1
|
Katagiri A, Fujii N, Dobashi K, Lai YF, Tsuji B, Nishiyasu T. Effects of sodium bicarbonate ingestion on ventilatory and cerebrovascular responses in resting heated humans. Am J Physiol Regul Integr Comp Physiol 2024; 327:R400-R409. [PMID: 39102461 DOI: 10.1152/ajpregu.00161.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Hyperthermia stimulates ventilation in humans. This hyperthermia-induced hyperventilation may be mediated by the activation of peripheral chemoreceptors implicated in the regulation of respiration in reaction to various chemical stimuli, including reductions in arterial pH. Here, we investigated the hypothesis that during passive heating at rest, the increases in arterial pH achieved with sodium bicarbonate ingestion, which could attenuate peripheral chemoreceptor activity, mitigate hyperthermia-induced hyperventilation. We also assessed the effect of sodium bicarbonate ingestion on cerebral blood flow responses, which are associated with hyperthermia-induced hyperventilation. Twelve healthy men ingested sodium bicarbonate (0.3 g/kg body weight) or sodium chloride (0.208 g/kg). One hundred minutes after the ingestion, the participants were passively heated using hot-water immersion (42°C) combined with a water-perfused suit. Increases in esophageal temperature (an index of core temperature) and minute ventilation (V̇E) during the heating were similar in the two trials. Moreover, when V̇E is expressed as a function of esophageal temperature, there were no between-trial differences in the core temperature threshold for hyperventilation (38.0 ± 0.3 vs. 38.0 ± 0.4°C, P = 0.469) and sensitivity of hyperthermia-induced hyperventilation as assessed by the slope of the core temperature-V̇E relation (13.5 ± 14.2 vs. 15.8 ± 15.5 L/min/°C, P = 0.831). Furthermore, middle cerebral artery mean blood velocity (an index of cerebral blood flow) decreased similarly with heating duration in both trials. These results suggest that sodium bicarbonate ingestion does not mitigate hyperthermia-induced hyperventilation and the reductions in cerebral blood flow index in resting heated humans.NEW & NOTEWORTHY Hyperthermia leads to hyperventilation and associated cerebral hypoperfusion, both of which may impair heat tolerance. This hyperthermia-induced hyperventilation may be mediated by peripheral chemoreceptors, which can be activated by reductions in arterial pH. However, our results suggest that sodium bicarbonate ingestion, which can increase arterial pH, is not an effective intervention in alleviating hyperthermia-induced hyperventilation and cerebral hypoperfusion in resting heated humans.
Collapse
Affiliation(s)
- Akira Katagiri
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
- Advanced Research Initiative for Human High Performance, University of Tsukuba, Ibaraki, Japan
| | - Kohei Dobashi
- Faculty of Education, Hokkaido University of Education, Hokkaido, Japan
| | - Yin-Feng Lai
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Bun Tsuji
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
- Advanced Research Initiative for Human High Performance, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Watanabe K, Koch Esteves N, Gibson OR, Akiyama K, Watanabe S, González-Alonso J. Heat-related changes in the velocity and kinetic energy of flowing blood influence the human heart's output during hyperthermia. J Physiol 2024; 602:2227-2251. [PMID: 38690610 DOI: 10.1113/jp285760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Passive whole-body hyperthermia increases limb blood flow and cardiac output (Q ̇ $\dot Q$ ), but the interplay between peripheral and central thermo-haemodynamic mechanisms remains unclear. Here we tested the hypothesis that local hyperthermia-induced alterations in peripheral blood flow and blood kinetic energy modulate flow to the heart andQ ̇ $\dot Q$ . Body temperatures, regional (leg, arm, head) and systemic haemodynamics, and left ventricular (LV) volumes and functions were assessed in eight healthy males during: (1) 3 h control (normothermic condition); (2) 3 h of single-leg heating; (3) 3 h of two-leg heating; and (4) 2.5 h of whole-body heating. Leg, forearm, and extracranial blood flow increased in close association with local rises in temperature while brain perfusion remained unchanged. Increases in blood velocity with small to no changes in the conduit artery diameter underpinned the augmented limb and extracranial perfusion. In all heating conditions,Q ̇ $\dot Q$ increased in association with proportional elevations in systemic vascular conductance, related to enhanced blood flow, blood velocity, vascular conductance and kinetic energy in the limbs and head (all R2 ≥ 0.803; P < 0.001), but not in the brain. LV systolic (end-systolic elastance and twist) and diastolic functional profiles (untwisting rate), pulmonary ventilation and systemic aerobic metabolism were only altered in whole-body heating. These findings substantiate the idea that local hyperthermia-induced selective alterations in peripheral blood flow modulate the magnitude of flow to the heart andQ ̇ $\dot Q$ through changes in blood velocity and kinetic energy. Localised heat-activated events in the peripheral circulation therefore affect the human heart's output. KEY POINTS: Local and whole-body hyperthermia increases limb and systemic perfusion, but the underlying peripheral and central heat-sensitive mechanisms are not fully established. Here we investigated the regional (leg, arm and head) and systemic haemodynamics (cardiac output:Q ̇ $\dot Q$ ) during passive single-leg, two-leg and whole-body hyperthermia to determine the contribution of peripheral and central thermosensitive factors in the control of human circulation. Single-leg, two-leg, and whole-body hyperthermia induced graded increases in leg blood flow andQ ̇ $\dot Q$ . Brain blood flow, however, remained unchanged in all conditions. Ventilation, extracranial blood flow and cardiac systolic and diastolic functions only increased during whole-body hyperthermia. The augmentedQ ̇ $\dot Q$ with hyperthermia was tightly related to increased limb and head blood velocity, flow and kinetic energy. The findings indicate that local thermosensitive mechanisms modulate regional blood velocity, flow and kinetic energy, thereby controlling the magnitude of flow to the heart and thus the coupling of peripheral and central circulation during hyperthermia.
Collapse
Affiliation(s)
- Kazuhito Watanabe
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Faculty of Education and Human Studies, Akita University, Akita, Japan
| | - Nuno Koch Esteves
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Research Centre, University College of Osteopathy, London, UK
| | - Oliver R Gibson
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Centre for Physical Activity in Health and Disease, Brunel University London, Uxbridge, UK
| | - Koichi Akiyama
- Department of Anesthesiology, Kindai University Hospital, Osaka, Japan
| | - Sumie Watanabe
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Faculty of Education and Human Studies, Akita University, Akita, Japan
| | - José González-Alonso
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
3
|
Requia WJ, Jablinski Castelhano F, Moore J, Maria Damasceno da Silva R, Andreotti Dias M. Thermal stress and hospital admissions for cardiorespiratory disease in Brazil. ENVIRONMENT INTERNATIONAL 2024; 187:108694. [PMID: 38688235 DOI: 10.1016/j.envint.2024.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The growing body of scientific literature underscores the intricate relationship between meteorological conditions and human health, particularly in the context of extreme temperatures. However, conventional temperature-centric approaches often fall short in capturing the complexity of thermal stress experienced by individuals. Temperature alone, as a metric, fails to encompass the entirety of the thermal stress individuals face, necessitating a more nuanced understanding. In response to this limitation, climatologists have devised thermal indices-composite measures meticulously crafted to reflect the intricate interplay of meteorological factors influencing human perception of temperature. Recognizing the inadequacy of simplistic temperature-focused methodologies, our study aims to address the multifaceted nature of thermal stress. In this study, we explored the association between thermal indices and hospital admissions for circulatory and respiratory diseases in Brazil. We used an extensive dataset spanning 11 years (2008-2018) from the Brazilian Ministry of Health, encompassing a total of 23,791,093 hospitalizations for circulatory and respiratory diseases. We considered four distinct thermal indices-Discomfort Index (DI), Net Effective Temperature (NET), Humidex (H), and Heat Index (HI). We used an extension of the two-stage design with a case time series to assess this relationship. In the first stage, we applied a distributed lag non-linear modeling framework to create a cross-basis function. We next applied quasi-Poisson regression models adjusted by time-varying confounders. In the second stage, we applied meta-analysis with random effects to estimate the national relative risk (RR). Our findings suggest robust variations among the thermal indices under examination. These variations underscore the intricate nature of associations between temperature and health, with each index capturing distinct aspects of thermal conditions. Our results indicate that extreme thermal conditions, both at the low and high ends, are associated with increased risks of hospital admissions. The diverse impact observed among different indices emphasizes the complex interplay between various meteorological factors and their specific physiological consequences. This underscores the necessity for a comprehensive comprehension of temperature metrics to guide precise public health interventions, recognizing the multifaceted nature of temperature-health relationships.
Collapse
Affiliation(s)
- Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil.
| | | | - Julia Moore
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Reizane Maria Damasceno da Silva
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Mariana Andreotti Dias
- Demography Department, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
4
|
Henderson M, Halsey L. The metabolic upper critical temperature of the human thermoneutral zone. J Therm Biol 2022; 110:103380. [DOI: 10.1016/j.jtherbio.2022.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 05/11/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
|
5
|
Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1057262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Worley ML, Reed EL, J Kueck P, Dirr J, Klaes N, Schlader ZJ, D Johnson B. Hot head-out water immersion does not acutely alter dynamic cerebral autoregulation or cerebrovascular reactivity to hypercapnia. Temperature (Austin) 2021; 8:381-401. [PMID: 34901320 DOI: 10.1080/23328940.2021.1894067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Recurring hot head-out water immersion (HOWI) enhances peripheral vascular function and cerebral blood velocity during non-immersion conditions. However, it is unknown if an acute bout of hot HOWI alters cerebrovascular function. Using two experimental studies, we tested the hypotheses that dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity (CVR) are improved during an acute bout of hot (HOT; 39 °C) vs. thermoneutral (TN; 35 °C) HOWI. Eighteen healthy participants (eight females) completed the dCA study, and 14 participants (6 females) completed the CVR study. Both studies consisted of two randomized (TNdCA vs. HOTdCA; TNCVR vs. HOTCVR) 45minute HOWI visits. Middle cerebral artery blood velocity (MCAvmean) was continuously recorded. dCA was assessed using a respiratory impedance device and analyzed via transfer gain and phase in the low-frequency band. CVR was assessed using stepped hypercapnia. Assessments were completed PRE and 30 minutes into HOWI. Values are reported as a change (Δ) from PRE (mean ± SD). There were no differences at PRE for either study. ΔMCAvmean was greater in TNdCA (TNdCA: 4 ± 4 vs. HOTdCA: -3 ± 5 cm/s; P < 0.01) and TNCVR (TNCVR: 5 ± 4 vs. HOTCVR: -1 ± 6 cm/s; P < 0.01) during HOWI. ΔGain was greater in HOTdCA during HOWI (TNdCA: -0.09 ± 0.15 vs. HOTdCA: 0.10 ± 0.17 cm/s/mmHg; P = 0.04). ΔPhase (P > 0.84) and ΔCVR (P > 0.94) were not different between conditions. These data indicate that hot and thermoneutral water immersion do not acutely alter cerebrovascular function in healthy, young adults.
Collapse
Affiliation(s)
- Morgan L Worley
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Emma L Reed
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Paul J Kueck
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Jacqueline Dirr
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Nathan Klaes
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, United States
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, United States.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, United States
| |
Collapse
|
7
|
Katagiri A, Kitadai Y, Miura A, Fukuba Y, Fujii N, Nishiyasu T, Tsuji B. Sodium bicarbonate ingestion mitigates the heat-induced hyperventilation and reduction in cerebral blood velocity during exercise in the heat. J Appl Physiol (1985) 2021; 131:1617-1628. [PMID: 34590911 DOI: 10.1152/japplphysiol.00261.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia during exercise in the heat causes minute ventilation ([Formula: see text]) to increase, which leads to reductions in arterial CO2 partial pressure ([Formula: see text]) and cerebral blood flow. On the other hand, sodium bicarbonate ingestion reportedly results in metabolic alkalosis, leading to decreased [Formula: see text] and increased [Formula: see text] during prolonged exercise in a thermoneutral environment. Here, we investigated whether sodium bicarbonate ingestion suppresses heat-induced hyperventilation and the resultant hypocapnia and cerebral hypoperfusion during prolonged exercise in the heat. Eleven healthy men ingested a solution of sodium bicarbonate (0.3 g/kg body wt) (NaHCO3 trial) or sodium chloride (0.208 g/kg) (NaCl trial). Ninety minutes after the ingestion, the subjects performed a cycle exercise for 60 min at 50% of peak oxygen uptake in the heat (35°C and 40% relative humidity). Esophageal temperature did not differ between the trials throughout (P = 0.56, main effect of trial). [Formula: see text] gradually increased with exercise duration in the NaCl trial, but the increases in [Formula: see text] were attenuated in the NaHCO3 trial (P = 0.01, main effect of trial). Correspondingly, estimated [Formula: see text] and middle cerebral artery blood velocity (an index of anterior cerebral blood flow) were higher in the NaHCO3 than the NaCl trial (P = 0.002 and 0.04, main effects of trial). Ratings of perceived exertion were lower in the NaHCO3 than the NaCl trial (P = 0.02, main effect of trial). These results indicate that sodium bicarbonate ingestion mitigates heat-induced hyperventilation and reductions in [Formula: see text] and cerebral blood velocity during prolonged exercise in the heat.NEW & NOTEWORTHY Hyperthermia causes hyperventilation and concomitant hypocapnia and cerebral hypoperfusion. The cerebral hypoperfusion may underlie central fatigue. We demonstrate that sodium bicarbonate ingestion reduces heat-induced hyperventilation and attenuates hypocapnia-related cerebral hypoperfusion during prolonged exercise in the heat. In addition, we show that sodium bicarbonate ingestion reduces ratings of perceived exertion during the exercise. This study provides new insight into the development of effective strategies for preventing central fatigue during exercise in the heat.
Collapse
Affiliation(s)
- Akira Katagiri
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Akira Miura
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yoshiyuki Fukuba
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Bun Tsuji
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
8
|
Gibbons TD, Ainslie PN, Thomas KN, Wilson LC, Akerman AP, Donnelly J, Campbell HA, Cotter JD. Influence of the mode of heating on cerebral blood flow, non-invasive intracranial pressure and thermal tolerance in humans. J Physiol 2021; 599:1977-1996. [PMID: 33586133 DOI: 10.1113/jp280970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS The human brain is particularly vulnerable to heat stress; this manifests as impaired cognition, orthostatic tolerance, work capacity and eventually, brain death. The brain's limitation in the heat is often ascribed to inadequate cerebral blood flow (CBF), but elevated intracranial pressure is commonly observed in mammalian models of heat stroke and can on its own cause functional impairment. The CBF response to incremental heat strain was dependent on the mode of heating, decreasing by 30% when exposed passively to hot, humid air (sauna), while remaining unchanged or increasing with passive hot-water immersion (spa) and exercising in a hot environment. Non-invasive intracranial pressure estimates (nICP) were increased universally by 18% at volitional thermal tolerance across all modes of heat stress, and therefore may play a contributing role in eliciting thermal tolerance. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under mild to severe heating due to lower blood flow but similarly increased nICP. ABSTRACT The human brain is particularly vulnerable to heat stress; this manifests as impaired cognitive function, orthostatic tolerance, work capacity, and eventually, brain death. This vulnerability is often ascribed to inadequate cerebral blood flow (CBF); however, elevated intracranial pressure (ICP) is also observed in mammalian models of heat stroke. We investigated the changes in CBF with incremental heat strain under three fundamentally different modes of heating, and assessed whether heating per se increased ICP. Fourteen fit participants (seven female) were heated to thermal tolerance or 40°C core temperature (Tc ; oesophageal) via passive hot-water immersion (spa), passive hot, humid air exposure (sauna), cycling exercise, and cycling exercise with CO2 inhalation to prevent heat-induced hypocapnia. CBF was measured with duplex ultrasound at each 0.5°C increment in Tc and ICP was estimated non-invasively (nICP) from optic nerve sheath diameter at thermal tolerance. At thermal tolerance, CBF was decreased by 30% in the sauna (P < 0.001), but was unchanged in the spa or with exercise (P ≥ 0.140). CBF increased by 17% when end-tidal P C O 2 was clamped at eupnoeic pressure (P < 0.001). On the contrary, nICP increased universally by 18% with all modes of heating (P < 0.001). The maximum Tc was achieved with passive heating, and preventing hypocapnia during exercise did not improve exercise or thermal tolerance (P ≥ 0.146). Therefore, the regulation of CBF is dramatically different depending on the mode and dose of heating, whereas nICP responses are not. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under equivalent heat strain.
Collapse
Affiliation(s)
- Travis D Gibbons
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Philip N Ainslie
- University of British Columbia, Okangan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kate N Thomas
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Luke C Wilson
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | | | | | - Holly A Campbell
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Jim D Cotter
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| |
Collapse
|
9
|
Caldwell HG, Coombs GB, Howe CA, Hoiland RL, Patrician A, Lucas SJ, Ainslie PN. Evidence for temperature‐mediated regional increases in cerebral blood flow during exercise. J Physiol 2020; 598:1459-1473. [DOI: 10.1113/jp278827] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hannah G. Caldwell
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Geoff B. Coombs
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Connor A. Howe
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Ryan L. Hoiland
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Alexander Patrician
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Samuel J.E. Lucas
- School of Sport Exercise and Rehabilitation Sciences & Centre for Human Brain Health University of Birmingham Birmingham UK
| | - Philip N. Ainslie
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| |
Collapse
|
10
|
Gibbons TD, Tymko MM, Thomas KN, Wilson LC, Stembridge M, Caldwell HG, Howe CA, Hoiland RL, Akerman AP, Dawkins TG, Patrician A, Coombs GB, Gasho C, Stacey BS, Ainslie PN, Cotter JD. Global REACH 2018: The influence of acute and chronic hypoxia on cerebral haemodynamics and related functional outcomes during cold and heat stress. J Physiol 2020; 598:265-284. [PMID: 31696936 DOI: 10.1113/jp278917] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Thermal and hypoxic stress commonly coexist in environmental, occupational and clinical settings, yet how the brain tolerates these multi-stressor environments is unknown Core cooling by 1.0°C reduced cerebral blood flow (CBF) by 20-30% and cerebral oxygen delivery (CDO2 ) by 12-19% at sea level and high altitude, whereas core heating by 1.5°C did not reliably reduce CBF or CDO2 Oxygen content in arterial blood was fully restored with acclimatisation to 4330 m, but concurrent cold stress reduced CBF and CDO2 Gross indices of cognition were not impaired by any combination of thermal and hypoxic stress despite large reductions in CDO2 Chronic hypoxia renders the brain susceptible to large reductions in oxygen delivery with concurrent cold stress, which might make monitoring core temperature more important in this context ABSTRACT: Real-world settings are composed of multiple environmental stressors, yet the majority of research in environmental physiology investigates these stressors in isolation. The brain is central in both behavioural and physiological responses to threatening stimuli and, given its tight metabolic and haemodynamic requirements, is particularly susceptible to environmental stress. We measured cerebral blood flow (CBF, duplex ultrasound), cerebral oxygen delivery (CDO2 ), oesophageal temperature, and arterial blood gases during exposure to three commonly experienced environmental stressors - heat, cold and hypoxia - in isolation, and in combination. Twelve healthy male subjects (27 ± 11 years) underwent core cooling by 1.0°C and core heating by 1.5°C in randomised order at sea level; acute hypoxia ( P ET , O 2 = 50 mm Hg) was imposed at baseline and at each thermal extreme. Core cooling and heating protocols were repeated after 16 ± 4 days residing at 4330 m to investigate any interactions with high altitude acclimatisation. Cold stress decreased CBF by 20-30% and CDO2 by 12-19% (both P < 0.01) irrespective of altitude, whereas heating did not reliably change either CBF or CDO2 (both P > 0.08). The increases in CBF with acute hypoxia during thermal stress were appropriate to maintain CDO2 at normothermic, normoxic values. Reaction time was faster and slower by 6-9% with heating and cooling, respectively (both P < 0.01), but central (brain) processes were not impaired by any combination of environmental stressors. These findings highlight the powerful influence of core cooling in reducing CDO2 . Despite these large reductions in CDO2 with cold stress, gross indices of cognition remained stable.
Collapse
Affiliation(s)
- T D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| | - M M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - K N Thomas
- Department of Surgical Sciences, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - L C Wilson
- Department of Medicine, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - M Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - H G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - R L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - A P Akerman
- Faculty of Health Sciences, University of Ottawa, 125 University St, Ottawa, Ontario, Canada, K1N 6N5
| | - T G Dawkins
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - A Patrician
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - G B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C Gasho
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - B S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - P N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - J D Cotter
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| |
Collapse
|