1
|
Liang W, Wang X, Cheng S, Jiao J, Zhu X, Duan Y. Effects of High-Intensity Interval Training on the Parameters Related to Physical Fitness and Health of Older Adults: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2024; 10:98. [PMID: 39266933 PMCID: PMC11393274 DOI: 10.1186/s40798-024-00767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND As a novel and time-efficient exercise form, high-intensity interval training (HIIT) has shown great potential in improving health-related physical fitness among diverse populations. However, empirical evidence on its efficacy among the elderly has not been well summarized. This systematic review and meta-analysis aimed to determine the effect of HIIT interventions on the parameters related to physical fitness and health of older adults, including resting heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), cardiorespiratory fitness (CRF), body mass index (BMI), body fat percent (BF%), waist circumference (WC), muscular endurance (ME), muscular strength (MS), muscular power (MP), balance and flexibility, compared to non-exercise and other-exercise (e.g., moderate-intensity continuous training, resistance training) conditions. METHODS Literature published from January 2000 to May 2023 was collected through extensive searches across eight databases and relevant review papers. Randomized controlled trials (RCTs) featuring a minimum 2-week exercise intervention for older adults (≥ 60 years) were included. The pooled effect size of Hedges'g was estimated using random-effects models in R. Meta-regression was performed for both categorical (health status, duration of training programme, and frequency) and continuous moderators (mean age, male rate, and attrition rate). RESULTS Forty-four eligible RCTs with 1863 participants (52.1% female; 60.5-81.2 years) were included in the quantitative analysis. Compared to non-exercise condition, HIIT significantly improved resting HR (g = -0.36, 95%CI = [-0.67, -0.05], P = 0.032), SBP (g = -0.29, 95%CI = [-0.54, -0.03], P = 0.008), CRF (g = 0.77, 95%CI = [0.51, 1.04], P < 0.001), BF% (g = -0.26, 95%CI = [-0.41, -0.11], P = 0.006), MS (g = 0.47, 95%CI = [0.23, 0.71], P = 0.004), ME (g = 0.65, 95%CI = [0.10, 1.19], P = 0.036), and balance (e.g., timed-up-and-go) (g = -0.79, 95%CI = [-1.19, -0.40], P = 0.035). Compared to other-exercise condition, HIIT significantly improved resting HR (g = -0.11, 95%CI = [-0.21, -0.01], P = 0.029), SBP (g = -0.14, 95%CI = [-0.28, -0.01], P = 0.038), and CRF (g = 0.23, 95%CI = [0.07, 0.38], P = 0.008). No significant difference was found between HIIT and non-exercise condition for DBP, BMI and WC, as well as between HIIT and other-exercise condition for DBP, BMI, BF%, WC, ME, and balance (all P > 0.05). Meta-regression indicated that mean age moderated the HIIT effect on resting HR (b = -0.02, P = 0.014; HIIT vs. other-exercise condition) and SBP (b = 0.03, P = 0.048; HIIT vs. non-exercise), and attrition rate moderated the effect on CRF (b = 0.03, P = 0.007; HIIT vs. non-exercise). CONCLUSION This study supports the efficacy of HIIT in improving resting HR, SBP, CRF, BF%, MS, ME and balance among older adults. More empirical evidence is needed to determine the efficacy of HIIT for MP and flexibility in this population. TRIAL REGISTRATION PROSPERO CRD42022316246.
Collapse
Affiliation(s)
- Wei Liang
- School of Physical Education, Shenzhen University, Shenzhen, China
| | - Xiang Wang
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.
| | - Shishi Cheng
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Jiao Jiao
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Xiangui Zhu
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Yanping Duan
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
2
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Morcillo-Losa JA, Díaz-Martínez MDP, Ceylan Hİ, Moreno-Vecino B, Bragazzi NL, Párraga Montilla J. Effects of High-Intensity Interval Training on Muscle Strength for the Prevention and Treatment of Sarcopenia in Older Adults: A Systematic Review of the Literature. J Clin Med 2024; 13:1299. [PMID: 38592165 PMCID: PMC10931549 DOI: 10.3390/jcm13051299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Sarcopenia is a significant health concern primarily affecting old adult individuals, characterized by age-related muscle loss, and decreased strength, power, and endurance. It has profound negative effects on overall health and quality of life, including reduced independence, mobility, and daily activity performance, osteoporosis, increased fall and fracture risks, metabolic issues, and chronic diseases like diabetes and cardiovascular conditions. Preventive strategies typically involve a combination of proper nutrition and regular physical activity. Among strength training exercises, high-intensity interval training (HIIT) stands out as the most effective approach for improving muscle function in older adults with sarcopenia. The current review identifies and summarizes the studies that have examined the effects of HIIT on muscle strength in older adults as an element of the prevention and treatment of sarcopenia. A systematic search using several computerized databases, namely, MEDLINE/PubMed, Scopus, SPORTDiscus, and Web of Science, was performed on 12 January 2023, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 224 studies were initially retrieved. A total of five studies met the selection criteria. HIIT training shows improvements in body composition and functional and cardiorespiratory capacity, has benefits on muscle strength, increases muscle quality and architecture, and is associated with muscle hypertrophy in healthy older adults. Nonetheless, given the shortcomings affecting primary research in terms of the limited number of studies and the high risk of bias, further research is warranted.
Collapse
Affiliation(s)
- José Alfonso Morcillo-Losa
- Department of Didactics of Corporal Expression, University of Jaén, 23071 Jaén, Spain; (J.A.M.-L.); (M.d.P.D.-M.); (J.P.M.)
| | - Maria del Pilar Díaz-Martínez
- Department of Didactics of Corporal Expression, University of Jaén, 23071 Jaén, Spain; (J.A.M.-L.); (M.d.P.D.-M.); (J.P.M.)
| | - Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25030 Erzurum, Turkey
| | - Beatriz Moreno-Vecino
- Department of Physical Activity and Sport Sciences, Centre d’Ensenyament Superior Alberta Giménez CESAG, Pontifical University of Comillas, 07013 Palma, Spain;
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
- Human Nutrition Unit (HNU), Department of Food and Drugs, Medical School, University of Parma, 43125 Parma, Italy
| | - Juan Párraga Montilla
- Department of Didactics of Corporal Expression, University of Jaén, 23071 Jaén, Spain; (J.A.M.-L.); (M.d.P.D.-M.); (J.P.M.)
| |
Collapse
|
4
|
Hostrup M, Lemminger AK, Thomsen LB, Schaufuss A, Alsøe TL, Bergen GK, Bell AB, Bangsbo J, Thomassen M. High-Intensity Training Represses FXYD5 and Glycosylates Na,K-ATPase in Type II Muscle Fibres, Which Are Linked with Improved Muscle K+ Handling and Performance. Int J Mol Sci 2023; 24:ijms24065587. [PMID: 36982661 PMCID: PMC10051537 DOI: 10.3390/ijms24065587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Na+/K+ ATPase (NKA) comprises several subunits to provide isozyme heterogeneity in a tissue-specific manner. An abundance of NKA α, β, and FXYD1 subunits is well-described in human skeletal muscle, but not much is known about FXYD5 (dysadherin), a regulator of NKA and β1 subunit glycosylation, especially with regard to fibre-type specificity and influence of sex and exercise training. Here, we investigated muscle fibre-type specific adaptations in FXYD5 and glycosylated NKAβ1 to high-intensity interval training (HIIT), as well as sex differences in FXYD5 abundance. In nine young males (23.8 ± 2.5 years of age) (mean ± SD), 3 weekly sessions of HIIT for 6 weeks enhanced muscle endurance (220 ± 102 vs. 119 ± 99 s, p < 0.01) and lowered leg K+ release during intense knee-extensor exercise (0.5 ± 0.8 vs. 1.0 ± 0.8 mmol·min–1, p < 0.01) while also increasing cumulated leg K+ reuptake 0–3 min into recovery (2.1 ± 1.5 vs. 0.3 ± 0.9 mmol, p < 0.01). In type IIa muscle fibres, HIIT lowered FXYD5 abundance (p < 0.01) and increased the relative distribution of glycosylated NKAβ1 (p < 0.05). FXYD5 abundance in type IIa muscle fibres correlated inversely with the maximal oxygen consumption (r = –0.53, p < 0.05). NKAα2 and β1 subunit abundances did not change with HIIT. In muscle fibres from 30 trained males and females, we observed no sex (p = 0.87) or fibre type differences (p = 0.44) in FXYD5 abundance. Thus, HIIT downregulates FXYD5 and increases the distribution of glycosylated NKAβ1 in type IIa muscle fibres, which is likely independent of a change in the number of NKA complexes. These adaptations may contribute to counter exercise-related K+ shifts and enhance muscle performance during intense exercise.
Collapse
|
5
|
Carpes L, Costa R, Schaarschmidt B, Reichert T, Ferrari R. High-intensity interval training reduces blood pressure in older adults: A systematic review and meta-analysis. Exp Gerontol 2021; 158:111657. [PMID: 34921916 DOI: 10.1016/j.exger.2021.111657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVES The current systematic review and meta-analysis evaluated the effects of High-Intensity Interval Training (HIIT) on blood pressure (BP) in older adults and compared the efficacy of HIIT versus moderate-intensity continuous training (MICT). METHODS Search was conducted using the databases at PubMed, Scopus, Cochrane Library and EMBASE, for randomized trials comparing the chronic effects (≥4 weeks) of HIIT versus MICT or control group (non-exercise) on BP in older adults (≥60 years) with or without hypertension. RESULTS A total of 10 articles (n = 266 participants) were included in this meta-analysis. HIIT were associated with reductions in systolic BP (MD -7.36; 95%CI -11.80 to -2.92; P < 0.01; I2 = 24%) and diastolic BP (MD -5.48; 95%CI -8.71 to -2.25; P < 0.01; I2 = 40%) versus control group. No differences were found between HIIT and MICT in systolic BP (MD -2.09; 95%CI -9.76 to 5.58; P = 0.59; I2 = 0%) and diastolic BP (MD -1.00; 95%CI -6.01 to 4.01; P = 0.69; I2 = 0%). CONCLUSION HIIT reduces BP in older adults. Additionally, HIIT and MICT provided comparable reductions on BP in this population.
Collapse
Affiliation(s)
- Leandro Carpes
- Graduate Program in Cardiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Sports and Exercise Training Study Group, Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Rochelle Costa
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Schaarschmidt
- Sports and Exercise Training Study Group, Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Thaís Reichert
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Ferrari
- Graduate Program in Cardiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Sports and Exercise Training Study Group, Hospital de Clínicas de Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Hayes LD, Elliott BT, Yasar Z, Bampouras TM, Sculthorpe NF, Sanal-Hayes NEM, Hurst C. High Intensity Interval Training (HIIT) as a Potential Countermeasure for Phenotypic Characteristics of Sarcopenia: A Scoping Review. Front Physiol 2021; 12:715044. [PMID: 34504439 PMCID: PMC8423251 DOI: 10.3389/fphys.2021.715044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Sarcopenia is defined as a progressive and generalized loss of skeletal muscle quantity and function associated predominantly with aging. Physical activity appears the most promising intervention to attenuate sarcopenia, yet physical activity guidelines are rarely met. In recent years high intensity interval training (HIIT) has garnered interested in athletic populations, clinical populations, and general population alike. There is emerging evidence of the efficacy of HIIT in the young old (i.e. seventh decade of life), yet data concerning the oldest old (i.e., ninth decade of life onwards), and those diagnosed with sarcopenic are sparse. Objectives: In this scoping review of the literature, we aggregated information regarding HIIT as a potential intervention to attenuate phenotypic characteristics of sarcopenia. Eligibility Criteria: Original investigations concerning the impact of HIIT on muscle function, muscle quantity or quality, and physical performance in older individuals (mean age ≥60 years of age) were considered. Sources of Evidence: Five electronic databases (Medline, EMBASE, Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials [CENTRAL]) were searched. Methods: A scoping review was conducted using the Arksey and O'Malley methodological framework (2005). Review selection and characterization were performed by two independent reviewers using pretested forms. Results: Authors reviewed 1,063 titles and abstracts for inclusion with 74 selected for full text review. Thirty-two studies were analyzed. Twenty-seven studies had a mean participant age in the 60s, two in the 70s, and three in the 80s. There were 20 studies which examined the effect of HIIT on muscle function, 22 which examined muscle quantity, and 12 which examined physical performance. HIIT was generally effective in Improving muscle function and physical performance compared to non-exercised controls, moderate intensity continuous training, or pre-HIIT (study design-dependent), with more ambiguity concerning muscle quantity. Conclusions: Most studies presented herein utilized outcome measures defined by the European Working Group on Sarcopenia in Older People (EWGSOP). However, there are too few studies investigating any form of HIIT in the oldest old (i.e., ≥80 years of age), or those already sarcopenic. Therefore, more intervention studies are needed in this population.
Collapse
Affiliation(s)
- Lawrence D Hayes
- School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom
| | - Bradley T Elliott
- Translational Physiology Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Zerbu Yasar
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, United Kingdom
| | - Theodoros M Bampouras
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.,The Centre for Ageing Research, Lancaster University, Lancaster, United Kingdom
| | - Nicholas F Sculthorpe
- School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom
| | | | - Christopher Hurst
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Marriott CFS, Petrella AFM, Marriott ECS, Boa Sorte Silva NC, Petrella RJ. High-Intensity Interval Training in Older Adults: a Scoping Review. SPORTS MEDICINE - OPEN 2021; 7:49. [PMID: 34279765 PMCID: PMC8289951 DOI: 10.1186/s40798-021-00344-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
High-intensity interval training (HIIT) is an increasingly popular form of aerobic exercise which includes bouts of high-intensity exercise interspersed with periods of rest. The health benefits, risks, and optimal design of HIIT are still unclear. Further, most research on HIIT has been done in young and middle-aged adults, and as such, the tolerability and effects in senior populations are less well-known. The purpose of this scoping review was to characterize HIIT research that has been done in older adults including protocols, feasibility, and safety and to identify gaps in the current knowledge. Five databases were searched with variations of the terms, "high-intensity interval training" and "older adults" for experimental or quasi-experimental studies published in or after 2009. Studies were included if they had a treatment group with a mean age of 65 years or older who did HIIT, exclusively. Of 4644 papers identified, 69 met the inclusion criteria. The average duration of training was 7.9 (7.0) weeks (mean [SD]) and protocols ranged widely. The average sample size was 47.0 (65.2) subjects (mean [SD]). Healthy populations were the most studied group (n = 30), followed by subjects with cardiovascular (n = 12) or cardiac disease (n = 9), metabolic dysfunction (n = 8), and others (n = 10). The most common primary outcomes included changes in cardiorespiratory fitness (such as VO2peak) as well as feasibility and safety of the protocols as measured by the number of participant dropouts, adverse events, and compliance rate. HIIT protocols were diverse but were generally well-tolerated and may confer many health advantages to older adults. Larger studies and more research in clinical populations most representative of older adults are needed to further evaluate the clinical effects of HIIT in these groups.
Collapse
Affiliation(s)
- Catherine F. S. Marriott
- Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Andrea F. M. Petrella
- Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Emily C. S. Marriott
- Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
| | - Narlon C. Boa Sorte Silva
- Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
- Aging, Mobility, and Cognitive Neuroscience Lab, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert J. Petrella
- Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON Canada
- School of Kinesiology, Western University, London, ON Canada
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, 320 - 5950 University Boulevard, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
8
|
Núñez Vergara C, Smith Plaza R, Pérez Ramírez N. [Effectiveness of high intensity interval training in the cardiorespiratory capacity of people older than 65 years old: A systematic review]. Rev Esp Geriatr Gerontol 2021; 56:297-307. [PMID: 34083059 DOI: 10.1016/j.regg.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/09/2022]
Abstract
The objective of this review was to analyze the effect of HIIT on cardiorespiratory fitness, health-related quality of life (HRQL) and safety of its execution in people over 65 years of age. A systematic search was carried out, following the PRISMA recommendations, in 11 electronic databases, evaluating the resolution of the HIIT, affecting cardiorespiratory capacity as the main result and secondarily HRQL and safety of its execution, assessing the risk of bias using Rob 2.0 and ROBINS-I. Thirteen studies met the inclusion criteria, consisting of people >65 years, HIIT intervention >4 weeks, and studies assessing cardiorespiratory fitness. It can be concluded that HIIT improves cardiorespiratory capacity in people over 65 years of age, with respect to HRQL and the safety of its execution, the results are not conclusive. It becomes essential to unify criteria in intervention protocols, requiring further research in this regard.
Collapse
Affiliation(s)
| | - Raúl Smith Plaza
- Subdirección de Investigación, Sociedad Pro-Ayuda al Niño Lisiado, Teletón, Chile; Unidad de Ejercicio y Deporte Adaptado, Teletón, Chile; Hospital Clínico Mutual de Seguridad C.Ch.C, Santiago, Chile; Alemana Sport, Clínica Alemana de Santiago, Chile
| | - Natalia Pérez Ramírez
- Subdirección de Investigación, Sociedad Pro-Ayuda al Niño Lisiado, Teletón, Chile; Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
9
|
Wu ZJ, Wang ZY, Gao HE, Zhou XF, Li FH. Impact of high-intensity interval training on cardiorespiratory fitness, body composition, physical fitness, and metabolic parameters in older adults: A meta-analysis of randomized controlled trials. Exp Gerontol 2021; 150:111345. [PMID: 33836261 DOI: 10.1016/j.exger.2021.111345] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/03/2023]
Abstract
High-intensity interval training (HIIT) can effectively increase peak oxygen consumption, body composition, physical fitness, and health-related characteristics of adults; however, its impact in the older population remains highly debated. This review and meta-analysis aimed to evaluate the effects of high-intensity interval training on cardiorespiratory fitness, body composition, physical fitness, and health-related outcomes in older adults. Four electronic databases (PubMed, Scopus, Medline, and Web of Science) were searched (until July 2020) for randomized trials comparing the effect of HIIT on physical fitness, metabolic parameters, and cardiorespiratory fitness in older adults. The Cochrane risk of bias assessment tool was used to evaluate the methodological quality of the included studies; Stata 14.0 software was used for statistical analysis. HIIT significantly improved the maximum rate of oxygen consumption (VO2peak) as compared to a moderate-intensity continuous training (MICT) protocol (HIIT vs. MICT: weighted mean difference = 1.74, 95% confidence interval: 0.80-2.69, p < 0.001). Additional subgroup analyses determined that training periods >12 weeks, training frequencies of 2 sessions/week, session lengths of 40 min, 6 sets and repetitions, training times per repetition of >60 s, and rest times of <90 s were more effective for VO2peak. This systematic review and meta-analysis showed that HIIT induces favorable adaptions in cardiorespiratory fitness, physical fitness, muscle power, cardiac contractile function, mitochondrial citrate synthase activity, and reduced blood triglyceride and glucose levels in older individuals, which may help to maintain aerobic fitness and slow down the process of sarcopenia.
Collapse
Affiliation(s)
- Zhi-Jian Wu
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Zhu-Ying Wang
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Hao-En Gao
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Xian-Feng Zhou
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
10
|
Deshmukh AS, Steenberg DE, Hostrup M, Birk JB, Larsen JK, Santos A, Kjøbsted R, Hingst JR, Schéele CC, Murgia M, Kiens B, Richter EA, Mann M, Wojtaszewski JFP. Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nat Commun 2021; 12:304. [PMID: 33436631 PMCID: PMC7803955 DOI: 10.1038/s41467-020-20556-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
Skeletal muscle conveys several of the health-promoting effects of exercise; yet the underlying mechanisms are not fully elucidated. Studying skeletal muscle is challenging due to its different fiber types and the presence of non-muscle cells. This can be circumvented by isolation of single muscle fibers. Here, we develop a workflow enabling proteomics analysis of pools of isolated muscle fibers from freeze-dried human muscle biopsies. We identify more than 4000 proteins in slow- and fast-twitch muscle fibers. Exercise training alters expression of 237 and 172 proteins in slow- and fast-twitch muscle fibers, respectively. Interestingly, expression levels of secreted proteins and proteins involved in transcription, mitochondrial metabolism, Ca2+ signaling, and fat and glucose metabolism adapts to training in a fiber type-specific manner. Our data provide a resource to elucidate molecular mechanisms underlying muscle function and health, and our workflow allows fiber type-specific proteomic analyses of snap-frozen non-embedded human muscle biopsies.
Collapse
Affiliation(s)
- A S Deshmukh
- The Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Basic Metablic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - D E Steenberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - M Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J K Larsen
- The Novo Nordisk Foundation Center for Basic Metablic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Santos
- The Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - C C Schéele
- The Novo Nordisk Foundation Center for Basic Metablic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - M Murgia
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - B Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - E A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - M Mann
- The Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - J F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
12
|
Resistance training upregulates skeletal muscle Na +, K +-ATPase content, with elevations in both α 1 and α 2, but not β isoforms. Eur J Appl Physiol 2020; 120:1777-1785. [PMID: 32500280 DOI: 10.1007/s00421-020-04408-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The Na+, K+-ATPase (NKA) is important in regulating trans-membrane ion gradients, cellular excitability and muscle function. We investigated the effects of resistance training in healthy young adults on the adaptability of NKA content and of the specific α and β isoforms in human skeletal muscle. METHODS Twenty-one healthy young males (22.9 ± 4.6 year; 1.80 ± 0.70 m, 85.1 ± 17.8 kg, mean ± SD) underwent 7 weeks of resistance training, training three times per week (RT, n = 16) or control (CON, n = 5). The training program was effective with a 39% gain in leg press muscle strength (p = 0.001). A resting vastus lateralis muscle biopsy was taken before and following RT or CON and assayed for NKA content ([3H]ouabain binding site content) and NKA isoform (α1, α2, β1, β2) abundances. RESULTS After RT, each of NKA content (12%, 311 ± 76 vs 349 ± 76 pmol g wet weight-1, p = 0.01), NKA α1 (32%, p = 0.01) and α2 (10%, p < 0.01) isoforms were increased, whereas β1 (p = 0.18) and β2 (p = 0.22) isoforms were unchanged. NKA content and isoform abundances were unchanged during CON. CONCLUSIONS Resistance training increased muscle NKA content through upregulation of both α1 and α2 isoforms, which were independent of β isoform changes. In animal models, modulations in α1 and α2 isoform abundances in skeletal muscle may affect fatigue resistance during exercise, muscle hypertrophy and strength. Whether similar in-vivo functional benefits of these NKA isoform adaptations occurs in human muscle with resistance training remains to be determined.
Collapse
|
13
|
Wyckelsma VL, Lindkvist W, Venckunas T, Brazaitis M, Kamandulis S, Pääsuke M, Ereline J, Westerblad H, Andersson DC. Kynurenine aminotransferase isoforms display fiber-type specific expression in young and old human skeletal muscle. Exp Gerontol 2020; 134:110880. [PMID: 32068089 DOI: 10.1016/j.exger.2020.110880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Conversion of kynurenine (KYN) to kynurenic acid (KYNA) is the main pathway for free tryptophan degradation in skeletal muscle and has emerged as an important mechanism of how exercise is linked to promotion of mental health. Metabolism of KYN to KYNA mainly depends on the expression of kynurenine aminotransferases (KATs) that is under control of the mitochondria biogenesis regulator PGC-1α. We therefore hypothesized that expression of KATs would vary between muscle fibers that differ in mitochondrial content, i.e. oxidative type I vs more glycolytic type II muscle fibers. Moreover, we tested the hypothesis that KAT expression differs with age. Single muscle fibers were isolated from biopsies taken from the vastus lateralis muscle in young and old healthy subjects. In young and old subjects the abundance of KAT I, KAT III and KAT IV was greater in Type I than Type II fibers without age-dependent difference in the KAT isoform expressions. The link to mitochondrial content was further seen as the expression of KAT IV correlated to mitochondrial cytochrome c oxidase IV (COX IV) abundance in both fiber types. In conclusion, we describe for the first time the expression pattern of KAT isoforms with respect to specific fiber types and age in human skeletal muscle.
Collapse
Affiliation(s)
- V L Wyckelsma
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - W Lindkvist
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - T Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - M Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - S Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - M Pääsuke
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Estonia
| | - J Ereline
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Estonia
| | - H Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - D C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Heart, Vascular and Neurology Theme, Section for Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
“Reversed polarization” of Na/K-ATPase—a sign of inverted transport in the human endolymphatic sac: a super-resolution structured illumination microscopy (SR-SIM) study. Cell Tissue Res 2019; 379:445-457. [DOI: 10.1007/s00441-019-03106-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
AbstractThe human endolymphatic sac (ES) is believed to regulate inner ear fluid homeostasis and to be associated with Meniere’s disease (MD). We analyzed the ion transport protein sodium/potassium-ATPase (Na/K-ATPase) and its isoforms in the human ES using super-resolution structured illumination microscopy (SR-SIM). Human vestibular aqueducts were collected during trans-labyrinthine vestibular schwannoma surgery after obtaining ethical permission. Antibodies against various isoforms of Na/K-ATPase and additional solute-transporting proteins, believed to be essential for ion and fluid transport, were used for immunohistochemistry. A population of epithelial cells of the human ES strongly expressed Na/K-ATPase α1, β1, and β3 subunit isoforms in either the lateral/basolateral or apical plasma membrane domains. The β1 isoform was expressed in the lateral/basolateral plasma membranes in mostly large cylindrical cells, while β3 and α1 both were expressed with “reversed polarity” in the apical cell membrane in lower epithelial cells. The heterogeneous expression of Na/K-ATPase subunits substantiates earlier notions that the ES is a dynamic structure where epithelial cells show inverted epithelial transport. Dual absorption and secretion processes may regulate and maintain inner ear fluid homeostasis. These findings may shed new light on the etiology of endolymphatic hydrops and MD.
Collapse
|
15
|
Wyckelsma VL, Perry BD, Bangsbo J, McKenna MJ. Inactivity and exercise training differentially regulate abundance of Na +-K +-ATPase in human skeletal muscle. J Appl Physiol (1985) 2019; 127:905-920. [PMID: 31369327 DOI: 10.1152/japplphysiol.01076.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Physical inactivity is a global health risk that can be addressed through application of exercise training suitable for an individual's health and age. People's willingness to participate in physical activity is often limited by an initially poor physical capability and early onset of fatigue. One factor associated with muscle fatigue during intense contractions is an inexcitability of skeletal muscle cells, reflecting impaired transmembrane Na+/K+ exchange and membrane depolarization, which are regulated via the transmembranous protein Na+-K+-ATPase (NKA). This short review focuses on the plasticity of NKA in skeletal muscle in humans after periods of altered usage, exploring NKA upregulation with exercise training and downregulation with physical inactivity. In human skeletal muscle, the NKA content quantified by [3H]ouabain binding site content shows robust, yet tightly constrained, upregulation of 8-22% with physical training, across a broad range of exercise training types. Muscle NKA content in humans undergoes extensive downregulation with injury that involves substantial muscular inactivity. Surprisingly, however, no reduction in NKA content was found in the single study that investigated short-term disuse. Despite clear findings that exercise training and injury modulate NKA content, the adaptability of the individual NKA isoforms in muscle (α1-3 and β1-3) and of the accessory and regulatory protein FXYD1 are surprisingly inconsistent across studies, for exercise training as well as for injury/disuse. Potential reasons for this are explored. Finally, we provide suggestions for future studies to provide greater understanding of NKA regulation during exercise training and inactivity in humans.
Collapse
Affiliation(s)
- V L Wyckelsma
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - B D Perry
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - J Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - M J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Christiansen D, Eibye KH, Rasmussen V, Voldbye HM, Thomassen M, Nyberg M, Gunnarsson TGP, Skovgaard C, Lindskrog MS, Bishop DJ, Hostrup M, Bangsbo J. Cycling with blood flow restriction improves performance and muscle K + regulation and alters the effect of anti-oxidant infusion in humans. J Physiol 2019; 597:2421-2444. [PMID: 30843602 DOI: 10.1113/jp277657] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Training with blood flow restriction (BFR) is a well-recognized strategy for promoting muscle hypertrophy and strength. However, its potential to enhance muscle function during sustained, intense exercise remains largely unexplored. In the present study, we report that interval training with BFR augments improvements in performance and reduces net K+ release from contracting muscles during high-intensity exercise in active men. A better K+ regulation after BFR-training is associated with an elevated blood flow to exercising muscles and altered muscle anti-oxidant function, as indicated by a higher reduced to oxidized glutathione (GSH:GSSG) ratio, compared to control, as well as an increased thigh net K+ release during intense exercise with concomitant anti-oxidant infusion. Training with BFR also invoked fibre type-specific adaptations in the abundance of Na+ ,K+ -ATPase isoforms (α1 , β1 , phospholemman/FXYD1). Thus, BFR-training enhances performance and K+ regulation during intense exercise, which may be a result of adaptations in anti-oxidant function, blood flow and Na+ ,K+ -ATPase-isoform abundance at the fibre-type level. ABSTRACT We examined whether blood flow restriction (BFR) augments training-induced improvements in K+ regulation and performance during intense exercise in men, and also whether these adaptations are associated with an altered muscle anti-oxidant function, blood flow and/or with fibre type-dependent changes in Na+ ,K+ -ATPase-isoform abundance. Ten recreationally-active men (25 ± 4 years, 49.7 ± 5.3 mL kg-1 min-1 ) performed 6 weeks of interval cycling, where one leg trained without BFR (control; CON-leg) and the other trained with BFR (BFR-leg, pressure: ∼180 mmHg). Before and after training, femoral arterial and venous K+ concentrations and artery blood flow were measured during single-leg knee-extensor exercise at 25% (Ex1) and 90% of thigh incremental peak power (Ex2) with i.v. infusion of N-acetylcysteine (NAC) or placebo (saline) and a resting muscle biopsy was collected. After training, performance increased more in BFR-leg (23%) than in CON-leg (12%, P < 0.05), whereas K+ release during Ex2 was attenuated only from BFR-leg (P < 0.05). The muscle GSH:GSSG ratio at rest and blood flow during exercise was higher in BFR-leg than in CON-leg after training (P < 0.05). After training, NAC increased resting muscle GSH concentration and thigh net K+ release during Ex2 only in BFR-leg (P < 0.05), whereas the abundance of Na+ ,K+ -ATPase-isoform α1 in type II (51%), β1 in type I (33%), and FXYD1 in type I (108%) and type II (60%) fibres was higher in BFR-leg than in CON-leg (P < 0.05). Thus, training with BFR elicited greater improvements in performance and reduced thigh K+ release during intense exercise, which were associated with adaptations in muscle anti-oxidant function, blood flow and Na+ ,K+ -ATPase-isoform abundance at the fibre-type level.
Collapse
Affiliation(s)
- Danny Christiansen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark.,Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Kasper H Eibye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Villads Rasmussen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Hans M Voldbye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Thomas G P Gunnarsson
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Casper Skovgaard
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Mads S Lindskrog
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
18
|
Christiansen D, Bishop DJ, Broatch JR, Bangsbo J, McKenna MJ, Murphy RM. Cold-water immersion after training sessions: effects on fiber type-specific adaptations in muscle K + transport proteins to sprint-interval training in men. J Appl Physiol (1985) 2018; 125:429-444. [PMID: 29745801 DOI: 10.1152/japplphysiol.00259.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Effects of regular use of cold-water immersion (CWI) on fiber type-specific adaptations in muscle K+ transport proteins to intense training, along with their relationship to changes in mRNA levels after the first training session, were investigated in humans. Nineteen recreationally active men (24 ± 6 yr, 79.5 ± 10.8 kg, 44.6 ± 5.8 ml·kg-1·min-1) completed six weeks of sprint-interval cycling, either without (passive rest; CON) or with training sessions followed by CWI (15 min at 10°C; COLD). Muscle biopsies were obtained before and after training to determine abundance of Na+, K+-ATPase isoforms (α1-3, β1-3) and phospholemman (FXYD1) and after recovery treatments (+0 h and +3 h) on the first day of training to measure mRNA content. Training increased ( P < 0.05) the abundance of α1 and β3 in both fiber types and β1 in type-II fibers and decreased FXYD1 in type-I fibers, whereas α2 and α3 abundance was not altered by training ( P > 0.05). CWI after each session did not influence responses to training ( P > 0.05). However, α2 mRNA increased after the first session in COLD (+0 h, P < 0.05) but not in CON ( P > 0.05). In both conditions, α1 and β3 mRNA increased (+3 h; P < 0.05) and β2 mRNA decreased (+3 h; P < 0.05), whereas α3, β1, and FXYD1 mRNA remained unchanged ( P > 0.05) after the first session. In summary, Na+,K+-ATPase isoforms are differently regulated in type I and II muscle fibers by sprint-interval training in humans, which, for most isoforms, do not associate with changes in mRNA levels after the first training session. CWI neither impairs nor improves protein adaptations to intense training of importance for muscle K+ regulation. NEW & NOTEWORTHY Although cold-water immersion (CWI) after training and competition has become a routine for many athletes, limited published evidence exists regarding its impact on training adaptation. Here, we show that CWI can be performed regularly without impairing training-induced adaptations at the fiber-type level important for muscle K+ handling. Furthermore, sprint-interval training invoked fiber type-specific adaptations in K+ transport proteins, which may explain the dissociated responses of whole-muscle protein levels and K+ transport function to training previously reported.
Collapse
Affiliation(s)
- Danny Christiansen
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen , Denmark
| | - David J Bishop
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,School of Medical and Health Sciences, Edith Cowan University , Perth, Western Australia , Australia
| | - James R Broatch
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Jens Bangsbo
- Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria , Australia
| |
Collapse
|
19
|
Wyckelsma VL, Levinger I, Murphy RM, Petersen AC, Perry BD, Hedges CP, Anderson MJ, McKenna MJ. Intense interval training in healthy older adults increases skeletal muscle [ 3H]ouabain-binding site content and elevates Na +,K +-ATPase α 2 isoform abundance in Type II fibers. Physiol Rep 2017; 5:5/7/e13219. [PMID: 28373411 PMCID: PMC5392511 DOI: 10.14814/phy2.13219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Young adults typically adapt to intense exercise training with an increased skeletal muscle Na+,K+-ATPase (NKA) content, concomitant with reduced extracellular potassium concentration [K+] during exercise and enhanced exercise performance. Whether these changes with longitudinal training occur in older adults is unknown and was investigated here. Fifteen older adults (69.4 ± 3.5 years, mean ± SD) were randomized to either 12 weeks of intense interval training (4 × 4 min at 90-95% peak heart rate), 3 days/week (IIT, n = 8); or no exercise controls (n = 7). Before and after training, participants completed an incremental cycle ergometer exercise test until a rating of perceived exertion of 17 (very hard) on a 20-point scale was attained, with measures of antecubital venous [K+]v Participants underwent a resting muscle biopsy prior to and at 48-72 h following the final training session. After IIT, the peak exercise work rate (25%), oxygen uptake (16%) and heart rate (6%) were increased (P < 0.05). After IIT, the peak exercise plasma [K+]v tended to rise (P = 0.07), while the rise in plasma [K+]v relative to work performed (nmol.L-1J-1) was unchanged. Muscle NKA content increased by 11% after IIT (P < 0.05). Single fiber measurements, increased in NKA α2 isoform in Type II fibers after IIT (30%, P < 0.05), with no changes to the other isoforms in single fibers or homogenate. Thus, intense exercise training in older adults induced an upregulation of muscle NKA, with a fiber-specific increase in NKA α2 abundance in Type II fibers, coincident with increased muscle NKA content and enhanced exercise performance.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Itamar Levinger
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Aaron C Petersen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Ben D Perry
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia.,Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Christopher P Hedges
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Mitchell J Anderson
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Michael J McKenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| |
Collapse
|
20
|
Wyckelsma VL, Levinger I, McKenna MJ, Formosa LE, Ryan MT, Petersen AC, Anderson MJ, Murphy RM. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. J Physiol 2017; 595:3345-3359. [PMID: 28251664 DOI: 10.1113/jp273950] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. ABSTRACT Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole muscle and Mfn2 content decreased in type II fibres. Increases in citrate synthase activity (55%) and mitochondrial respiratory chain subunits COXIV (37%) and NDUFA9 (48%) and mitochondrial respiratory chain complexes (∼70-100%) were observed in homogenates and/or single fibres. These findings reveal (i) a similar amount of mitochondria in muscle from young and healthy older adults and (ii) a robust increase of mitochondrial content following 12 weeks of HIT exercise in older adults.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Mitchell J Anderson
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|