1
|
[Optimal time window for observation of calcific aortic valve disease in mice following catheter-induced valve injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1532-1538. [PMID: 36329588 PMCID: PMC9637488 DOI: 10.12122/j.issn.1673-4254.2022.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the optimal time window for observation of catheter-induced valve injury that mimics calcified aortic valve disease in mice. METHODS A catheter was inserted into the right common carotid artery of 8-week-old C57BL6 mice under ultrasound guidance, and aortic valve injury was induced using the guide wire.At 4, 8 and 16 weeks after modeling, the mice were subjected to ultrasound measurement of the heart short axial shortening rate, aortic valve peak velocity and aortic valve orifice area.Grain-Eosin staining was used to observe the changes in the thickness of the aortic valve, and calcium deposition in the aortic valve was assessed using Alizarin red staining.Immunofluorescence assay was performed to detect the expression of alkaline phosphatase (ALP) in the aortic valve. RESULTS At 4, 8 and 16 weeks after modeling, valve thickness (P=0.002), calcium deposition (P < 0.0001) and the expression of osteogenic protein ALP (P=0.0016) were significantly increased, but their increments were comparable at the 3 time points of observation. CONCLUSION In mouse models of calcific aortic valve disease induced by catheter valve injury, 4 weeks after the injury appears to be the optimal time window for observation of pathophysiological changes in the aortic valves to avoid further increase of the death rate of the mice over time.
Collapse
|
2
|
Aguado BA, Walker CJ, Grim JC, Schroeder ME, Batan D, Vogt BJ, Rodriguez AG, Schwisow JA, Moulton KS, Weiss RM, Heistad DD, Leinwand LA, Anseth KS. Genes That Escape X Chromosome Inactivation Modulate Sex Differences in Valve Myofibroblasts. Circulation 2022; 145:513-530. [PMID: 35000411 PMCID: PMC8844107 DOI: 10.1161/circulationaha.121.054108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aortic valve stenosis is a sexually dimorphic disease, with women often presenting with sustained fibrosis and men with more extensive calcification. However, the intracellular molecular mechanisms that drive these clinically important sex differences remain underexplored. METHODS Hydrogel biomaterials were designed to recapitulate key aspects of the valve tissue microenvironment and to serve as a culture platform for sex-specific valvular interstitial cells (VICs; precursors to profibrotic myofibroblasts). The hydrogel culture system was used to interrogate intracellular pathways involved in sex-dependent VIC-to-myofibroblast activation and deactivation. RNA sequencing was used to define pathways involved in driving sex-dependent activation. Interventions with small molecule inhibitors and siRNA transfections were performed to provide mechanistic insight into sex-specific cellular responses to microenvironmental cues, including matrix stiffness and exogenously delivered biochemical factors. RESULTS In both healthy porcine and human aortic valves, female leaflets had higher baseline activation of the myofibroblast marker α-smooth muscle actin compared with male leaflets. When isolated and cultured, female porcine and human VICs had higher levels of basal α-smooth muscle actin stress fibers that further increased in response to the hydrogel matrix stiffness, both of which were higher than in male VICs. A transcriptomic analysis of male and female porcine VICs revealed Rho-associated protein kinase signaling as a potential driver of this sex-dependent myofibroblast activation. Furthermore, we found that genes that escape X-chromosome inactivation such as BMX and STS (encoding for Bmx nonreceptor tyrosine kinase and steroid sulfatase, respectively) partially regulate the elevated female myofibroblast activation through Rho-associated protein kinase signaling. This finding was confirmed by treating male and female VICs with endothelin-1 and plasminogen activator inhibitor-1, factors that are secreted by endothelial cells and known to drive myofibroblast activation through Rho-associated protein kinase signaling. CONCLUSIONS Together, in vivo and in vitro results confirm sex dependencies in myofibroblast activation pathways and implicate genes that escape X-chromosome inactivation in regulating sex differences in myofibroblast activation and subsequent aortic valve stenosis progression. Our results underscore the importance of considering sex as a biological variable to understand the molecular mechanisms of aortic valve stenosis and to help guide sex-based precision therapies.
Collapse
Affiliation(s)
- Brian A. Aguado
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Cierra J. Walker
- Materials Science and Engineering Program, University of Colorado Boulder, CO 80309, USA
- Department of Biochemistry, University of Colorado Boulder, CO 80303, USA
| | - Joseph C. Grim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
| | - Megan E. Schroeder
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, CO 80309, USA
| | - Dilara Batan
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Department of Biochemistry, University of Colorado Boulder, CO 80303, USA
| | - Brandon J. Vogt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Andrea Gonzalez Rodriguez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
| | - Jessica A. Schwisow
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karen S. Moulton
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Donald D. Heistad
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, CO 80309, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, CO 80309, USA
| |
Collapse
|