1
|
Wu SM, Pang JJ. Effects of elevated intraocular pressure on alpha ganglion cells in experimental glaucoma mice. Vision Res 2024; 224:108475. [PMID: 39217910 DOI: 10.1016/j.visres.2024.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Glaucoma is a leading cause of blindness worldwide and glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs. Combining some previous published results and some new data, this paper provides our current view on how high IOP (H-IOP) affects the light response sensitivity of a subset of RGCs, the alpha-ganglion cells (αGCs), as well as their presynaptic bipolar cells (DBCs and HBCs) and A2 amacrine cells (AIIACs) in dark-adapted mouse retinas. Our data demonstrate that H-IOP in experimental glaucoma mice significantly decreases light-evoked spike response sensitivity of sONαGCs and sOFFαGCs (i.e., raises thresholds by 1.5-2.5 log units), but not that of the tONαGCs and tOFFαGCs. The sensitivity loss in sONαGCs and sOFFαGCs is mediated by a H-IOP induced suppression of AIIAC response which is caused by a decrease of transmission efficacy of the DBCR→AIIAC synapse. We also provide evidence supporting the hypothesis that BK channels in the A17AC→DBCR feedback synapse are the H-IOP sensor that regulates the DBCR→AIIAC synaptic efficacy, as BK channel blocker IBTX mimics the action of H-IOP. Our results provide useful information for designing strategies for early detection and possible treatments of glaucoma as physiological changes occur before irreversible structural damage.
Collapse
Affiliation(s)
- Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, United States.
| | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
2
|
Seilheimer RL, McClard CK, Sabharwal J, Wu SM. Modulation of narrow-field amacrine cells on light-evoked spike responses and receptive fields of retinal ganglion cells. Vision Res 2023; 205:108186. [PMID: 36764009 PMCID: PMC11339979 DOI: 10.1016/j.visres.2023.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
By using multi-electrode array (MEA) recording technique in conjunction with white-noise checkerboard stimuli and reverse correlation methods, we studied modulatory actions of glycinergic narrow-field amacrine cells (NFACs) on spatiotemporal profiles of five functional groups of ganglion cells (GCs) in dark-adapted mouse retinas. We found that application of 2 µM strychnine significantly altered light-evoked spike rates of three groups of GCs. It also decreased receptive field center radii of all five groups of GC by a mean value of 11%, and shifted the GC receptive field (RF) centers of all GCs and the mean shift distances for the sustained GCs are significantly longer than the transient GCs. On the other hand, strychnine did not affect temporal profiles of the GC center responses, as it did not alter the time-to-peak or the biphasic index of the spike triggered average (STA) functions of GC RF centers. Strychnine also exerts limited actions on RF surrounds of most GCs, except that it moderately weakens the antagonistic surround of sustained OFF GCs and strengthens the antagonistic surround of the ON/OFF GCs, possibly through serial connections between NFACs and GABAergic wide-field amacrine cells (WFACs). Using the Sum of Separable Subfilter (SoSS) model and singular value decomposition method, we decomposed GCs' STAs into five space-time separable subfilters, studied the observation rates of each subfilter in the five functional groups of GCs and determined NFAC-dependent and -independent synaptic circuitries that mediate center and surround responses of various groups of mouse retina retinal ganglion cells.
Collapse
Affiliation(s)
- R L Seilheimer
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - C K McClard
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - J Sabharwal
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - S M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
3
|
Dette H, Dierickx G, Kutta T. Quantifying deviations from separability in space-time functional processes. BERNOULLI 2022. [DOI: 10.3150/21-bej1442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Tim Kutta
- Ruhr-Universität Bochum, D-44780 Bochum
| |
Collapse
|
4
|
Ash RT, Palagina G, Fernandez-Leon JA, Park J, Seilheimer R, Lee S, Sabharwal J, Reyes F, Wang J, Lu D, Sarfraz M, Froudarakis E, Tolias AS, Wu SM, Smirnakis SM. Increased Reliability of Visually-Evoked Activity in Area V1 of the MECP2-Duplication Mouse Model of Autism. J Neurosci 2022; 42:6469-6482. [PMID: 35831173 PMCID: PMC9398540 DOI: 10.1523/jneurosci.0654-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in layer 2/3 neurons of adult male and female primary visual cortex in the MECP2-duplication syndrome animal model of autism. Increased response reliability was due in part to decreased response amplitude, decreased fluctuations in endogenous activity, and an abnormal decoupling of visual-evoked activity from endogenous activity. Similar to what was observed neuronally, the optokinetic reflex occurred more reliably at low contrasts in mutant mice compared with controls. Retinal responses did not explain our observations. These data suggest that the circuit mechanisms for combining sensory-evoked and endogenous signal and noise processes may be altered in this form of syndromic autism.SIGNIFICANCE STATEMENT Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in primary visual cortex of the animal model for MECP2-duplication syndrome, a high-penetrance single-gene cause of autism. Visual-evoked activity was abnormally decoupled from endogenous activity in mutant mice, suggesting in line with the influential "hypo-priors" theory of autism that sensory priors embedded in endogenous activity may have less influence on perception in autism.
Collapse
Affiliation(s)
- Ryan T Ash
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California 94305
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Ganna Palagina
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jose A Fernandez-Leon
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires and Instituto de Investigación en Tecnología Informática Avanzada, Exact Sciences Faculty-Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Jiyoung Park
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030
| | - Rob Seilheimer
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sangkyun Lee
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jasdeep Sabharwal
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Fredy Reyes
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Jing Wang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Dylan Lu
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Muhammad Sarfraz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- FORTH, Heraklion, Crete, Greece 70013
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
5
|
Ramamoorthy P, Alexander NL, Frankfort BJ. Abnormal perception of pattern-induced flicker colors in subjects with glaucoma. J Vis 2022; 22:5. [PMID: 35133432 PMCID: PMC8842510 DOI: 10.1167/jov.22.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Pattern-induced flicker colors (PIFCs) are subjective colors that can be elicited with rotation of an achromatic stimulus such as the Benham disk. The perceptive mechanisms underlying PIFCs are not well-understood, but are thought to be generated primarily by retinal cell types which may be dysfunctional in glaucoma. Using a custom computer-based system, we tested PIFC perception across several Benham disk parameters, including the rates of acceleration and deceleration, rotational direction, and image contrast in both control and glaucoma subjects. We defined the Benham perception limit (BPL) during acceleration as the rotational speed at which PIFCs were first detected (Benham perception limit for acceleration) and the BPL during deceleration as the rotational speed at which PIFCs were extinguished (Benham perception limit for deceleration). In general, we found that glaucoma subjects perceived PIFCs less frequently than control subjects. For all subjects, we found that slower rates of acceleration and deceleration resulted in a lower Benham perception limit for acceleration and a higher Benham perception limit for deceleration, suggesting that PIFCs were both more easily detected and extinguished. Finally, subjects with glaucoma required increased rotational speeds during acceleration to detect PIFCs under certain conditions. Further study is needed to determine if these findings can be used to enhance clinical detection strategies.
Collapse
Affiliation(s)
| | - Nicole L Alexander
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA.,
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,
| |
Collapse
|
6
|
Tao X, Sabharwal J, Wu SM, Frankfort BJ. Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 33064129 PMCID: PMC7571289 DOI: 10.1167/iovs.61.12.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma. Methods Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels. Results Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level. Conclusions These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial.
Collapse
Affiliation(s)
- Xiaofeng Tao
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
7
|
Nonlinear Spatial Integration Underlies the Diversity of Retinal Ganglion Cell Responses to Natural Images. J Neurosci 2021; 41:3479-3498. [PMID: 33664129 PMCID: PMC8051676 DOI: 10.1523/jneurosci.3075-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. We found that standard linear receptive field models yielded good predictions of responses to flashed natural images for a subset of cells but failed to capture the spiking activity for many others. Cells with poor model performance displayed pronounced sensitivity to fine spatial contrast and local signal rectification as the dominant nonlinearity. By contrast, sensitivity to high-frequency contrast-reversing gratings, a classical test for nonlinear spatial integration, was not a good predictor of model performance and thus did not capture the variability of nonlinear spatial integration under natural images. In addition, we also observed a class of nonlinear ganglion cells with inverse tuning for spatial contrast, responding more strongly to spatially homogeneous than to spatially structured stimuli. These findings highlight the diversity of receptive field nonlinearities as a crucial component for understanding early sensory encoding in the context of natural stimuli. SIGNIFICANCE STATEMENT Experiments with artificial visual stimuli have revealed that many types of retinal ganglion cells pool spatial input signals nonlinearly. However, it is still unclear how relevant this nonlinear spatial integration is when the input signals are natural images. Here we analyze retinal responses to natural scenes in large populations of mouse ganglion cells. We show that nonlinear spatial integration strongly influences responses to natural images for some ganglion cells, but not for others. Cells with nonlinear spatial integration were sensitive to spatial structure inside their receptive fields, and a small group of cells displayed a surprising sensitivity to spatially homogeneous stimuli. Traditional analyses with contrast-reversing gratings did not predict this variability of nonlinear spatial integration under natural images.
Collapse
|
8
|
Tao X, Sigireddi RR, Westenskow PD, Channa R, Frankfort BJ. Single transient intraocular pressure elevations cause prolonged retinal ganglion cell dysfunction and retinal capillary abnormalities in mice. Exp Eye Res 2020; 201:108296. [PMID: 33039455 DOI: 10.1016/j.exer.2020.108296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
Transient intraocular pressure (IOP) elevations are likely to occur in certain forms of glaucoma and after intravitreal injections to treat various retinal diseases. However, the impact of these transient IOP elevations on the physiology of individual retinal ganglion cells (RGCs) is unknown. In this report, we explore how transient IOP elevations in mice affect RGC physiology, RGC anatomy, and retinal arteriole and capillary structure. Transient IOP elevation was induced in 12-week old wild type C57BL6J mice by injecting sodium hyaluronate into the anterior chamber. IOP was measured immediately after the injection and again 1 and 7 days later. Average peak IOP after injection was ~50 mmHg and subsequent IOPs returned to normal. RGC physiology was assessed with a multielectrode array (MEA) by calculating a spike triggered average (STA) at the same time points. RGC counts and retinal vascular structure were assessed 14 days after injection with immunohistochemistry to label RGCs and blood vessels. Transient IOP elevation caused a marked reduction of scotopic STA presence and delayed center and surround STA peak times that did not recover. Transient IOP elevation also caused a reduced photopic receptive field size and spontaneous firing rate, both of which showed some recovery with time. Transient IOP elevation also induced vascular remodeling: the number of capillary branches was decreased within the superficial and intermediate vascular plexi. RGC counts, retinal arteriole diameter, and deep capillary plexus branching were unaffected. These previously unappreciated findings suggest that transient IOP elevation may cause unrecognized and potentially long-term pathology to RGCs and associated neurovascular units which should be accounted for in clinical practice.
Collapse
Affiliation(s)
- Xiaofeng Tao
- Department of Ophthalmology, Baylor College of Medicine, United States
| | | | | | - Roomasa Channa
- Department of Ophthalmology, Baylor College of Medicine, United States
| | - Benjamin J Frankfort
- Department of Ophthalmology, Baylor College of Medicine, United States; Department of Neuroscience, Baylor College of Medicine, United States.
| |
Collapse
|
9
|
Long Y, Seilheimer RL, Wu SM. Glycinergic and GABAergic interneurons shift the location and differentially alter the size of ganglion cell receptive field centers in the mammalian retina. Vision Res 2020; 170:18-24. [PMID: 32217368 PMCID: PMC7872144 DOI: 10.1016/j.visres.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022]
Abstract
By using the multi-electrode array (MEA) recording technique in conjunction with white-noise checkerboard stimuli and reverse correlation methods, we studied modulatory actions of glycinergic and GABAergic interneurons on spatiotemporal profiles of ganglion cells (GCs) in dark-adapted mouse retinas. We found that application of 2 µM strychnine decreased receptive field center radii of GCs by a mean value of 11%, and shifted the GC receptive field (RF) centers by a mean distance of 28.3 µm. On the other hand, 200 µM picrotoxin + 100 µM bicuculline + 50 µM TPMPA increased GC receptive field center radii by a mean value of 19%, and shifted the GC RF centers by a mean distance of 53.7 µm. Glycinergic neurons in the mouse retina are narrow-field amacrine cells that have been shown to mediate ON-OFF crossover inhibitory synapses within the RGs' RF center, therefore they may increase the size and shift the location of GC RF center by synergistic addition to bipolar cell inputs to GCs. GABAergic neurons are wide-field amacrine cells and horizontal cells that are known to mediate antagonistic surround responses of GCs, and thus they decrease the GCs' RF center size. Our results suggest that a major global function of glycinergic and GABAergic interneurons in the mammalian retina is to provide the flexibility for adjusting the size and location of GCs' RF centers. The apparent shifts of GC RF centers suggest that the synergistic addition by GlyACs and the surround inhibition by GABAergic interneurons are not spatially symmetrical within GC RFs.
Collapse
Affiliation(s)
- Y Long
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - R L Seilheimer
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - S M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
10
|
Shah NP, Brackbill N, Rhoades C, Kling A, Goetz G, Litke AM, Sher A, Simoncelli EP, Chichilnisky EJ. Inference of nonlinear receptive field subunits with spike-triggered clustering. eLife 2020; 9:e45743. [PMID: 32149600 PMCID: PMC7062463 DOI: 10.7554/elife.45743] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 10/29/2019] [Indexed: 11/25/2022] Open
Abstract
Responses of sensory neurons are often modeled using a weighted combination of rectified linear subunits. Since these subunits often cannot be measured directly, a flexible method is needed to infer their properties from the responses of downstream neurons. We present a method for maximum likelihood estimation of subunits by soft-clustering spike-triggered stimuli, and demonstrate its effectiveness in visual neurons. For parasol retinal ganglion cells in macaque retina, estimated subunits partitioned the receptive field into compact regions, likely representing aggregated bipolar cell inputs. Joint clustering revealed shared subunits between neighboring cells, producing a parsimonious population model. Closed-loop validation, using stimuli lying in the null space of the linear receptive field, revealed stronger nonlinearities in OFF cells than ON cells. Responses to natural images, jittered to emulate fixational eye movements, were accurately predicted by the subunit model. Finally, the generality of the approach was demonstrated in macaque V1 neurons.
Collapse
Affiliation(s)
- Nishal P Shah
- Department of Electrical EngineeringStanford UniversityStanfordUnited States
| | - Nora Brackbill
- Department of PhysicsStanford UniversityStanfordUnited States
| | - Colleen Rhoades
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Alexandra Kling
- Department of NeurosurgeryStanford School of MedicineStanfordUnited States
- Department of OphthalmologyStanford UniversityStanfordUnited States
- Hansen Experimental Physics LaboratoryStanford UniversityStanfordUnited States
| | - Georges Goetz
- Department of NeurosurgeryStanford School of MedicineStanfordUnited States
- Department of OphthalmologyStanford UniversityStanfordUnited States
- Hansen Experimental Physics LaboratoryStanford UniversityStanfordUnited States
| | - Alan M Litke
- Institute for Particle PhysicsUniversity of California, Santa CruzSanta CruzUnited States
| | - Alexander Sher
- Santa Cruz Institute for Particle PhysicsUniversity of California, Santa CruzSanta CruzUnited States
| | - Eero P Simoncelli
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - EJ Chichilnisky
- Department of NeurosurgeryStanford School of MedicineStanfordUnited States
- Department of OphthalmologyStanford UniversityStanfordUnited States
- Hansen Experimental Physics LaboratoryStanford UniversityStanfordUnited States
| |
Collapse
|
11
|
Seilheimer RL, Sabharwal J, Wu SM. Genetic dissection of rod and cone pathways mediating light responses and receptive fields of ganglion cells in the mouse retina. Vision Res 2020; 167:15-23. [PMID: 31887538 PMCID: PMC7264069 DOI: 10.1016/j.visres.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/14/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
Abstract
Retinal ganglion cells (GCs) are important visual neurons which carry complex spatiotemporal information from the retina to higher visual centers in the brain. By taking advantage of pathway-specific knockout/mutant mice and multi-electrode array (MEA) recording techniques, we analyze contributions of rod and cone pathways to responsiveness, kinetics and receptive field profiles of GCs under scotopic and photopic conditions. Our data suggest: (1) Scotopic responses of some GCs require all three rod pathways, some require only the secondary and tertiary rod pathways, and others require only the tertiary rod pathway. (2) There are more responsive GCs in photopic conditions than responsive GCs in scotopic conditions. (3) Gap junctions slow down GCs' scotopic light responses and increase GCs' ratio of antagonistic to center inputs. (4) Cone pathways do not affect the kinetics but alter the ratio of antagonistic to center inputs of scotopic GC responses, and they speed up GCs photopic responses and alter the ratio of GCs' antagonistic to center synaptic inputs and receptive field profiles. (5) Rod bipolar cells shorten response latency of ON GCs and increase the ratio of GCs' antagonistic to center synaptic inputs. (6) Light adaptation speeds up GCs' temporal processing and tunes GC photopic responses to higher frequencies, and the tertiary rod pathway plays a significant role in adaptation-induced TTP changes in some GCs. (7) GC RF center sizes are partially mediated by AIIACs and GC-GC coupling. (8) Connexin36 gap junctions and cone pathways alter synaptic circuits underlying antagonistic surround inputs to GCs in photopic conditions.
Collapse
Affiliation(s)
- R L Seilheimer
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - J Sabharwal
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - S M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
12
|
Mild Intraocular Pressure Elevation in Mice Reveals Distinct Retinal Ganglion Cell Functional Thresholds and Pressure-Dependent Properties. J Neurosci 2019; 39:1881-1891. [PMID: 30622167 DOI: 10.1523/jneurosci.2085-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
Elevation of intraocular pressure (IOP) causes retinal ganglion cell (RGC) dysfunction and death and is a major risk factor for glaucoma. We used a bead injection technique to increase IOP in mice of both genders by an average of ∼3 mmHg for 2 weeks. This level of IOP elevation was lower than that achieved in other studies, which allowed for the study of subtle IOP effects. We used multielectrode array recordings to determine the cellular responses of RGCs exposed to this mild degree of IOP elevation. We found that RGC photopic receptive field (RF) center size and whole-field RGC firing rates were unaffected by IOP elevation. In contrast, we found that the temporal properties of RGC photopic responses in the RF center were accelerated, particularly in ON sustained cells. We also detected a loss of antagonistic surround in several RGC subtypes. Finally, spontaneous firing rate, interspike interval variance, and contrast sensitivity were altered according to the magnitude of IOP exposure and also displayed an IOP-dependent effect. Together, these results suggest that individual RGC physiologic parameters have unique IOP-related functional thresholds that exist concurrently and change following IOP elevation according to specific patterns. Furthermore, even subtle IOP elevation can impart profound changes in RGC function, which in some cases may occur in an IOP-dependent manner. This system of overlapping functional thresholds likely underlies the complex effects of elevated IOP on the retina.SIGNIFICANCE STATEMENT Retinal ganglion cells (RGCs) are the obligate output neurons of the retina and are injured by elevated intraocular pressure (IOP) in diseases such as glaucoma. In this study, a subtle elevation of IOP in mice for 2 weeks revealed distinct IOP-related functional thresholds for specific RGC physiologic parameters and sometimes showed an IOP-dependent effect. These data suggest that overlapping IOP-related thresholds and response profiles exist simultaneously in RGCs and throughout the retina. These overlapping thresholds likely explain the range of RGC responses that occur following IOP elevation and highlight the wide capacity of neurons to respond in a diseased state.
Collapse
|
13
|
Pathway-Specific Asymmetries between ON and OFF Visual Signals. J Neurosci 2018; 38:9728-9740. [PMID: 30249795 DOI: 10.1523/jneurosci.2008-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023] Open
Abstract
Visual processing is largely organized into ON and OFF pathways that signal stimulus increments and decrements, respectively. These pathways exhibit natural pairings based on morphological and physiological similarities, such as ON and OFF α-ganglion cells in the mammalian retina. Several studies have noted asymmetries in the properties of ON and OFF pathways. For example, the spatial receptive fields (RFs) of OFF α-cells are systematically smaller than ON α-cells. Analysis of natural scenes suggests that these asymmetries are optimal for visual encoding. To test the generality of ON/OFF asymmetries, we measured the spatiotemporal RF properties of multiple RGC types in rat retina. Through a quantitative and serial classification, we identified three functional pairs of ON and OFF RGCs. We analyzed the structure of their RFs and compared spatial integration, temporal integration, and gain across ON and OFF pairs. Similar to previous results from the cat and primate, RGC types with larger spatial RFs exhibited briefer temporal integration and higher gain. However, each pair of ON and OFF RGC types exhibited distinct asymmetric relationships between RF properties, some of which were opposite to the findings of previous reports. These results reveal the functional organization of six RGC types in the rodent retina and indicate that ON/OFF asymmetries are pathway specific.SIGNIFICANCE STATEMENT Circuits that process sensory input frequently process increments separately from decrements, so-called ON and OFF responses. Theoretical studies indicate that this separation, and associated asymmetries in ON and OFF pathways, may be beneficial for encoding natural stimuli. However, the generality of ON and OFF pathway asymmetries has not been tested. Here we compare the functional properties of three distinct pairs of ON and OFF pathways in the rodent retina and show that their asymmetries are pathway specific. These results provide a new view on the partitioning of vision across diverse ON and OFF signaling pathways.
Collapse
|
14
|
Cowan CS, Sabharwal J, Wu SM. Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields. Physiol Rep 2017; 4:4/17/e12952. [PMID: 27604400 PMCID: PMC5027358 DOI: 10.14814/phy2.12952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022] Open
Abstract
Reverse correlation methods such as spike‐triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space–time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space–time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability.
Collapse
Affiliation(s)
- Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jasdeep Sabharwal
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Elevated IOP alters the space-time profiles in the center and surround of both ON and OFF RGCs in mouse. Proc Natl Acad Sci U S A 2017; 114:8859-8864. [PMID: 28760976 DOI: 10.1073/pnas.1706994114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glaucoma is a leading cause of blindness worldwide, and is characterized by progressive retinal ganglion cell (RGC) death. An experimental model of glaucoma has been established by elevating the intraocular pressure (IOP) via microbead occlusion of ocular fluid outflow in mice. Studies in this model have found visual dysfunction that varied with adaptational state, occurred before anatomical changes, and affected OFF RGCs more than ON RGCs. These results indicate subtle alterations in the underlying retinal circuitry that could help identify disease before irreversible RGC changes. Therefore, we looked at how RGC function was altered with elevated IOP under both photopic and scotopic conditions. We first found that responses to light offset are diminished with IOP elevation along with a concomitant decrease in receptive field center size for OFF RGCs. In addition, the antagonistic surround strength and size was reduced in ON RGCs. Furthermore, elevation of IOP significantly accelerated the photopic temporal tuning of RGC center responses in both ON and OFF RGCs. We found that some of the IOP-induced functional changes to OFF RGCs relied on ON cross-over pathways, indicating dysfunction in inner retinal circuitry. Overall, these results suggest that IOP alters multiple functions in the retina depending on the adaptational state. They provide a basis for designing multiple functional tests for early detection of glaucoma and for circuit-specific therapeutic targets in treatment of this blinding disease.
Collapse
|
16
|
Distinct subcomponents of mouse retinal ganglion cell receptive fields are differentially altered by light adaptation. Vision Res 2017; 131:96-105. [PMID: 28087445 DOI: 10.1016/j.visres.2016.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
The remarkable dynamic range of vision is facilitated by adaptation of retinal sensitivity to ambient lighting conditions. An important mechanism of sensitivity adaptation is control of the spatial and temporal window over which light is integrated. The retina accomplishes this by switching between parallel synaptic pathways with differing kinetics and degrees of synaptic convergence. However, the relative shifts in spatial and temporal integration are not well understood - particularly in the context of the antagonistic spatial surround. Here, we resolve these issues by characterizing the adaptation-induced changes to spatiotemporal integration in the linear receptive field center and surround of mouse retinal ganglion cells. While most ganglion cells lose their antagonistic spatial surround under scotopic conditions, a strong surround is maintained in a subset. We then applied a novel technique that allowed us to analyze the receptive field as a triphasic temporal filter in the center and a biphasic filter in the surround. The temporal tuning of the surround was relatively maintained across adaptation conditions compared to the center, which greatly increased its temporal integration. Though all phases of the center's triphasic temporal response slowed, some shifted significantly less. Additionally, adaptation differentially shifted ON and OFF pathway temporal tuning, reducing their asymmetry under scotopic conditions. Finally, spatial integration was significantly increased by dark adaptation in some cells while it decreased it in others. These findings provide novel insight into how adaptation adjusts visual information processing by altering fundamental properties of ganglion cell receptive fields, such as center-surround antagonism and space-time integration.
Collapse
|
17
|
Sabharwal J, Seilheimer RL, Cowan CS, Wu SM. The ON Crossover Circuitry Shapes Spatiotemporal Profile in the Center and Surround of Mouse OFF Retinal Ganglion Cells. Front Neural Circuits 2016; 10:106. [PMID: 28066192 PMCID: PMC5177742 DOI: 10.3389/fncir.2016.00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
Abstract
Retinal ganglion cells (RGCs) are often grouped based on their functional properties. Many of these functional properties, such as receptive field (RF) size, are driven by specific retinal circuits. In this report, we determined the role of the ON bipolar cell (BC) mediated crossover circuitry in shaping the center and surround of OFF RGCs. We recorded from a large population of mouse RGCs using a multielectrode array (MEA) while pharmacologically removing the ON BC-mediated crossover circuit. OFF sustained and transient responses to whole field stimuli are lost under scotopic conditions, but maintained under photopic conditions. Though photopic light responses were grossly maintained, we found that photopic light response properties were altered. Using linear RF mapping, we found a significant reduction in the antagonistic surround and a decrease in size of the RF center. Using a novel approach to separate the distinct temporal filters present in the RF center, we see that the crossover pathway contributes specifically to the sluggish antagonistic filter in the center. These results provide new insight into the role of crossover pathways in driving RGCs and also demonstrate that the distinct inputs driving the RF center can be isolated and assayed by RGC activity.
Collapse
Affiliation(s)
- Jasdeep Sabharwal
- Medical Scientist Training Program, Baylor College of MedicineHouston, TX, USA; Department of Neuroscience, Baylor College of MedicineHouston, TX, USA; Department of Ophthalmology, Baylor College of MedicineHouston, TX, USA
| | - Robert L Seilheimer
- Medical Scientist Training Program, Baylor College of MedicineHouston, TX, USA; Department of Ophthalmology, Baylor College of MedicineHouston, TX, USA
| | - Cameron S Cowan
- Department of Ophthalmology, Baylor College of Medicine Houston, TX, USA
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of MedicineHouston, TX, USA; Department of Ophthalmology, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|