1
|
Vaughan AJ, McMeekin LJ, Hine K, Stubbs IW, Codadu NK, Cockell S, Hill JT, Cowell R, Trevelyan AJ, Parrish RR. RNA Sequencing Demonstrates Ex Vivo Neocortical Transcriptomic Changes Induced by Epileptiform Activity in Male and Female Mice. eNeuro 2024; 11:ENEURO.0520-23.2024. [PMID: 38664009 PMCID: PMC11129778 DOI: 10.1523/eneuro.0520-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Seizures are generally associated with epilepsy but may also be a symptom of many other neurological conditions. A hallmark of a seizure is the intensity of the local neuronal activation, which can drive large-scale gene transcription changes. Such changes in the transcriptional profile likely alter neuronal function, thereby contributing to the pathological process. Therefore, there is a strong clinical imperative to characterize how gene expression is changed by seizure activity. To this end, we developed a simplified ex vivo technique for studying seizure-induced transcriptional changes. We compared the RNA sequencing profile in mouse neocortical tissue with up to 3 h of epileptiform activity induced by 4-aminopyridine (4AP) relative to control brain slices not exposed to the drug. We identified over 100 genes with significantly altered expression after 4AP treatment, including multiple genes involved in MAPK, TNF, and neuroinflammatory signaling pathways, all of which have been linked to epilepsy previously. Notably, the patterns in male and female brain slices were almost identical. Various immediate early genes were among those showing the largest upregulation. The set of down-regulated genes included ones that might be expected either to increase or to decrease neuronal excitability. In summary, we found the seizure-induced transcriptional profile complex, but the changes aligned well with an analysis of published epilepsy-associated genes. We discuss how simple models may provide new angles for investigating seizure-induced transcriptional changes.
Collapse
Affiliation(s)
- Alec J Vaughan
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah 84602
| | - Laura J McMeekin
- Department of Neurology, University of Alabama, Birmingham, Birmingham, Alabama 35233
| | - Kutter Hine
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah 84602
| | - Isaac W Stubbs
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah 84602
| | - Neela K Codadu
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Simon Cockell
- School of Biomedical, Nutritional and Sports Science, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah 84602
| | - Rita Cowell
- Department of Neurology, University of Alabama, Birmingham, Birmingham, Alabama 35233
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - R Ryley Parrish
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
2
|
Wenzel M, Huberfeld G, Grayden DB, de Curtis M, Trevelyan AJ. A debate on the neuronal origin of focal seizures. Epilepsia 2023; 64 Suppl 3:S37-S48. [PMID: 37183507 DOI: 10.1111/epi.17650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
A critical question regarding how focal seizures start is whether we can identify particular cell classes that drive the pathological process. This was the topic for debate at the recent International Conference for Technology and Analysis of Seizures (ICTALS) meeting (July 2022, Bern, CH) that we summarize here. The debate has been fueled in recent times by the introduction of powerful new ways to manipulate subpopulations of cells in relative isolation, mostly using optogenetics. The motivation for resolving the debate is to identify novel targets for therapeutic interventions through a deeper understanding of the etiology of seizures.
Collapse
Affiliation(s)
- Michael Wenzel
- Department of Epileptology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Gilles Huberfeld
- Neurology Department, Hopital Fondation Adolphe de Rothschild, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marco de Curtis
- Epilepsy Unit, Fondazione I.R.C.C.S., Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Rockley K, Roberts R, Jennings H, Jones K, Davis M, Levesque P, Morton M. An integrated approach for early in vitro seizure prediction utilizing hiPSC neurons and human ion channel assays. Toxicol Sci 2023; 196:126-140. [PMID: 37632788 DOI: 10.1093/toxsci/kfad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.1, Nav1.2, Nav1.6, Kv7.2/7.3, Kv7.3/7.5, Kv1.1, Kv4.2, KCa4.1, Kv2.1, Kv3.1, KCa1.1, GABA α1β2γ2, nicotinic α4β2, NMDA 1/2A). These were selected based on linkage to seizure in genetic/pharmacological studies. Fourteen compounds demonstrated at least one "hit" against the seizure panel and 11 compounds inhibited 2 or more ion channels. Next, we assessed the impact of the 15 compounds on electrical signaling using human-induced pluripotent stem cell neurons in microelectrode array (MEA). The CNS active therapies (amoxapine, bupropion, chlorpromazine, clozapine, diphenhydramine, paroxetine, quetiapine) all caused characteristic changes to electrical activity in key parameters indicative of seizure such as network burst frequency and duration. The GABA antagonist picrotoxin increased all parameters, but the antibiotics amoxicillin and enoxacin only showed minimal changes. Acetaminophen, included as a negative control, caused no changes in any of the parameters assessed. Overall, pro-seizurogenic compounds showed a distinct fingerprint in the ion channel/MEA panel. These studies highlight the potential utility of an integrated in vitro approach for early seizure prediction to provide mechanistic information and to support optimal drug design in early development, saving time and resources.
Collapse
Affiliation(s)
| | - Ruth Roberts
- ApconiX, Macclesfield SK10 4TG, UK
- Department of Biosciences, University of Birmingham, Edgbaston B15 1TT, UK
| | | | | | - Myrtle Davis
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | |
Collapse
|
4
|
Graham RT, Parrish RR, Alberio L, Johnson EL, Owens L, Trevelyan AJ. Optogenetic stimulation reveals a latent tipping point in cortical networks during ictogenesis. Brain 2023; 146:2814-2827. [PMID: 36572952 PMCID: PMC10316782 DOI: 10.1093/brain/awac487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Brain-state transitions are readily apparent from changes in brain rhythms,1 but are difficult to predict, suggestive that the underlying cause is latent to passive recording methods. Among the most important transitions, clinically, are the starts of seizures. We here show that an 'active probing' approach may have several important benefits for epileptic management, including by helping predict these transitions. We used mice expressing the optogenetic actuator, channelrhodopsin, in pyramidal cells, allowing this population to be stimulated in isolation. Intermittent stimulation at frequencies as low as 0.033 Hz (period = 30 s) delayed the onset of seizure-like events in an acute brain slice model of ictogenesis, but the effect was lost if stimulation was delivered at even lower frequencies (1/min). Notably, active probing additionally provides advance indication of when seizure-like activity is imminent, revealed by monitoring the postsynaptic response to stimulation. The postsynaptic response, recorded extracellularly, showed an all-or-nothing change in both amplitude and duration, a few hundred seconds before seizure-like activity began-a sufficient length of time to provide a helpful warning of an impending seizure. The change in the postsynaptic response then persisted for the remainder of the recording, indicative of a state change from a pre-epileptic to a pro-epileptic network. This occurred in parallel with a large increase in the stimulation-triggered Ca2+ entry into pyramidal dendrites, and a step increase in the number of evoked postsynaptic action potentials, both consistent with a reduction in the threshold for dendritic action potentials. In 0 Mg2+ bathing media, the reduced threshold was not associated with changes in glutamatergic synaptic function, nor of GABAergic release from either parvalbumin or somatostatin interneurons, but simulations indicate that the step change in the optogenetic response can instead arise from incremental increases in intracellular [Cl-]. The change in the response to stimulation was replicated by artificially raising intracellular [Cl-], using the optogenetic chloride pump, halorhodopsin. By contrast, increases in extracellular [K+] cannot account for the firing patterns in the response to stimulation, although this, and other cellular changes, may contribute to ictal initiation in other circumstances. We describe how these various cellular changes form a synergistic network of positive feedback mechanisms, which may explain the precipitous nature of seizure onset. This model of seizure initiation draws together several major lines of epilepsy research as well as providing an important proof-of-principle regarding the utility of open-loop brain stimulation for clinical management of the condition.
Collapse
Affiliation(s)
- Robert T Graham
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - R Ryley Parrish
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Alberio
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emily L Johnson
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Owens
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew J Trevelyan
- Medical School, Newcastle University Biosciences Institute, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
5
|
Guerrero-Romero F, Micke O, Simental-Mendía LE, Rodríguez-Morán M, Vormann J, Iotti S, Banjanin N, Rosanoff A, Baniasadi S, Pourdowlat G, Nechifor M. Importance of Magnesium Status in COVID-19. BIOLOGY 2023; 12:735. [PMID: 37237547 PMCID: PMC10215232 DOI: 10.3390/biology12050735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
A large amount of published research points to the interesting concept (hypothesis) that magnesium (Mg) status may have relevance for the outcome of COVID-19 and that Mg could be protective during the COVID disease course. As an essential element, Mg plays basic biochemical, cellular, and physiological roles required for cardiovascular, immunological, respiratory, and neurological functions. Both low serum and dietary Mg have been associated with the severity of COVID-19 outcomes, including mortality; both are also associated with COVID-19 risk factors such as older age, obesity, type 2 diabetes, kidney disease, cardiovascular disease, hypertension, and asthma. In addition, populations with high rates of COVID-19 mortality and hospitalization tend to consume diets high in modern processed foods, which are generally low in Mg. In this review, we review the research to describe and consider the possible impact of Mg and Mg status on COVID-19 showing that (1) serum Mg between 2.19 and 2.26 mg/dL and dietary Mg intakes > 329 mg/day could be protective during the disease course and (2) inhaled Mg may improve oxygenation of hypoxic COVID-19 patients. In spite of such promise, oral Mg for COVID-19 has thus far been studied only in combination with other nutrients. Mg deficiency is involved in the occurrence and aggravation of neuropsychiatric complications of COVID-19, including memory loss, cognition, loss of taste and smell, ataxia, confusion, dizziness, and headache. Potential of zinc and/or Mg as useful for increasing drug therapy effectiveness or reducing adverse effect of anti-COVID-19 drugs is reviewed. Oral Mg trials of patients with COVID-19 are warranted.
Collapse
Affiliation(s)
- Fernando Guerrero-Romero
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Oliver Micke
- Department of Radiation Therapy and Radiation Oncology, Franziskus Hospital, 33615 Bielefeld, Germany;
| | - Luis E. Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Martha Rodríguez-Morán
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Juergen Vormann
- Institute for Prevention and Nutrition, 85737 Ismaning, Germany;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Universita di Bologna, 40126 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Nikolina Banjanin
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andrea Rosanoff
- CMER Center for Magnesium Education & Research, Pahoa, HI 96778, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Mihai Nechifor
- Department of Pharmacology, Gr. T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
6
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Vasilopoulos N, Kaplanian A, Vinos M, Katsaiti Y, Christodoulou O, Denaxa M, Skaliora I. The role of selective SATB1 deletion in somatostatin expressing interneurons on endogenous network activity and the transition to epilepsy. J Neurosci Res 2023; 101:424-447. [PMID: 36541427 DOI: 10.1002/jnr.25156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/24/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Somatostatin (SST) expressing interneurons are the second most abundant group of inhibitory neurons in the neocortex. They mainly target the apical dendrites of excitatory pyramidal cells and are implicated in feedforward and feedback inhibition. In the present study, we employ a conditional knockout mouse, in which the transcription factor Satb1 is selectively deleted in SST-expressing interneurons resulting to the reduction of their number across the somatosensory barrel field. Our goal was to investigate the effect of the reduced number of Satb1 mutant SST-interneurons on (i) the endogenous cortical network activity (spontaneously recurring Up/Down states), and (ii) the transition to epileptiform activity. By conducting LFP recordings in acute brain slices from young male and female mice, we demonstrate that mutant animals exhibit significant changes in network excitability, reflected in increased Up state occurrence, decreased Up state duration and higher levels of extracellular spiking activity. Epileptiform activity was induced through two distinct and widely used in vitro protocols: the low magnesium and the 4-Aminopyridine (4-AP) model. In the former, slices from mutant animals manifested shorter latency for the expression of stable seizure-like events. In contrast, when epilepsy was induced by 4-AP, no significant differences were reported. We conclude that normal SST-interneuron function has a significant role both in the regulation of the endogenous network activity, and in the transition to seizure-like discharges in a context-dependent manner.
Collapse
Affiliation(s)
- Nikos Vasilopoulos
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Ani Kaplanian
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Michael Vinos
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Department of History and Philosophy of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Yolanda Katsaiti
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Biology, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Ourania Christodoulou
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Myrto Denaxa
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Irini Skaliora
- Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Department of History and Philosophy of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
8
|
Scalmani P, Paterra R, Mantegazza M, Avoli M, de Curtis M. Involvement of GABAergic Interneuron Subtypes in 4-Aminopyridine-Induced Seizure-Like Events in Mouse Entorhinal Cortex in Vitro. J Neurosci 2023; 43:1987-2001. [PMID: 36810229 PMCID: PMC10027059 DOI: 10.1523/jneurosci.1190-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Single-unit recordings performed in temporal lobe epilepsy patients and in models of temporal lobe seizures have shown that interneurons are active at focal seizure onset. We performed simultaneous patch-clamp and field potential recordings in entorhinal cortex slices of GAD65 and GAD67 C57BL/6J male mice that express green fluorescent protein in GABAergic neurons to analyze the activity of specific interneuron (IN) subpopulations during acute seizure-like events (SLEs) induced by 4-aminopyridine (4-AP; 100 μm). IN subtypes were identified as parvalbuminergic (INPV, n = 17), cholecystokinergic (INCCK), n = 13], and somatostatinergic (INSOM, n = 15), according to neurophysiological features and single-cell digital PCR. INPV and INCCK discharged at the start of 4-AP-induced SLEs characterized by either low-voltage fast or hyper-synchronous onset pattern. In both SLE onset types, INSOM fired earliest before SLEs, followed by INPV and INCCK discharges. Pyramidal neurons became active with variable delays after SLE onset. Depolarizing block was observed in ∼50% of cells in each INs subgroup, and it was longer in IN (∼4 s) than in pyramidal neurons (<1 s). As SLE evolved, all IN subtypes generated action potential bursts synchronous with the field potential events leading to SLE termination. High-frequency firing throughout the SLE occurred in one-third of INPV and INSOM We conclude that entorhinal cortex INs are very active at the onset and during the progression of SLEs induced by 4-AP. These results support earlier in vivo and in vivo evidence and suggest that INs have a preferential role in focal seizure initiation and development.SIGNIFICANCE STATEMENT Focal seizures are believed to result from enhanced excitation. Nevertheless, we and others demonstrated that cortical GABAergic networks may initiate focal seizures. Here, we analyzed for the first time the role of different IN subtypes in seizures generated by 4-aminopyridine in the mouse entorhinal cortex slices. We found that in this in vitro focal seizure model, all IN types contribute to seizure initiation and that INs precede firing of principal cells. This evidence is in agreement with the active role of GABAergic networks in seizure generation.
Collapse
Affiliation(s)
| | - Rosina Paterra
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Massimo Mantegazza
- Université Côte d'Azur, 06560 Valbonne-Sophia Antipolis, France
- Institute of Molecular and Cellular Pharmacology, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7275, Laboratoire d'Excellence/Canaux Ioniques d'Intérêt Thérapeutique, 06650 Valbonne-Sophia Antipolis, France
- Institut National de la Santé et de la Recherche Médicale, 06650 Valbonne-Sophia Antipolis, France
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Departments of Neurology and Neurosurgery and Physiology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
9
|
Trevelyan AJ, Graham RT, Parrish RR, Codadu NK. Synergistic Positive Feedback Mechanisms Underlying Seizure Initiation. Epilepsy Curr 2023; 23:38-43. [PMID: 36923333 PMCID: PMC10009126 DOI: 10.1177/15357597221127163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Investigations into seizure initiation, in recent years, have focused almost entirely upon alterations of interneuronal function, chloride homeostasis, and extracellular potassium levels. In contrast, little attention has been directed toward a possible role of dendritic plateau potentials in the actual ictogenic transition, despite a substantial literature dating back 40 years regarding its importance generally in epilepsy. Here, we argue that an increase in dendritic excitability, coordinated across the population of pyramidal cells, is a key stage in ictogenesis.
Collapse
Affiliation(s)
- Andrew J. Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Robert T. Graham
- Queen Square Institute of Neurology, University College London, United Kingdom
| | - R. Ryley Parrish
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Neela K. Codadu
- Queen Square Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
10
|
Li J, Feng P, Zhao L, Chen J, Du M, Song J, Wu Y. Transition behavior of the seizure dynamics modulated by the astrocyte inositol triphosphate noise. CHAOS (WOODBURY, N.Y.) 2022; 32:113121. [PMID: 36456345 DOI: 10.1063/5.0124123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Epilepsy is a neurological disorder with recurrent seizures, which convey complex dynamical characteristics including chaos and randomness. Until now, the underlying mechanism has not been fully elucidated, especially the bistable property beneath the epileptic random induction phenomena in certain conditions. Inspired by the recent finding that astrocyte GTPase-activating protein (G-protein)-coupled receptors could be involved in stochastic epileptic seizures, we proposed a neuron-astrocyte network model, incorporating the noise of the astrocytic second messenger, inositol triphosphate (IP3) that is modulated by G-protein-coupled receptor activation. Based on this model, we have statistically analyzed the transitions of epileptic seizures by performing repeatable simulation trials. Our simulation results show that the increase in the IP3 noise intensity induces depolarization-block epileptic seizures together with an increase in neuronal firing frequency, consistent with corresponding experiments. Meanwhile, the bistable states of the seizure dynamics were present under certain noise intensities, during which the neuronal firing pattern switches between regular sparse spiking and epileptic seizure states. This random presence of epileptic seizures is absent when the noise intensity continues to increase, accompanying with an increase in the epileptic depolarization block duration. The simulation results also shed light on the fact that calcium signals in astrocytes play significant roles in the pattern formations of the epileptic seizure. Our results provide a potential pathway for understanding the epileptic randomness in certain conditions.
Collapse
Affiliation(s)
- Jiajia Li
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Peihua Feng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, National Demonstration Center for Experimental Mechanics Education, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Zhao
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Junying Chen
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
| | - Mengmeng Du
- School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan 430070, China
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, National Demonstration Center for Experimental Mechanics Education, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Gentiletti D, de Curtis M, Gnatkovsky V, Suffczynski P. Focal seizures are organized by feedback between neural activity and ion concentration changes. eLife 2022; 11:68541. [PMID: 35916367 PMCID: PMC9377802 DOI: 10.7554/elife.68541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Human and animal EEG data demonstrate that focal seizures start with low-voltage fast activity, evolve into rhythmic burst discharges and are followed by a period of suppressed background activity. This suggests that processes with dynamics in the range of tens of seconds govern focal seizure evolution. We investigate the processes associated with seizure dynamics by complementing the Hodgkin-Huxley mathematical model with the physical laws that dictate ion movement and maintain ionic gradients. Our biophysically realistic computational model closely replicates the electrographic pattern of a typical human focal seizure characterized by low voltage fast activity onset, tonic phase, clonic phase and postictal suppression. Our study demonstrates, for the first time in silico, the potential mechanism of seizure initiation by inhibitory interneurons via the initial build-up of extracellular K+ due to intense interneuronal spiking. The model also identifies ionic mechanisms that may underlie a key feature in seizure dynamics, i.e., progressive slowing down of ictal discharges towards the end of seizure. Our model prediction of specific scaling of inter-burst intervals is confirmed by seizure data recorded in the whole guinea pig brain in vitro and in humans, suggesting that the observed termination pattern may hold across different species. Our results emphasize ionic dynamics as elementary processes behind seizure generation and indicate targets for new therapeutic strategies.
Collapse
|
12
|
Mahadevan A, Codadu NK, Parrish RR. Xenon LFP Analysis Platform Is a Novel Graphical User Interface for Analysis of Local Field Potential From Large-Scale MEA Recordings. Front Neurosci 2022; 16:904931. [PMID: 35844228 PMCID: PMC9285004 DOI: 10.3389/fnins.2022.904931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
High-density multi-electrode array (HD-MEA) has enabled neuronal measurements at high spatial resolution to record local field potentials (LFP), extracellular action potentials, and network-wide extracellular recording on an extended spatial scale. While we have advanced recording systems with over 4,000 electrodes capable of recording data at over 20 kHz, it still presents computational challenges to handle, process, extract, and view information from these large recordings. We have created a computational method, and an open-source toolkit built in Python, rendered on a web browser using Plotly’s Dash for extracting and viewing the data and creating interactive visualization. In addition to extracting and viewing entire or small chunks of data sampled at lower or higher frequencies, respectively, it provides a framework to collect user inputs, analyze channel groups, generate raster plots, view quick summary measures for LFP activity, detect and isolate noise channels, and generate plots and visualization in both time and frequency domain. Incorporated into our Graphical User Interface (GUI), we also created a novel seizure detection method, which can be used to detect the onset of seizures in all or a selected group of channels and provide the following measures of seizures: distance, duration, and propagation across the region of interest. We demonstrate the utility of this toolkit, using datasets collected from an HD-MEA device comprising of 4,096 recording electrodes. For the current analysis, we demonstrate the toolkit and methods with a low sampling frequency dataset (300 Hz) and a group of approximately 400 channels. Using this toolkit, we present novel data demonstrating increased seizure propagation speed from brain slices of Scn1aHet mice compared to littermate controls. While there have been advances in HD-MEA recording systems with high spatial and temporal resolution, limited tools are available for researchers to view and process these big datasets. We now provide a user-friendly toolkit to analyze LFP activity obtained from large-scale MEA recordings with translatable applications to EEG recordings and demonstrate the utility of this new graphic user interface with novel biological findings.
Collapse
Affiliation(s)
- Arjun Mahadevan
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Neela K. Codadu
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| | - R. Ryley Parrish
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
- *Correspondence: R. Ryley Parrish,
| |
Collapse
|
13
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. In vitro Oscillation Patterns Throughout the Hippocampal Formation in a Rodent Model of Epilepsy. Neuroscience 2021; 479:1-21. [PMID: 34710537 DOI: 10.1016/j.neuroscience.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Specific oscillatory patterns are considered biomarkers of pathological neuronal network in brain diseases, such as epilepsy. However, the dynamics of underlying oscillations during the epileptogenesis throughout the hippocampal formation in the temporal lobe epilepsy is not clear. Here, we characterized in vitro oscillatory patterns within the hippocampal formation of epileptic rats, under 4-aminopyridine (4-AP)-induced hyperexcitability and during the spontaneous network activity, at two periods of epileptogenesis. First, at the beginning of epileptic chronic phase, 30 days post-pilocarpine-induced Status Epilepticus (SE). Second, at the established epilepsy, 60 days post-SE. The 4-AP-bathed slices from epileptic rats had increased susceptibility to ictogenesis in CA1 at 30 days post-SE, and in entorhinal cortex and dentate gyrus at 60 days post-SE. Higher power and phase coherence were detected mainly for gamma and/or high frequency oscillations (HFOs), in a region- and stage-specific manner. Interestingly, under spontaneous network activity, even without 4-AP-induced hyperexcitability, slices from epileptic animals already exhibited higher power of gamma and HFOs in different areas of hippocampal formation at both periods of epileptogenesis, and higher phase coherence in fast ripples at 60 days post-SE. These findings reinforce the critical role of gamma and HFOs in each one of the hippocampal formation areas during ongoing neuropathological processes, tuning the neuronal network to epilepsy.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
| |
Collapse
|
14
|
Ergina JL, Amakhin DV, Postnikova TY, Soboleva EB, Zaitsev AV. Short-Term Epileptiform Activity Potentiates Excitatory Synapses but Does Not Affect Intrinsic Membrane Properties of Pyramidal Neurons in the Rat Hippocampus In Vitro. Biomedicines 2021; 9:biomedicines9101374. [PMID: 34680489 PMCID: PMC8533424 DOI: 10.3390/biomedicines9101374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Even brief epileptic seizures can lead to activity-dependent structural remodeling of neural circuitry. Animal models show that the functional plasticity of synapses and changes in the intrinsic excitability of neurons can be crucial for epileptogenesis. However, the exact mechanisms underlying epileptogenesis remain unclear. We induced epileptiform activity in rat hippocampal slices for 15 min using a 4-aminopyridine (4-AP) in vitro model and observed hippocampal hyperexcitability for at least 1 h. We tested several possible mechanisms of this hyperexcitability, including changes in intrinsic membrane properties of neurons and presynaptic and postsynaptic alterations. Neither input resistance nor other essential biophysical properties of hippocampal CA1 pyramidal neurons were affected by epileptiform activity. The glutamate release probability also remained unchanged, as the frequency of miniature EPSCs and the paired amplitude ratio of evoked responses did not change after epileptiform activity. However, we found an increase in the AMPA/NMDA ratio, suggesting alterations in the properties of postsynaptic glutamatergic receptors. Thus, the increase in excitability of hippocampal neural networks is realized through postsynaptic mechanisms. In contrast, the intrinsic membrane properties of neurons and the probability of glutamate release from presynaptic terminals are not affected in a 4-AP model.
Collapse
|
15
|
Tukker AM, Westerink RHS. Novel test strategies for in vitro seizure liability assessment. Expert Opin Drug Metab Toxicol 2021; 17:923-936. [PMID: 33595380 PMCID: PMC8367052 DOI: 10.1080/17425255.2021.1876026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The increasing incidence of mental illnesses and neurodegenerative diseases results in a high demand for drugs targeting the central nervous system (CNS). These drugs easily reach the CNS, have a high affinity for CNS targets, and are prone to cause seizures as an adverse drug reaction. Current seizure liability assessment heavily depends on in vivo or ex vivo animal models and is therefore ethically debated, labor intensive, expensive, and not always predictive for human risk. AREAS COVERED The demand for CNS drugs urges the development of alternative safety assessment strategies. Yet, the complexity of the CNS hampers reliable detection of compound-induced seizures. This review provides an overview of the requirements of in vitro seizure liability assays and highlights recent advances, including micro-electrode array (MEA) recordings using rodent and human cell models. EXPERT OPINION Successful and cost-effective replacement of in vivo and ex vivo models for seizure liability screening can reduce animal use for drug development, while increasing the predictive value of the assays, particularly if human cell models are used. However, these novel test strategies require further validation and standardization as well as additional refinements to better mimic the human in vivo situation and increase their predictive value.
Collapse
Affiliation(s)
- Anke M. Tukker
- School of Health Sciences, Purdue University, Hall for Discovery and Learning Research (DLR 339), INUSA
| | - Remco H. S. Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, TD Utrecht, The Netherlands
| |
Collapse
|
16
|
Neuronal Firing and Waveform Alterations through Ictal Recruitment in Humans. J Neurosci 2020; 41:766-779. [PMID: 33229500 DOI: 10.1523/jneurosci.0417-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
Analyzing neuronal activity during human seizures is pivotal to understanding mechanisms of seizure onset and propagation. These analyses, however, invariably using extracellular recordings, are greatly hindered by various phenomena that are well established in animal studies: changes in local ionic concentration, changes in ionic conductance, and intense, hypersynchronous firing. The first two alter the action potential waveform, whereas the third increases the "noise"; all three factors confound attempts to detect and classify single neurons. To address these analytical difficulties, we developed a novel template-matching-based spike sorting method, which enabled identification of 1239 single neurons in 27 patients (13 female) with intractable focal epilepsy, that were tracked throughout multiple seizures. These new analyses showed continued neuronal firing with widespread intense activation and stereotyped action potential alterations in tissue that was invaded by the seizure: neurons displayed increased waveform duration (p < 0.001) and reduced amplitude (p < 0.001), consistent with prior animal studies. By contrast, neurons in "penumbral" regions (those receiving intense local synaptic drive from the seizure but without neuronal evidence of local seizure invasion) showed stable waveforms. All neurons returned to their preictal waveforms after seizure termination. We conclude that the distinction between "core" territories invaded by the seizure versus "penumbral" territories is evident at the level of single neurons. Furthermore, the increased waveform duration and decreased waveform amplitude are neuron-intrinsic hallmarks of seizure invasion that impede traditional spike sorting and could be used as defining characteristics of local recruitment.SIGNIFICANCE STATEMENT Animal studies consistently show marked changes in action potential waveform during epileptic discharges, but acquiring similar evidence in humans has proven difficult. Assessing neuronal involvement in ictal events is pivotal to understanding seizure dynamics and in defining clinical localization of epileptic pathology. Using a novel method to track neuronal firing, we analyzed microelectrode array recordings of spontaneously occurring human seizures, and here report two dichotomous activity patterns. In cortex that is recruited to the seizure, neuronal firing rates increase and waveforms become longer in duration and shorter in amplitude as the neurons are recruited to the seizure, while penumbral tissue shows stable action potentials, in keeping with the "dual territory" model of seizure dynamics.
Collapse
|
17
|
Propagating Activity in Neocortex, Mediated by Gap Junctions and Modulated by Extracellular Potassium. eNeuro 2020; 7:ENEURO.0387-19.2020. [PMID: 32098762 PMCID: PMC7096537 DOI: 10.1523/eneuro.0387-19.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parvalbumin-expressing interneurons in cortical networks are coupled by gap junctions, forming a syncytium that supports propagating epileptiform discharges, induced by 4-aminopyridine. It remains unclear, however, whether these propagating events occur under more natural states, without pharmacological blockade. In particular, we investigated whether propagation also happens when extracellular K+ rises, as is known to occur following intense network activity, such as during seizures. We examined how increasing [K+]o affects the likelihood of propagating activity away from a site of focal (200–400 μm) optogenetic activation of parvalbumin-expressing interneurons. Activity was recorded using a linear 16-electrode array placed along layer V of primary visual cortex. At baseline levels of [K+]o (3.5 mm), induced activity was recorded only within the illuminated area. However, when [K+]o was increased above a threshold level (50th percentile = 8.0 mm; interquartile range = 7.5–9.5 mm), time-locked, fast-spiking unit activity, indicative of parvalbumin-expressing interneuron firing, was also recorded outside the illuminated area, propagating at 59.1 mm/s. The propagating unit activity was unaffected by blockade of GABAergic synaptic transmission, but it was modulated by glutamatergic blockers, and was reduced, and in most cases prevented altogether, by pharmacological blockade of gap junctions, achieved by any of the following three different drugs: quinine, mefloquine, or carbenoxolone. Washout of quinine rapidly re-established the pattern of propagating activity. Computer simulations show qualitative differences between propagating discharges in high [K+]o and 4-aminopyridine, arising from differences in the electrotonic effects of these two manipulations. These interneuronal syncytial interactions are likely to affect the complex electrographic dynamics of seizures, once [K+]o is raised above this threshold level.
Collapse
|
18
|
Burman RJ, Raimondo JV, Jefferys JG, Sen A, Akerman CJ. The transition to status epilepticus: how the brain meets the demands of perpetual seizure activity. Seizure 2020; 75:137-144. [DOI: 10.1016/j.seizure.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
|
19
|
Codadu NK, Graham RT, Burman RJ, Jackson‐Taylor RT, Raimondo JV, Trevelyan AJ, Parrish RR. Divergent paths to seizure-like events. Physiol Rep 2019; 7:e14226. [PMID: 31587522 PMCID: PMC6778598 DOI: 10.14814/phy2.14226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Much debate exists about how the brain transitions into an epileptic seizure. One source of confusion is that there are likely to be critical differences between experimental seizure models. To address this, we have compared the evolving activity patterns in two widely used in vitro models of epileptic discharges. Brain slices from young adult mice were prepared in the same way and bathed either in 0 Mg2+ or 100 µmol/L 4AP artificial cerebrospinal fluid. We have found that while local field potential recordings of epileptiform discharges in the two models appear broadly similar, patch-clamp analysis reveals an important difference in the relative degree of glutamatergic involvement. 4AP affects parvalbumin-expressing interneurons more than other cortical populations, destabilizing their resting state and inducing spontaneous bursting behavior. Consequently, the most prominent pattern of transient discharge ("interictal event") in this model is almost purely GABAergic, although the transition to seizure-like events (SLEs) involves pyramidal recruitment. In contrast, interictal discharges in 0 Mg2+ are only maintained by a very large glutamatergic component that also involves transient discharges of the interneurons. Seizure-like events in 0 Mg2+ have significantly higher power in the high gamma frequency band (60-120Hz) than these events do in 4AP, and are greatly delayed in onset by diazepam, unlike 4AP events. We, therefore, conclude that the 0 Mg2+ and 4AP models display fundamentally different levels of glutamatergic drive, demonstrating how ostensibly similar pathological discharges can arise from different sources. We contend that similar interpretative issues will also be relevant to clinical practice.
Collapse
Affiliation(s)
- Neela K. Codadu
- Institute of NeuroscienceMedical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Robert T. Graham
- Institute of NeuroscienceMedical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Richard J. Burman
- Division of Cell BiologyDepartment of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | | | - Joseph V. Raimondo
- Division of Cell BiologyDepartment of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Andrew J. Trevelyan
- Institute of NeuroscienceMedical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - R. Ryley Parrish
- Institute of NeuroscienceMedical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|