 5, 100, and 2000 mM, 25 min for each). ANP at all concentrations did not increase sweat rate and cutaneous vascular conductance as compared with pre-ANP infusion values (all P > 0.05). Methacholine increased both sweat rate and cutaneous vascular conductance (all P ≤ 0.05). However, the responses were unaffected by co-administration of ANP relative to methacholine only, even as assessed in context of the methacholine concentration required to elicit 50% of the maximal response (EC50) (all P > 0.05). We show that exogenous ANP administration intradermally does not directly modulate sweating and cutaneous vasodilatation under room temperature conditions in resting young adults. Further, there is no effect of ANP on muscarinic sweating and cutaneous vasodilatation.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.,Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
17
|
Ono J, Hashiguchi N, Sawatari H, Ohkusa T, Miyazono M, Son SY, Magota C, Tochihara Y, Chishaki A. Effect of water bath temperature on physiological parameters and subjective sensation in older people. Geriatr Gerontol Int 2017; 17:2164-2170. [PMID: 28421715 DOI: 10.1111/ggi.13053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 11/29/2022]
Abstract
AIM In Japan, the incidence of water bathing-related cardiopulmonary accidents among older people is high in winter. The purpose of the present study was to investigate alterations in physiological characteristics and subjective thermal sensations of older people when bathing in a cool environment. METHODS We assessed the skin temperature, rectal temperature, blood pressure, pulse rate, body fluid loss (sweat and urine), and subjective thermal responses of 11 older healthy male and 10 young male volunteers throughout 42°C and 39°C bathing in a room at 20°C with 50% humidity. RESULTS At 42°C bathing, the rectal temperature during bathing and in the post-bathing period were significantly lower in the older men than in the young men, and skin temperature during the post-bathing period decreased gradually in the older men. Systolic blood pressure and pulse rate immediately increased just after entering 42°C water and decreased during bathing in the older men. With the activities of dressing, systolic blood pressure increased followed by a decrease during the post-bathing period. Thus, double product (pulse rate × systolic blood pressure) increased during the bathing period. Although there was no significant difference in body fluid loss between the older and younger men in 42°C water, the older men produced significantly less sweat. The older men also reported feeling less warm after 42°C bathing, and feeling less cold during the post-bathing period after 39°C bathing. CONCLUSIONS These results suggest that hot water bathing during cold seasons might induce more serious physiological changes in older people. Geriatr Gerontol Int 2017; 17: 2164-2170.
Collapse
Affiliation(s)
- Junji Ono
- Department of Health Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuko Hashiguchi
- Department of Health Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroyuki Sawatari
- Department of Health Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tomoko Ohkusa
- Faculty of Health Science, Ube Frontier University, Yamaguchi, Japan.,Sleep Apnea Center, Kyushu University Hospital, Fukuoka, Japan
| | - Mami Miyazono
- School of Nursing, Fukuoka Prefectural University, Fukuoka, Japan
| | - Su-Young Son
- National Institute of Occupational Safety and Health, Tokyo, Japan
| | - Chie Magota
- Department of Health Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Faculty of Medical Technology, Teikyo University, Fukuoka, Japan
| | - Yutaka Tochihara
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Akiko Chishaki
- Department of Health Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
18
|
Amano T, Fujii N, Louie JC, Meade RD, Kenny GP. Individual variations in nitric oxide synthase-dependent sweating in young and older males during exercise in the heat: role of aerobic power. Physiol Rep 2017; 5:5/6/e13208. [PMID: 28325791 PMCID: PMC5371569 DOI: 10.14814/phy2.13208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 11/24/2022] Open
Abstract
We evaluated the association between aerobic power (defined by peak oxygen consumption; VO2peak) and the contribution of nitric oxide synthase (NOS) to the sweating response in young and older individuals during exercise in the heat. Data from 44 young (24 ± 1 years) and 48 older (61 ± 2 years) males with mean VO2peak of 47.8 ± 2.4 (range, 28.0–62.3) and 39.1 ± 2.3 (range, 26.4–55.7) mLO2 kg−1 min−1, respectively, were compiled from our prior studies. Participants performed two 15‐ to 30‐min bouts of exercise at a fixed rate of metabolic heat production of 400 or 500 W, each separated by 15–20 min recovery in the heat (35°C, relative humidity of 20%). Forearm sweat rate (ventilated capsule technique) was measured at two skin sites that were continuously and simultaneously administered with lactated Ringers solution (Control) or 10 mmol/L NG‐nitro‐L‐arginine methyl ester (L‐NAME, nonselective NOS inhibitor) via intradermal microdialysis. Sweat rate during the final 5 min of each exercise bout was lower with L‐NAME compared to the Control in both groups (all P < 0.05). The magnitude of the attenuation in sweat rate induced by L‐NAME compared to the Control was not correlated with VO2peak (all P ≥ 0.46) while this attenuation was negatively correlated with the sweat rate at the Control in both groups and in both exercise bouts (all P < 0.01, R ≤ −0.43). These results suggest that NOS‐dependent sweating is not associated with aerobic power per se, while it becomes evident in individuals who produce larger sweat rates during exercise irrespective of age.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.,Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.,Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
19
|
Amano T, Kai S, Nakajima M, Ichinose-Kuwahara T, Gerrett N, Kondo N, Inoue Y. Sweating responses to isometric hand-grip exercise and forearm muscle metaboreflex in prepubertal children and elderly. Exp Physiol 2016; 102:214-227. [DOI: 10.1113/ep085908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/09/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment; Kobe University; Kobe Japan
- Laboratory for Exercise and Environmental Physiology, Faculty of Education; Niigata University; Niigata Japan
| | - Seiko Kai
- Laboratory for Human Performance Research; Osaka International University; Osaka Japan
| | - Michi Nakajima
- Laboratory for Human Performance Research; Osaka International University; Osaka Japan
| | | | - Nicola Gerrett
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment; Kobe University; Kobe Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment; Kobe University; Kobe Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research; Osaka International University; Osaka Japan
| |
Collapse
|
20
|
Fujii N, Singh MS, Halili L, Louie JC, Kenny GP. The effect of endothelin A and B receptor blockade on cutaneous vascular and sweating responses in young men during and following exercise in the heat. J Appl Physiol (1985) 2016; 121:1263-1271. [PMID: 27763878 DOI: 10.1152/japplphysiol.00679.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/15/2016] [Accepted: 10/02/2016] [Indexed: 11/22/2022] Open
Abstract
During exercise, cutaneous vasodilation and sweating responses occur, whereas these responses rapidly decrease during postexercise recovery. We hypothesized that the activation of endothelin A (ETA) receptors, but not endothelin B (ETB) receptors, attenuate cutaneous vasodilation during high-intensity exercise and contribute to the subsequent postexercise suppression of cutaneous vasodilation. We also hypothesized that both receptors increase sweating during and following high-intensity exercise. Eleven men (24 ± 4 yr) performed an intermittent cycling protocol consisting of two 30-min bouts of moderate- (40% V̇o2peak) and high-intensity (75% V̇o2peak) exercise in the heat (35°C), each separated by a 20- and 40-min recovery period, respectively. Cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal microdialysis skin sites: 1) lactated Ringer (control), 2) 500 nM BQ123 (a selective ETA receptor blocker), 3) 300 nM BQ788 (a selective ETB receptor blocker), or 4) a combination of BQ123 + BQ788. There were no between-site differences in CVC during each exercise bout (all P > 0.05); however, CVC following high-intensity exercise was greater at BQ123 (56 ± 9%max) and BQ123 + BQ788 (55 ± 14%max) sites relative to the control site (43 ± 12%max) (all P ≤ 0.05). Sweat rate did not differ between sites throughout the protocol (all P > 0.05). We show that neither ETA nor ETB receptors modulate cutaneous vasodilation and sweating responses during and following moderate- and high-intensity exercise in the heat, with the exception that ETA receptors may partly contribute to the suppression of cutaneous vasodilation following high-intensity exercise.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Maya S Singh
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
21
|
Fujii N, Notley SR, Minson CT, Kenny GP. Administration of prostacyclin modulates cutaneous blood flow but not sweating in young and older males: roles for nitric oxide and calcium-activated potassium channels. J Physiol 2016; 594:6419-6429. [PMID: 27511105 DOI: 10.1113/jp273174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS In young adults, cyclooxygenase (COX) contributes to the heat loss responses of cutaneous vasodilatation and sweating, and this may be mediated by prostacyclin-induced activation of nitric oxide synthase (NOS) and calcium-activated potassium (KCa) channels. This prostacyclin-induced response may be diminished in older relative to young adults because ageing is known to attenuate COX-dependent heat loss responses. We observed that, although prostacyclin does not mediate sweating in young and older males, it does modulate cutaneous vasodilatation, although the magnitude of increase is similar between groups. We also found that, although NOS and KCa channels contribute to prostacyclin-induced cutaneous vasodilatation in young males, these contributions are diminished in older males. Our findings provide new insight into the mechanisms governing heat loss responses and suggest that the age-related diminished COX-dependent heat loss responses reported in previous studies may be a result of the reduced COX-derived production of prostanoids (e.g., prostacyclin) rather than the decreased sensitivity of prostanoid receptors. ABSTRACT Cyclooxygenase (COX) contributes to the regulation of cutaneous vasodilatation and sweating; however, the mechanism(s) underpinning this response remain unresolved. We hypothesized that prostacyclin (a COX-derived product) may directly mediate cutaneous vasodilatation and sweating through nitric oxide synthase (NOS) and calcium-activated potassium (KCa) channels in young adults. However, these responses would be diminished in older adults because ageing attenuates COX-dependent cutaneous vasodilatation and sweating. In young (25 ± 4 years) and older (60 ± 6 years) males (nine per group), cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites: (i) control; (ii) 10 mm NG -nitro-l-arginine (l-NNA), a non-specific NOS inhibitor; (iii) 50 mm tetraethylammonium (TEA), a non-specific KCa channel blocker; and (iv) 10 mm l-NNA + 50 mm TEA. All four sites were coadministered with prostacyclin in an incremental manner (0.04, 0.4, 4, 40 and 400 μm each for 25 min). Prostacyclin-induced increases in CVC were similar between groups (all concentrations, P > 0.05). l-NNA and TEA, as well as their combination, lowered CVC in young males at all prostacyclin concentrations (P ≤ 0.05), with the exception of l-NNA at 0.04 μm (P > 0.05). In older males, CVC during prostacyclin administration was not influenced by l-NNA (all concentrations), TEA (4-400 μm) or their combination (400 μm) (P > 0.05). No effect on sweat rate was observed in either group (all concentrations, P > 0.05). We conclude that, although prostacyclin does not mediate sweating, it modulates cutaneous vasodilatation to a similar extent in young and older males. Furthermore, although NOS and KCa channels contribute to the prostacyclin-induced cutaneous vasodilatation in young males, these contributions are diminished in older males.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Sean R Notley
- Centre for Human and Applied Physiology, School of Medicine, University of Wollongong, Wollongong, Australia
| | | | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
22
|
Fujii N, Singh MS, Halili L, Boulay P, Sigal RJ, Kenny GP. Cutaneous vascular and sweating responses to intradermal administration of prostaglandin E1 and E2 in young and older adults: a role for nitric oxide? Am J Physiol Regul Integr Comp Physiol 2016; 310:R1064-72. [PMID: 27101302 DOI: 10.1152/ajpregu.00538.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/06/2016] [Indexed: 01/28/2023]
Abstract
Cyclooxygenase (COX) contributes to cutaneous vasodilation and sweating responses; however, the mechanisms underpinning these responses remain unknown. We hypothesized that prostaglandin E1 (PGE1) and E2 (PGE2) (COX-derived vasodilator products) directly mediate cutaneous vasodilation and sweating through nitric oxide synthase (NOS)-dependent mechanisms in young adults. Furthermore, we hypothesized that this response is diminished in older adults, since aging attenuates COX-dependent cutaneous vasodilation and sweating. In 9 young (22 ± 5 yr) and 10 older (61 ± 6 yr) adults, cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites receiving incremental doses (0.05, 0.5, 5, 50, 500 μM each for 25 min) of PGE1 or PGE2 with and without coadministration of 10 mM N(ω)-nitro-l-arginine, a nonspecific NOS inhibitor. N(ω)-nitro-l-arginine attenuated PGE1-mediated increases in CVC at all concentrations in young adults, whereas it reduced PGE2-mediated increases in CVC at lower concentrations (0.05-0.5 μM) in older adults (all P < 0.05). However, the magnitude of the PGE1- and PGE2-mediated increases in CVC did not differ between groups (all P > 0.05). Neither PGE1 nor PGE2 increased sweat rate at any of the administered concentrations for either the young or older adults (all P > 0.05). We show that although cutaneous vascular responsiveness to PGE1 and PGE2 is similar between young and older adults, the cutaneous vasodilator response is partially mediated through NOS albeit via low-to-high concentrations of PGE1 in young adults and low concentrations of PGE2 in older adults, respectively. We also show that in both young and older adults, PGE1 and PGE2 do not increase sweat rate under normothermic conditions.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada; and
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
23
|
Fujii N, Meade RD, Minson CT, Brunt VE, Boulay P, Sigal RJ, Kenny GP. Cutaneous blood flow during intradermal NO administration in young and older adults: roles for calcium-activated potassium channels and cyclooxygenase? Am J Physiol Regul Integr Comp Physiol 2016; 310:R1081-7. [PMID: 27053645 DOI: 10.1152/ajpregu.00041.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/30/2016] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) increases cutaneous blood flow; however, the underpinning mechanism(s) remains to be elucidated. We hypothesized that the cutaneous blood flow response during intradermal administration of sodium nitroprusside (SNP, a NO donor) is regulated by calcium-activated potassium (KCa) channels and cyclooxygenase (COX) in young adults. We also hypothesized that these contributions are diminished in older adults given that aging can downregulate KCa channels and reduce COX-derived vasodilator prostanoids. In 10 young (23 ± 5 yr) and 10 older (54 ± 4 yr) adults, cutaneous vascular conductance (CVC) was measured at four forearm skin sites infused with 1) Ringer (Control), 2) 50 mM tetraethylammonium (TEA), a nonspecific KCa channel blocker, 3) 10 mM ketorolac, a nonspecific COX inhibitor, or 4) 50 mM TEA + 10 mM ketorolac via intradermal microdialysis. All skin sites were coinfused with incremental doses of SNP (0.005, 0.05, 0.5, 5, and 50 mM each for 25 min). During SNP administration, CVC was similar at the ketorolac site (0.005-50 mM, all P > 0.05) relative to Control, but lower at the TEA and TEA + ketorolac sites (0.005-0.05 mM, all P < 0.05) in young adults. In older adults, ketorolac increased CVC relative to Control during 0.005-0.05 mM SNP administration (all P < 0.05), but this increase was not observed when TEA was coadministered (all P > 0.05). Furthermore, TEA alone did not modulate CVC during any concentration of SNP administration in older adults (all P > 0.05). We show that during low-dose NO administration (e.g., 0.005-0.05 mM), KCa channels contribute to cutaneous blood flow regulation in young adults; however, in older adults, COX inhibition increases cutaneous blood flow through a KCa channel-dependent mechanism.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | | | - Vienna E Brunt
- Department of Human Physiology, The University of Oregon, Eugene, Oregon
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada; and
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
24
|
Paull G, Dervis S, Barrera-Ramirez J, McGinn R, Haqani B, Flouris AD, Kenny GP. The effect of plasma osmolality and baroreceptor loading status on postexercise heat loss responses. Am J Physiol Regul Integr Comp Physiol 2016; 310:R522-31. [PMID: 26764055 DOI: 10.1152/ajpregu.00435.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022]
Abstract
We examined the separate and combined effects of plasma osmolality and baroreceptor loading status on postexercise heat loss responses. Nine young males completed a 45-min treadmill exercise protocol at 58 ± 2% V̇o2 peak, followed by a 60-min recovery. On separate days, participants received 0.9% NaCl (ISO), 3.0% NaCl (HYP), or no infusion (natural recovery) throughout exercise. In two additional sessions (no infusion), lower-body negative (LBNP) or positive (LBPP) pressure was applied throughout the final 45 min of recovery. Local sweat rate (LSR; ventilated capsule: chest, forearm, upper back, forehead) and skin blood flow (SkBF; laser-Doppler flowmetry: forearm, upper back) were continuously measured. During HYP, upper back LSR was attenuated from end-exercise to 10 min of recovery by ∼0.35 ± 0.10 mg·min(-1)·cm(-2) and during the last 20 min of recovery by ∼0.13 ± 0.03 mg·min(-1)·cm(-2), while chest LSR was lower by 0.18 ± 0.06 mg·min(-1)·cm(-2) at 50 min of recovery compared with natural recovery (all P < 0.05). Forearm and forehead LSRs were not affected by plasma hyperosmolality during HYP (all P > 0.28), which suggests regional differences in the osmotic modulation of postexercise LSR. Furthermore, LBPP application attenuated LSR by ∼0.07-0.28 mg·min(-1)·cm(-2) during the last 30 min of recovery at all sites except the forehead compared with natural recovery (all P < 0.05). Relative to natural recovery, forearm and upper back SkBF were elevated during LBPP, ISO, and HYP by ∼6-10% by the end of recovery (all P < 0.05). We conclude that 1) hyperosmolality attenuates postexercise sweating heterogeneously among skin regions, and 2) baroreceptor loading modulates postexercise SkBF independently of changes in plasma osmolality without regional differences.
Collapse
Affiliation(s)
- Gabrielle Paull
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Sheila Dervis
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Juliana Barrera-Ramirez
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Baies Haqani
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Andreas D Flouris
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
25
|
Halili L, Singh MS, Fujii N, Alexander LM, Kenny GP. Endothelin-1 modulates methacholine-induced cutaneous vasodilatation but not sweating in young human skin. J Physiol 2016; 594:3439-52. [PMID: 26846374 DOI: 10.1113/jp271735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Endothelin-1 (ET-1) is a potent endothelial-derived vasoconstrictor that may modulate cholinergic cutaneous vascular regulation. Endothelin receptors are also expressed on the human eccrine sweat gland, although it remains unclear whether ET-1 modulates cholinergic sweating. We investigated whether ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Our findings show that ET-1 attenuates methacholine-induced cutaneous vasodilatation through a NOS-independent mechanism. We also demonstrate that ET-1 attenuates cutaneous vasodilatation in response to sodium nitroprusside, suggesting that ET-1 diminishes the dilatation capacity of vascular smooth muscle cells. We show that ET-1 does not modulate methacholine-induced sweating at any of the administered concentrations. Our findings advance our knowledge pertaining to the peripheral control underpinning the regulation of cutaneous blood flow and sweating and infer that ET-1 may attenuate the heat loss responses of cutaneous blood flow, but not sweating. ABSTRACT The present study investigated the effect of endothelin-1 (ET-1) on cholinergic mechanisms of end-organs (i.e. skin blood vessels and sweat glands) for heat dissipation. We evaluated the hypothesis that ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Cutaneous vascular conductance (CVC) and sweat rate were assessed in three protocols: in Protocol 1 (n = 8), microdialysis sites were perfused with lactated Ringer solution (Control), 40 pm, 4 nm or 400 nm ET-1; in Protocol 2 (n = 11) sites were perfused with lactated Ringer solution (Control), 400 nm ET-1, 10 mm N(G) -nitro-l-arginine (l-NNA; a NOS inhibitor) or a combination of 400 nm ET-1 and 10 mm l-NNA; in Protocol 3 (n = 8), only two sites (Control and 400 nm ET-1) were utilized to assess the influence of ET-1 on the dilatation capacity of vascular smooth muscle cells (sodium nitroprusside; SNP). Methacholine (MCh) was co-administered in a dose-dependent manner (0.0125, 0.25, 5, 100, 2000 mm, each for 25 min) at all skin sites. ET-1 at 400 nm (P < 0.05) compared to lower doses (40 pm and 4 nm) (all P > 0.05) significantly attenuated increases in CVC in response to 0.25 and 5 mm MCh. A high dose of ET-1 (400 nm) co-infused with l-NNA further attenuated CVC during 0.25, 5 and 100 mm MCh administration relative to the ET-1 site (all P < 0.05). Cutaneous vasodilatation in response to SNP was significantly blunted after administration of 400 nm ET-1 (P < 0.05). We show that ET-1 attenuates cutaneous vasodilatation through a NOS-independent mechanism, possibly through a vascular smooth muscle cell-dependent mechanism, and methacholine-induced sweating is not altered by ET-1.
Collapse
Affiliation(s)
- Lyra Halili
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
26
|
Meade RD, Louie JC, Poirier MP, McGinn R, Fujii N, Kenny GP. Exploring the mechanisms underpinning sweating: the development of a specialized ventilated capsule for use with intradermal microdialysis. Physiol Rep 2016; 4:e12738. [PMID: 27033452 PMCID: PMC4814883 DOI: 10.14814/phy2.12738] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 01/26/2023] Open
Abstract
Many studies have aimed to identify the controllers of sweating using ventilated capsules with intradermal microdialysis. It is unclear, however, if the surface area covered by the capsule influences the observed response as a result of differences in the number of sweat glands affected by the infused pharmacological agent relative to the total glands captured by the capsule. We evaluated the area of skin perfused with agents delivered via microdialysis. Thereafter, we developed a specialized sweat capsule (1.1 cm(2)) and compared the sweating response with a classic capsule (2.8 cm(2)). InProtocol 1(n = 6), methacholine was delivered to forearm skin in a dose-dependent manner (1-2000 mmol L(-1)). The area of activated sweat glands was assessed via the modified iodine-paper technique. InProtocol 2(n = 6), the area of inhibited sweat glands induced by ouabain and atropine was assessed during moderate-intensity cycling. Marked variability in the affected skin area was observed (0.9 ± 0.4 to 5.2 ± 1.1 cm(2)). InProtocol 3(n = 6), we compared the attenuation in local sweat rate (LSR) induced by atropine between the new and classic capsule during moderate-intensity cycling. Atropine attenuated sweating as assessed using the new (control: 0.87 ± 0.23 mg min(-1) cm(-2)vs. atropine: 0.54 ± 0.22 mg min(-1) cm(-2);P < 0.01) and classic (control: 0.85 ± 0.33 mg min(-1) cm(-2)vs. atropine: 0.60 ± 0.26 mg min(-1) cm(-2);P = 0.05) capsule designs. Importantly, responses did not differ between capsule designs (P = 0.23). These findings provide critical information regarding the skin surface area perfused by microdialysis and suggest that use of a larger capsule does not alter the mechanistic insight into the sweating response gained when using microdialysis.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Martin P Poirier
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Brunt VE, Fujii N, Minson CT. Endothelial-derived hyperpolarization contributes to acetylcholine-mediated vasodilation in human skin in a dose-dependent manner. J Appl Physiol (1985) 2015; 119:1015-22. [PMID: 26384409 DOI: 10.1152/japplphysiol.00201.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/16/2015] [Indexed: 11/22/2022] Open
Abstract
Cutaneous acetylcholine (ACh)-mediated dilation is commonly used to assess microvascular function, but the mechanisms of dilation are poorly understood. Depending on dose and method of administration, nitric oxide (NO) and prostanoids are involved to varying extents and the roles of endothelial-derived hyperpolarizing factors (EDHFs) are unclear. In the present study, five incremental doses of ACh (0.01-100 mM) were delivered either as a 1-min bolus (protocol 1, n = 12) or as a ≥20-min continuous infusion (protocol 2, n = 10) via microdialysis fibers infused with 1) lactated Ringer, 2) tetraethylammonium (TEA) [a calcium-activated potassium channel (KCa) and EDHF inhibitor], 3) L-NNA+ketorolac [NO synthase (NOS) and cyclooxygenase (COX) inhibitors], and 4) TEA+L-NNA+Ketorolac. The hyperemic response was characterized as peak and area under the curve (AUC) cutaneous vascular conductance (CVC) for bolus infusions or plateau CVC for continuous infusions, and reported as %maximal CVC. In protocol 1, TEA, alone and combined with NOS+COX inhibition, attenuated peak CVC (100 mM Ringer 59 ± 6% vs. TEA 43 ± 5%, P < 0.05; L-NNA+ketorolac 35 ± 4% vs. TEA+L-NNA+ketorolac 25 ± 4%, P < 0.05) and AUC (Ringer 25,414 ± 3,528 vs. TEA 21,403 ± 3,416%·s, P < 0.05; L-NNA+ketorolac 25,628 ± 3,828%(.)s vs. TEA+L-NNA+ketorolac 20,772 ± 3,711%·s, P < 0.05), although these effects were only significant at the highest dose of ACh. At lower doses, TEA lengthened the total time of the hyperemic response (10 mM Ringer 609 ± 78 s vs. TEA 860 ± 67 s, P < 0.05). In protocol 2, TEA alone did not affect plateau CVC, but attenuated plateau in combination with NOS+COX inhibition (100 mM 50.4 ± 6.6% vs. 30.9 ± 6.3%, P < 0.05). Therefore, EDHFs contribute to cutaneous ACh-mediated dilation, but their relative contribution is altered by the dose and infusion procedure.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon; and
| | - Naoto Fujii
- Department of Human Physiology, University of Oregon, Eugene, Oregon; and Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
28
|
Paull G, Dervis S, McGinn R, Haqani B, Flouris AD, Kondo N, Kenny GP. Muscle metaboreceptors modulate postexercise sweating, but not cutaneous blood flow, independent of baroreceptor loading status. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1415-24. [PMID: 26377560 DOI: 10.1152/ajpregu.00287.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022]
Abstract
We examined whether sustained changes in baroreceptor loading status during prolonged postexercise recovery can alter the metaboreceptors' influence on heat loss. Thirteen young males performed a 1-min isometric handgrip exercise (IHG) at 60% maximal voluntary contraction followed by 2 min of forearm ischemia (to activate metaboreceptors) before and 15, 30, 45, and 60 min after a 15-min intense treadmill running exercise (>90% maximal heart rate) in the heat (35°C). This was repeated on three separate days with continuous lower body positive (LBPP, +40 mmHg), negative (LBNP, -20 mmHg), or no pressure (Control) from 13- to 65-min postexercise. Sweat rate (ventilated capsule; forearm, chest, upper back) and cutaneous vascular conductance (CVC; forearm, upper back) were measured. Relative to pre-IHG levels, sweating at all sites increased during IHG and remained elevated during ischemia at baseline and similarly at 30, 45, and 60 min postexercise (site average sweat rate increase during ischemia: Control, 0.13 ± 0.02; LBPP, 0.12 ± 0.02; LBNP, 0.15 ± 0.02 mg·min(-1)·cm(-2); all P < 0.01), but not at 15 min (all P > 0.10). LBPP and LBNP did not modulate the pattern of sweating to IHG and ischemia (all P > 0.05). At 15-min postexercise, forearm CVC was reduced from pre-IHG levels during both IHG and ischemia under LBNP only (ischemia: 3.9 ± 0.8% CVCmax; P < 0.02). Therefore, we show metaboreceptors increase postexercise sweating in the middle to late stages of recovery (30-60 min), independent of baroreceptor loading status and similarly between skin sites. In contrast, metaboreflex modulation of forearm but not upper back CVC occurs only in the early stages of recovery (15 min) and is dependent upon baroreceptor unloading.
Collapse
Affiliation(s)
- Gabrielle Paull
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Sheila Dervis
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Baies Haqani
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Andreas D Flouris
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada; FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; and
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
29
|
Fujii N, Halili L, Singh MS, Meade RD, Kenny GP. Intradermal administration of ATP augments methacholine-induced cutaneous vasodilation but not sweating in young males and females. Am J Physiol Regul Integr Comp Physiol 2015; 309:R912-9. [PMID: 26290105 DOI: 10.1152/ajpregu.00261.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Acetylcholine released from cholinergic nerves is a key neurotransmitter contributing to heat stress-induced cutaneous vasodilation and sweating. Given that sympathetic cholinergic nerves also release ATP, ATP may play an important role in modulating cholinergic cutaneous vasodilation and sweating. However, the pattern of response may differ between males and females given reports of sex-related differences in the peripheral mechanisms governing these heat loss responses. Cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) and sweat rate (ventilated capsule) were evaluated in 17 young adults (8 males, 9 females) at four intradermal microdialysis skin sites continuously perfused with: 1) lactated Ringer (Control), 2) 0.3 mM ATP, 3) 3 mM ATP, or 4) 30 mM ATP. At all skin sites, methacholine was coadministered in a concentration-dependent manner (0.0125, 0.25, 5, 100, 2,000 mM, each for 25 min). In both males and females, CVC was elevated with the lone infusion of 30 mM ATP (both P < 0.05), but not with 0.3 and 3 mM ATP compared with control (all P >0.27). However, 0.3 mM ATP induced a greater increase in CVC compared with control in response to 100 mM methacholine infusion in males (P < 0.05). In females, 0.3 mM ATP infusion resulted in a lower concentration of methacholine required to elicit a half-maximal response (EC50) (P < 0.05). In both males and females, methacholine-induced sweating was unaffected by any concentration of ATP (all P > 0.44). We demonstrate that ATP enhances cholinergic cutaneous vasodilation albeit the pattern of response differs between males and females. Furthermore, we show that ATP does not modulate cholinergic sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
30
|
McGinn R, Meade RD, Kenny GP. Angiotensin II in human skin: an age-dependent role for core temperature regulation? Am J Physiol Heart Circ Physiol 2015; 308:H1192-3. [PMID: 25820393 DOI: 10.1152/ajpheart.00227.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Fujii N, McGinn R, Paull G, Stapleton JM, Meade RD, Kenny GP. Cyclooxygenase inhibition does not alter methacholine-induced sweating. J Appl Physiol (1985) 2014; 117:1055-62. [PMID: 25213633 PMCID: PMC4217047 DOI: 10.1152/japplphysiol.00644.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/04/2014] [Indexed: 01/22/2023] Open
Abstract
Cholinergic agents (e.g., methacholine) induce cutaneous vasodilation and sweating. Reports indicate that either nitric oxide (NO), cyclooxygenase (COX), or both can contribute to cholinergic cutaneous vasodilation. Also, NO is reportedly involved in cholinergic sweating; however, whether COX contributes to cholinergic sweating is unclear. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) were evaluated in 10 healthy young (24 ± 4 yr) adults (7 men, 3 women) at four skin sites that were continuously perfused via intradermal microdialysis with 1) lactated Ringer (control), 2) 10 mM ketorolac (a nonselective COX inhibitor), 3) 10 mM N(G)-nitro-l-arginine methyl ester (l-NAME, a nonselective NO synthase inhibitor), or 4) a combination of 10 mM ketorolac + 10 mM l-NAME. At the four skin sites, methacholine was simultaneously infused in a dose-dependent manner (1, 10, 100, 1,000, 2,000 mM). Relative to the control site, forearm CVC was not influenced by ketorolac throughout the protocol (all P > 0.05), whereas l-NAME and ketorolac + l-NAME reduced forearm CVC at and above 10 mM methacholine (all P < 0.05). Conversely, there was no main effect of treatment site (P = 0.488) and no interaction of methacholine dose and treatment site (P = 0.711) on forearm sweating. Thus forearm sweating (in mg·min(-1)·cm(-2)) from baseline up to the maximal dose of methacholine was not different between the four sites (at 2,000 mM, control 0.50 ± 0.23, ketorolac 0.44 ± 0.23, l-NAME 0.51 ± 0.22, and ketorolac + l-NAME 0.51 ± 0.23). We show that both NO synthase and COX inhibition do not influence cholinergic sweating induced by 1-2,000 mM methacholine.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabrielle Paull
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Jill M Stapleton
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|