1
|
Benbaruj JM, Leahy MG, Jackman R, Rae T, Boushel R, Foster GE, Sheel AW. Sex-based differences in the blood pressure responses to muscle metaboreflex activation are consistent between limb and respiratory muscle. J Appl Physiol (1985) 2024; 137:1220-1230. [PMID: 39262334 DOI: 10.1152/japplphysiol.00187.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
The purpose of this study was to compare sex-based differences in the mean arterial blood pressure (MAP) response to limb and inspiratory metaboreflex activation, during relative and absolute workloads. Healthy males (n = 9) and females (n = 8) completed pulmonary function testing, forearm volume and circumference measurements, and bouts of limb and inspiratory muscle exercise. The exercises performed included bouts of rhythmic handgrip exercise (RHG) and inspiratory pressure threshold loading (PTL) to task failure, performed in a randomized order and separated by 30 minutes of rest. Participants performed both RHG and PTL at predetermined relative (R) and absolute (A) workloads, while cardiopulmonary measurements were recorded continuously. A time-dependent rise in MAP was observed in all participants, regardless of sex, muscle, or workload (P < 0.001). MAP was greater in males than females during all exercise bouts regardless of muscle group or workload (P < 0.001). The change in MAP from baseline was also greater in males (R-RHG: Δ31 ± 12 mmHg; R-PTL: Δ31 ± 9; A-RHG: Δ35 ± 6; and A-PTL: Δ30 ± 7) than females (R-RHG: Δ21 ± 7 mmHg; R-PTL: Δ13 ± 7; A-RHG: Δ21 ± 7; and A-PTL: Δ14 ± 3) (P < 0.001). Results from this study show that when the forearm and diaphragm perform the same relative or absolute work, the blood pressure response is statistically similar, and both responses are greater in males than females. The findings from the present study suggest that the sex-based difference in the response to metaboreflex activation is similar between the limb and respiratory musculature.NEW & NOTEWORTHY With rhythmic handgrip exercise and inspiratory pressure threshold loading there was a time-dependent rise in the blood pressure that was significantly lower in females than males. The blunted blood pressure response in females was present whether handgrip or inspiratory workload was relative or absolute. An attenuated cardiovascular response to high levels of limb or respiratory muscle work may have implications for whole body exercise in health and disease.
Collapse
Affiliation(s)
- Jenna M Benbaruj
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Rachel Jackman
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Thora Rae
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Robert Boushel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Glen E Foster
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Alessandro C, Sarabadani Tafreshi A, Riener R. Cardiovascular responses to leg-press exercises during head-down tilt. Front Sports Act Living 2024; 6:1396391. [PMID: 39290333 PMCID: PMC11406980 DOI: 10.3389/fspor.2024.1396391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Physical exercise and gravitational load affect the activity of the cardiovascular system. How these factors interact with one another is still poorly understood. Here we investigate how the cardiovascular system responds to leg-press exercise during head-down tilt, a posture that reduces orthostatic stress, limits gravitational pooling, and increases central blood volume. Methods Seventeen healthy participants performed leg-press exercise during head-down tilt at different combinations of resistive force, contraction frequency, and exercise duration (30 and 60 s), leading to different exercise power. Systolic (sBP), diastolic (dBP), mean arterial pressure (MAP), pulse pressure (PP) and heart rate (HR) were measured continuously. Cardiovascular responses were evaluated by comparing the values of these signals during exercise recovery to baseline. Mixed models were used to evaluate the effect of exercise power and of individual exercise parameter on the cardiovascular responses. Results Immediately after the exercise, we observed a clear undershoot in sBP (Δ = -7.78 ± 1.19 mmHg), dBP (Δ = -10.37 ± 0.84 mmHg), and MAP (Δ = -8.85 ± 0.85 mmHg), an overshoot in PP (Δ = 7.93 ± 1.13 mmHg), and elevated values of HR (Δ = 33.5 ± 0.94 bpm) compared to baseline (p < 0.0001). However, all parameters returned to similar baseline values 2 min following the exercise (p > 0.05). The responses of dBP, MAP and HR were significantly modulated by exercise power (correlation coefficients: rdBP = -0.34, rMAP = -0.25, rHR = 0.52, p < 0.001). All signals' responses were modulated by contraction frequency (p < 0.05), increasing the undershoot in sBP (Δ = -1.87 ± 0.98 mmHg), dBP (Δ = -4.85 ± 1.01 and Δ = -3.45 ± 0.98 mmHg for low and high resistive force respectively) and MAP (Δ = -3.31 ± 0.75 mmHg), and increasing the overshoot in PP (Δ = 2.57 ± 1.06 mmHg) as well as the value of HR (Δ = 16.8 ± 2.04 and Δ = 10.8 ± 2.01 bpm for low and high resistive force respectively). Resistive force affected only dBP (Δ = -4.96 ± 1.41 mmHg, p < 0.0001), MAP (Δ = -2.97 ± 1.07 mmHg, p < 0.05) and HR (Δ = 6.81 ± 2.81 bpm, p < 0.0001; Δ = 15.72 ± 2.86 bpm, p < 0.0001; Δ = 15.72 ± 2.86 bpm, p < 0.05, depending on the values of resistive force and contraction frequency), and exercise duration affected only HR (Δ = 9.64 ± 2.01 bpm, p < 0.0001). Conclusion Leg exercises caused only immediate cardiovascular responses, potentially due to facilitated venous return by the head-down tilt position. The modulation of dBP, MAP and HR responses by exercise power and that of all signals by contraction frequency may help optimizing exercise prescription in conditions of limited orthostatic stress.
Collapse
Affiliation(s)
- Cristiano Alessandro
- School of Medicine and Surgery, Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Amirehsan Sarabadani Tafreshi
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Pereira TJ, Edgell H. The influence of oral contraceptives on the exercise pressor reflex in the upper and lower body. Physiol Rep 2024; 12:e16144. [PMID: 38991985 PMCID: PMC11239320 DOI: 10.14814/phy2.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Previous research has demonstrated that oral contraceptive (OC) users have enhanced cardiorespiratory responses to arm metaboreflex activation (i.e., postexercise circulatory occlusion, PECO) and attenuated pressor responses to leg passive movement (PM) compared to non-OC users (NOC). We investigated the cardiorespiratory responses to arm or leg metaboreflex and mechanoreflex activation in 32 women (OC, n = 16; NOC, n = 16) performing four trials: 40% handgrip or 80% plantarflexion followed by PECO and arm or leg PM. OC and NOC increased mean arterial pressure (MAP) similarly during handgrip, plantarflexion and arm/leg PECO compared to baseline. Despite increased ventilation (VE) during exercise, none of the women exhibited higher VE during arm or leg PECO. OC and NOC similarly increased MAP and VE during arm or leg PM compared to baseline. Therefore, OC and NOC were similar across pressor and ventilatory responses to arm or leg metaboreflex and mechanoreflex activation. However, some differences due to OC may have been masked by disparities in muscle strength. Since women increase VE during exercise, we suggest that while women do not display a ventilatory response to metaboreflex activation (perhaps due to not reaching a theoretical metabolite threshold to stimulate VE), the mechanoreflex may drive VE during exercise in women.
Collapse
Affiliation(s)
- T. J. Pereira
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - H. Edgell
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
- Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| |
Collapse
|
4
|
Leahy MG, Benbaruj JM, Payne OT, Foster GE, Sheel AW. The human skeletal muscle metaboreflex contribution to cardiorespiratory control in males and females in dynamic exercise. Appl Physiol Nutr Metab 2024; 49:514-525. [PMID: 38079618 DOI: 10.1139/apnm-2023-0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
There is a significant effect of sex and muscle mass on the cardiorespiratory response to the skeletal muscle metaboreflex during isometric exercise. We therefore tested the hypothesis that sex differences would be present when isolated following dynamic exercise. We also tested the hypothesis that single and double leg post-exercise circulatory occlusion (PECO) following heavy exercise would elicit a cardiorespiratory response proportional to the absolute muscle mass. Healthy (24 ± 4 years) males (n = 10) and females (n = 10) completed pulmonary function and an incremental cycle test to exhaustion. Participants completed two randomized, 6 min bouts of intense cycle exercise (84 ± 7% V̇O2peak). One exercise bout was immediately followed by 3 min PECO (220 mmHg) of the legs while the other exercise bout was followed by passive recovery. Males completed an additional session of testing with single leg PECO. The mean arterial pressure during PECO and control was greater in males compared to females (p = 0.004). The was a significant time by condition by sex interaction in the heart rate response to PECO (p = 0.027). There was also a significant condition by sex interaction in the ventilatory response to PECO (p = 0.026). In males, we observed a dose-dependent cardiovascular, but not ventilatory, response to muscle mass occluded (all p < 0.05). Our findings suggest the metaboreflex contribution to cardiorespiratory control during dynamic exercise is greater in males compared to females. The ventilatory response induced by double-leg occlusion but not single-leg occlusion, suggests that the ventilatory influence of the metaboreflex is less sensitive than the cardiovascular response and may be linked to the greater afferent activation induced by double-leg occlusion.
Collapse
Affiliation(s)
- Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Jenna M Benbaruj
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Owen T Payne
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Glen E Foster
- School of Health & Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Tharpe MA, Linder BA, Babcock MC, Watso JC, Pollin KU, Hutchison ZJ, Barnett AM, Culver MN, Kavazis AN, Brian MS, Robinson AT. Adjusting for muscle strength and body size attenuates sex differences in the exercise pressor reflex in young adults. Am J Physiol Heart Circ Physiol 2023; 325:H1418-H1429. [PMID: 37861651 PMCID: PMC10907031 DOI: 10.1152/ajpheart.00151.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Females typically exhibit lower blood pressure (BP) during exercise than males. However, recent findings indicate that adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI; metaboreflex isolation). In addition, body size is associated with HG strength but its contribution to sex differences in exercising BP is less appreciated. Therefore, the purpose of this study was to determine whether adjusting for strength and body size would attenuate sex differences in BP during HG and PEI. We obtained beat-to-beat BP in 110 participants (36 females, 74 males) who completed 2 min of isometric HG exercise at 40% of their maximal voluntary contraction followed by 3 min of PEI. In a subset (11 females, 17 males), we collected muscle sympathetic nerve activity (MSNA). Statistical analyses included independent t tests and mixed models (sex × time) with covariate adjustment for 40% HG force, height2, and body surface area. Females exhibited a lower absolute 40% HG force than male participants (Ps < 0.001). Females exhibited lower Δsystolic, Δdiastolic, and Δmean BPs during HG and PEI than males (e.g., PEI, Δsystolic BP, 15 ± 11 vs. 23 ± 14 mmHg; P = 0.004). After covariate adjustment, sex differences in BP responses were attenuated. There were no sex differences in MSNA. In a smaller strength-matched cohort, there was no sex × time interactions for BP responses (e.g., PEI systolic BP, P = 0.539; diastolic BP, P = 0.758). Our data indicate that sex differences in exercising BP responses are attenuated after adjusting for muscle strength and body size.NEW & NOTEWORTHY When compared with young males, females typically exhibit lower blood pressure (BP) during exercise. Adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI), but the contribution of body size is unknown. Novel findings include adjustments for muscle strength and body size attenuate sex differences in BP reactivity during exercise and PEI, and sex differences in body size contribute to HG strength differences.
Collapse
Affiliation(s)
- McKenna A Tharpe
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Braxton A Linder
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Division of Geriatric Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Kamila U Pollin
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- War-Related Injury and Illness Study Center, Veterans Affairs Medical Center, Washington, District of Columbia, United States
| | - Zach J Hutchison
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Alex M Barnett
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Meral N Culver
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Andreas N Kavazis
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Department of Kinesiology, University of New Hampshire, Durham, New Hampshire, United States
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
6
|
Notarius CF, Badrov MB, Tobushi T, Keir DA, Keys E, Floras JS. Cardiovascular reflex contributions to sympathetic inhibition during low intensity dynamic leg exercise in healthy middle-age. Physiol Rep 2023; 11:e15821. [PMID: 37701968 PMCID: PMC10498156 DOI: 10.14814/phy2.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Aging augments resting muscle sympathetic nerve activity (MSNA) and sympatho-inhibition during mild dynamic 1-leg exercise. To elucidate which reflexes elicit exercise-induced inhibition, we recruited 19 (9 men) healthy volunteers (mean age 56 ± 9 SD years), assessed their peak oxygen uptake (VO2peak ), and, on another day, measured heart rate (HR), blood pressure (BP) and MSNA (microneurography) at rest and during 1-leg cycling (2 min each at 0 load and 30%-40% VO2peak ), 3 times: (1) seated +2 min of postexercise circulatory occlusion (PECO) (elicit muscle metaboreflex); (2) supine (stimulate cardiopulmonary baroreflexes);and (3) seated, breathing 32% oxygen (suppress peripheral chemoreceptor reflex). While seated, MSNA decreased similarly during mild and moderate exercise (p < 0.001) with no increase during PECO (p = 0.44). Supine posture lowered resting MSNA (main effect p = 0.01) BP and HR. MSNA fell further (p = 0.04) along with diastolic BP and HR during mild, not moderate, supine cycling. Hyperoxia attenuated resting (main effect p = 0.01), but not exercise MSNA. In healthy middle-age, the cardiopulmonary baroreflex and arterial chemoreflex modulate resting MSNA, but contrary to previous observations in young subjects, without counter-regulatory offset by the sympatho-excitatory metaboreflex, resulting in an augmented sympatho-inhibitory response to mild dynamic leg exercise.
Collapse
Affiliation(s)
- Catherine F. Notarius
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Mark B. Badrov
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - Tomoyuki Tobushi
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - Daniel A. Keir
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- School of KinesiologyThe University of Western OntarioLondonOntarioCanada
| | - Evan Keys
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - John S. Floras
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
7
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
8
|
Habib K, Fallah B, Edgell H. Effect of Upright Posture on Endothelial Function in Women and Men. Front Physiol 2022; 13:846229. [PMID: 35399288 PMCID: PMC8988181 DOI: 10.3389/fphys.2022.846229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Women are more prone to orthostatic intolerance compared to men and have a greater vasodilatory capacity. We investigated the hypothesis that women would have greater peripheral flow-mediated dilation (FMD) while in the upright posture compared to men, which could contribute to this phenomenon. In young healthy women (age: 20 ± 3, BMI: 27 ± 5 kg/m2, n = 10) and men (age = 21 ± 2, BMI: 27 ± 8 kg/m2, n = 8), we assessed FMD of the brachial artery and hemodynamics to determine endothelial function during the supine and 70° head-up tilt postures (randomized). The brachial artery was kept at heart level in both trials. We observed that FMD increased in both sexes during tilt (Women: 11.9 ± 5.3 to 15.7 ± 5.6%; Men: 8.4 ± 3.2 to 14.6 ± 3.4%, Main effect of tilt p = 0.005) which was not due to changes in blood pressure or shear stress. There were no interaction effects between sex and posture. In a second cohort of women (age: 22 ± 3, BMI: 23 ± 3 kg/m2, n = 9) and men (age: 22 ± 2, BMI: 25 ± 8 kg/m2, n = 8), we investigated reactive hyperemia by peripheral arterial tonometry (LnRHI) via EndoPAT. Interestingly, we found that the EndoPAT response was decreased in both sexes during tilt (LnRHI: Men: 0.70 ± 0.28 to 0.59 ± 0.40, Women: 0.52 ± 0.23 to 0.30 ± 0.32, Main effect of tilt p = 0.037). We previously found that FMD is related to coronary responses to acetylcholine and adenosine whereas EndoPAT is related to coronary responses to dobutamine. Therefore, we suggest that sympathetic mediated dilation is attenuated in the upright posture while the increased vasodilatory response as measured by FMD in the tilt posture could be attributed to increasing metabolite production from postural muscles.
Collapse
Affiliation(s)
- Karim Habib
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Behzad Fallah
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Heather Edgell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Muscle Health Research Center, York University, Toronto, ON, Canada
| |
Collapse
|
9
|
Boulet LM, Atwater TL, Brown CV, Shafer BM, Vermeulen TD, Cotton PC, Day TA, Foster GE. Sex differences in the coronary vascular response to combined chemoreflex and metaboreflex stimulation in healthy humans. Exp Physiol 2021; 107:16-28. [PMID: 34788486 DOI: 10.1113/ep090034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Coronary blood flow in healthy humans is controlled by both local metabolic signalling and adrenergic activity: does the integration of these signals during acute hypoxia and adrenergic activation differ between sexes? What are the main findings and its importance? Both males and females exhibit an increase in coronary blood velocity in response to acute hypoxia, a response that is constrained by adrenergic stimulation in males but not females. These findings suggest that coronary blood flow control differs between males and females. ABSTRACT Coronary hyperaemia is mediated through multiple signalling pathways, including local metabolic messengers and adrenergic stimulation. This study aimed to determine whether the coronary vascular response to adrenergic stressors is different between sexes in normoxia and hypoxia. Young, healthy participants (n = 32; 16F) underwent three randomized trials of isometric handgrip exercise followed by post-exercise circulatory occlusion (PECO) to activate the muscle metaboreflex. End-tidal P O 2 was controlled at (1) normoxic levels throughout the trial, (2) 50 mmHg for the duration of the trial (hypoxia trial), or (3) 50 mmHg only during PECO (mixed trial). Mean left anterior descending coronary artery velocity (LADVmean ; transthoracic Doppler echocardiography), heart rate and blood pressure were assessed at baseline and during PECO. In normoxia, there was no change in LADVmean or cardiac workload induced by PECO in males and females. Acute hypoxia increased baseline LADVmean to a greater extent in males compared with females (P < 0.05), despite a similar increase in cardiac workload. The change in LADVmean induced by PECO was similar between sexes in normoxia (P = 0.31), greater in males during the mixed trial (male: 12.8 (7.7) cm/s vs. female: 8.1 (6.3) cm/s; P = 0.02) and reduced in males but not females in acute hypoxia (male: -4.8 (4.5) cm/s vs. female: 0.8 (6.2) cm/s; P = 0.006). In summary, sex differences in the coronary vasodilatory response to hypoxia were observed, and metaboreflex activation during hypoxia caused a paradoxical reduction in coronary blood velocity in males but not females.
Collapse
Affiliation(s)
- Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Taylor L Atwater
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Paul C Cotton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, British Columbia, Kelowna, Canada
| |
Collapse
|
10
|
Martin-Rincon M, Gelabert-Rebato M, Perez-Valera M, Galvan-Alvarez V, Morales-Alamo D, Dorado C, Boushel R, Hallen J, Calbet JAL. Functional reserve and sex differences during exercise to exhaustion revealed by post-exercise ischaemia and repeated supramaximal exercise. J Physiol 2021; 599:3853-3878. [PMID: 34159610 DOI: 10.1113/jp281293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/17/2021] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Females have lower fatigability than males during single limb isometric and dynamic contractions, but whether sex-differences exist during high-intensity whole-body exercise remains unknown. This study shows that males and females respond similarly to repeated supramaximal whole-body exercise, and that at task failure a large functional reserve remains in both sexes. Using post-exercise ischaemia with repeated exercise, we have shown that this functional reserve depends on the glycolytic component of substrate-level phosphorylation and is almost identical in both sexes. Metaboreflex activation during post-exercise ischaemia and the O2 debt per kg of active lean mass are also similar in males and females after supramaximal exercise. Females have a greater capacity to extract oxygen during repeated supramaximal exercise and reach lower P ETC O 2 , experiencing a larger drop in brain oxygenation than males, without apparent negative repercussion on performance. Females had no faster recovery of performance after accounting for sex differences in lean mass. ABSTRACT The purpose of this study was to ascertain what mechanisms explain sex differences at task failure and to determine whether males and females have a functional reserve at exhaustion. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation were determined in 18 males and 18 females (21-36 years old) in two sessions consisting of three bouts of constant-power exercise at 120% of V ̇ O 2 max until exhaustion interspaced by 20 s recovery periods. In one of the two sessions, the circulation of both legs was occluded instantaneously (300 mmHg) during the recovery periods. Females had a higher muscle O2 extraction during fatiguing supramaximal exercise than males. Metaboreflex activation, and lean mass-adjusted O2 deficit and debt were similar in males and females. Compared to males, females reached lower P ETC O 2 and brain oxygenation during supramaximal exercise, without apparent negative consequences on performance. After the occlusions, males and females were able to restart exercising at 120% of V ̇ O 2 max , revealing a similar functional reserve, which depends on glycolytic component of substrate-level phosphorylation and its rate of utilization. After ischaemia, muscle O2 extraction was increased, and muscle V ̇ O 2 was similarly reduced in males and females. The physiological response to repeated supramaximal exercise to exhaustion is remarkably similar in males and females when differences in lean mass are considered. Both sexes fatigue with a large functional reserve, which depends on the glycolytic energy supply, yet females have higher oxygen extraction capacity, but reduced P ETC O 2 and brain oxygenation.
Collapse
Affiliation(s)
- Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jostein Hallen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
11
|
Lee JB, Notay K, Seed JD, Nardone M, Omazic LJ, Millar PJ. Sex Differences in Muscle Metaboreflex Activation following Static Handgrip Exercise. Med Sci Sports Exerc 2021; 53:2596-2604. [PMID: 34310499 DOI: 10.1249/mss.0000000000002747] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Larger blood pressure (BP) responses to relative-intensity static exercise in males vs. females is thought to involve altered muscle metaboreflex activation, but whether this is due to an intrinsic sex difference in metabolite production or to differences in muscle strength and absolute load is unknown. METHODS Continuous BP and heart rate were recorded in 200 healthy young males and females (females: n = 109) during 2 minutes of static handgrip exercise at 30% of maximal voluntary contraction (MVC), followed by 2 minutes of post-exercise circulatory occlusion (PECO). Muscle sympathetic nerve activity (MSNA) was recorded in a subset of participants (n = 39; female n = 21), permitting calculation of signal-averaged resting sympathetic transduction (MSNA-diastolic BP). Sex differences were examined with and without statistical adjustment for MVC. Multivariate regression analyses were performed to identify predictors of BP responses. RESULTS Males had larger systolic BP responses (interactions, P < 0.0001) to static handgrip exercise (24 ± 10 vs. 17 ± 9 mmHg [mean ± SD], P < 0.0001) and PECO (20 ± 11 vs. 16 ± 9 mmHg, P < 0.0001). Adjustment for MVC abolished these sex differences in BP (interactions, P > 0.7). In the subset with MSNA, neither burst frequency or incidence responses to static handgrip exercise or PECO differed between males and females (interactions, P > 0.2). Resting sympathetic transduction was also similar (P = 0.8). Multivariate analysis showed that MVC, the change in MSNA, and sympathetic transduction were predictors of the systolic BP response to static handgrip but only MVC was associated with responses during PECO. CONCLUSION Sex differences in absolute contraction load contribute to differences in BP responses during muscle metaboreflex isolation using PECO. These data do not support an intrinsic effect of sex as being responsible for exercise BP differences between males and females.
Collapse
Affiliation(s)
- Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Assadpour E, Ivry I, Wasef S, Adeyinka B, Murray KR, Edgell H. Oral contraceptives and menstrual cycle influence autonomic reflex function. Physiol Rep 2021; 8:e14550. [PMID: 32889781 PMCID: PMC7507440 DOI: 10.14814/phy2.14550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Progesterone and its analogues are known to influence ventilation. Therefore, the purpose of this study was to investigate the role of endogenous and pharmaceutical female sex hormones in ventilatory control during the activation of the metaboreflex, mechanoreflex, and CO2 chemoreflex. Women aged 18–30 taking (n = 14) or not taking (n = 12) oral contraceptives (OC and NOC, respectively) were tested in the low hormone (LH) and high hormone (HH) conditions corresponding to the early follicular and mid‐luteal phases (NOC) or placebo and high‐dose pills (OC). Women underwent three randomized trials: (a) 3 min of passive leg movement (PLM), (b) 2 min of 40% maximal voluntary handgrip exercise followed by 2 min of post‐exercise circulatory occlusion (PECO), and (c) 5 min of breathing 5% CO2. We primarily measured hemodynamics and ventilation. During PLM, the OC group had a smaller pressor response (p = .012). During PECO, the OC group similarly exhibited a smaller pressor response (p = .043) and also exhibited a greater ventilatory response (p = .024). Lastly, in response to breathing 5% CO2, women in the HH phase had a greater ventilatory response (p = .022). We found that OC use attenuates the pressor response to both the metaboreflex and mechanoreflex while increasing the ventilatory response to metaboreflex activation. We also found evidence of an enhanced CO2 chemoreflex in the HH phase. We hypothesize that OC effects are from the chronic upregulation of pulmonary and vascular β‐adrenergic receptors. We further suggest that the increased cyclic progesterone in the HH phase enhances the chemoreflex.
Collapse
Affiliation(s)
- Elnaz Assadpour
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Ilana Ivry
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sara Wasef
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Baithat Adeyinka
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Kevin R Murray
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Heather Edgell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
13
|
Saha M, Sun QJ, Hildreth CM, Burke PGR, Phillips JK. Augmented Respiratory-Sympathetic Coupling and Hemodynamic Response to Acute Mild Hypoxia in Female Rodents With Chronic Kidney Disease. Front Physiol 2021; 12:623599. [PMID: 34113258 PMCID: PMC8185289 DOI: 10.3389/fphys.2021.623599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/15/2021] [Indexed: 11/15/2022] Open
Abstract
Carotid body feedback and hypoxia may serve to enhance respiratory–sympathetic nerve coupling (respSNA) and act as a driver of increased blood pressure. Using the Lewis polycystic kidney (LPK) rat model of chronic kidney disease, we examined respSNA in adult female rodents with CKD and their response to acute hypoxia or hypercapnia compared to Lewis control animals. Under urethane anesthesia, phrenic nerve activity, splanchnic sympathetic nerve activity (sSNA), and renal sympathetic nerve activity (rSNA) were recorded under baseline conditions and during mild hypoxic or hypercapnic challenges. At baseline, tonic SNA and blood pressure were greater in female LPK rats versus Lewis rats (all P < 0.05) and respSNA was at least two-fold larger [area under the curve (AUC), sSNA: 7.8 ± 1.1 vs. 3.4 ± 0.7 μV s, rSNA: 11.5 ± 3 vs. 4.8 ± 0.7 μV s, LPK vs. Lewis, both P < 0.05]. Mild hypoxia produced a larger pressure response in LPK [Δ mean arterial pressure (MAP) 30 ± 6 vs. 12 ± 6 mmHg] and augmented respSNA (ΔAUC, sSNA: 8.9 ± 3.4 vs. 2 ± 0.7 μV s, rSNA: 6.1 ± 1.2 vs. 3.1 ± 0.7 μV s, LPK vs. Lewis, all P ≤ 0.05). In contrast, central chemoreceptor stimulation produced comparable changes in blood pressure and respSNA (ΔMAP 13 ± 3 vs. 9 ± 5 mmHg; respSNA ΔAUC, sSNA: 2.5 ± 1 vs. 1.3 ± 0.7 μV s, rSNA: 4.2 ± 0.9 vs. 3.5 ± 1.4 μV s, LPK vs. Lewis, all P > 0.05). These results demonstrate that female rats with CKD exhibit heightened respSNA coupling at baseline that is further augmented by mild hypoxia, and not by hypercapnia. This mechanism may be a contributing driver of hypertension in this animal model of CKD.
Collapse
Affiliation(s)
- Manash Saha
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Nephrology, National Institute of Kidney Disease and Urology, Dhaka, Bangladesh.,Graduate School of Medicine, Wollongong University, Wollongong, NSW, Australia
| | - Qi-Jian Sun
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cara M Hildreth
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter G R Burke
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | | |
Collapse
|
14
|
Tarumi T, Yamabe T, Fukuie M, Zhu DC, Zhang R, Ogoh S, Sugawara J. Brain blood and cerebrospinal fluid flow dynamics during rhythmic handgrip exercise in young healthy men and women. J Physiol 2021; 599:1799-1813. [PMID: 33481257 DOI: 10.1113/jp281063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS The cerebral fluid response to exercise, including the arterial and venous cerebral blood flow (CBF) and cerebrospinal fluid (CSF), currently remains unknown. We used time-resolved phase-contrast magnetic resonance imaging to assess changes in CBF and CSF flow dynamics during moderate-intensity rhythmic handgrip (RHG) exercise in young healthy men and women. Our data demonstrated that RHG increases the cerebral arterial inflow and venous outflow while decreasing the pulsatile CSF flow during RHG. Furthermore, changes in blood stroke volume at the measured arteries, veins, and sinuses and CSF stroke volume at the cerebral aqueduct were positively correlated with each other during RHG. Male and female participants exhibited distinct blood pressure responses to RHG, but their cerebral fluid responses were similar. These results collectively suggest that RHG influences both CBF and CSF flow dynamics in a way that is consistent with the Monro-Kellie hypothesis to maintain intracranial volume-pressure homeostasis in young healthy adults. ABSTRACT Cerebral blood flow (CBF) increases during exercise, but its impact on cerebrospinal fluid (CSF) flow remains unknown. This study investigated CBF and CSF flow dynamics during moderate-intensity rhythmic handgrip (RHG) exercise in young healthy men and women. Twenty-six participants (12 women) underwent the RHG and resting control conditions in random order. Participants performed 3 sets of RHG, during which cine phase-contrast magnetic resonance imaging (PC-MRI) was performed to measure blood stroke volume (SV) and flow rate in the internal carotid (ICA) and vertebral (VA) arteries, the internal jugular vein (IJV), the superior sagittal (SSS) and straight sinuses (SRS), and CSF SV and flow rate in the cerebral aqueduct of Sylvius. Blood pressure, end-tidal CO2 (EtCO2 ), heart rate (HR), and respiratory rate were simultaneously measured during cine PC-MRI scans. Compared with control conditions, RHG showed significant elevations of HR, mean arterial pressure, and respiratory rate with a mild reduction of EtCO2 (all P < 0.05). RHG decreased blood SV in the measured arteries, veins, and sinuses and CSF SV in the aqueduct (all P < 0.05). Conversely, RHG increased blood flow in the ICA, VA, and IJV (all P < 0.05). At the aqueduct, RHG decreased the absolute CSF flow rate (P = 0.0307), which was calculated as a sum of the caudal and cranial CSF flow rates. Change in the ICA SV was positively correlated with changes in the IJV, SSS, SRS, and aqueductal SV during RHG (all P < 0.05). These findings demonstrate a close coupling between the CBF and CSF flow dynamics during RHG in young healthy adults.
Collapse
Affiliation(s)
- Takashi Tarumi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA
| | - Takayuki Yamabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Marina Fukuie
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-shi, Saitama, Japan
| | - Jun Sugawara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Ashley JD, Shelley JH, Sun J, Song J, Trent JA, Ambrosio LD, Larson DJ, Larson RD, Yabluchanskiy A, Kellawan JM. Cerebrovascular responses to graded exercise in young healthy males and females. Physiol Rep 2020; 8:e14622. [PMID: 33112497 PMCID: PMC7592493 DOI: 10.14814/phy2.14622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/04/2020] [Indexed: 01/06/2023] Open
Abstract
Although systemic sex-specific differences in cardiovascular responses to exercise are well established, the comparison of sex-specific cerebrovascular responses to exercise has gone under-investigated especially, during high intensity exercise. Therefore, our purpose was to compare cerebrovascular responses in males and females throughout a graded exercise test (GXT). Twenty-six participants (13 Females and 13 Males, 24 ± 4 yrs.) completed a GXT on a recumbent cycle ergometer consisting of 3-min stages. Each sex completed 50W, 75W, 100W stages. Thereafter, power output increased 30W/stage for females and 40W/stage for males until participants were unable to maintain 60-80 RPM. The final stage completed by the participant was considered maximum workload(Wmax ). Respiratory gases (End-tidal CO2 , EtCO2 ), middle cerebral artery blood velocity (MCAv), heart rate (HR), non-invasive mean arterial pressure (MAP), cardiac output (CO), and stroke volume (SV) were continuously recorded on a breath-by-breath or beat-by-beat basis. Cerebral perfusion pressure, CPP = MAP (0. 7,355 distance from heart-level to doppler probe) and cerebral vascular conductance index, CVCi = MCAv/CPP 100mmHg were calculated. The change from baseline (Δ) in MCAv was similar between the sexes during the GXT (p = .091, ωp2 = 0.05). However, ΔCPP (p < .001, ωp2 = 0.25) was greater in males at intensities ≥ 80% Wmax and ΔCVCi (p = .005, ωp2 = 0.15) was greater in females at 100% Wmax . Δ End-tidal CO2 (ΔEtCO2 ) was not different between the sexes during exercise (p = .606, ωp2 = -0.03). These data suggest there are sex-specific differences in cerebrovascular control, and these differences may only be identifiable at high and severe intensity exercise.
Collapse
Affiliation(s)
- John D. Ashley
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Joe H. Shelley
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jongjoo Sun
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jiwon Song
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jacob A. Trent
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Luis D. Ambrosio
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Daniel J. Larson
- Department of Health and Exercise Science, Sport, Health, and Exercise Data Analytics LaboratoryUniversity of OklahomaNormanOKUSA
| | - Rebecca D. Larson
- Department of Health and Exercise ScienceBody Composition and Physical Performance Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Andriy Yabluchanskiy
- Oklahoma Center for GeroscienceDepartment of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - J. Mikhail Kellawan
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| |
Collapse
|