1
|
Hanusch B, Falkenstein M, Volkenstein S, Dazert S, Lücke T, Sinningen K. No Impairment in Bone Turnover or Executive Functions in Well-Treated Preschoolers with Phenylketonuria-A Pilot Study. Nutrients 2024; 16:2072. [PMID: 38999818 PMCID: PMC11243048 DOI: 10.3390/nu16132072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Patients with phenylketonuria (PKU) present signs of impaired executive functioning and bone health in adolescence and adulthood, depending in part on the success of therapy in childhood. Therefore, nine children with well-treated PKU (4-7 years old, 22.2% ♀, seven with a full set of data, two included into partial analysis) and 18 age-, gender- and season-matched controls were analyzed for differences in executive functioning and bone parameters in plasma. Plasma was analyzed with commercially available kits. Cognitive performance in tonic alertness, visuo-spatial working memory, inhibitory control and task switching was assessed by a task battery presented on a touch screen. Regarding cognition, only the performance in incongruent conditions in inhibitory control was significantly better in children with PKU than in controls. No further differences in cognitive tests were detected. Furthermore, no significant difference in the bone turnover markers osteocalcin, undercarboxylated osteocalcin and CTX were detected between children with PKU and controls, while children with PKU had a significantly higher vitamin D concentration (69.44 ± 12.83 nmol/L vs. 41.87 ± 15.99 nmol/L, p < 0.001) and trended towards lower parathyroid hormone concentrations than controls (48.27 ± 15.16 pg/mL vs. 70.61 ± 30.53 pg/mL, p = 0.066). In this small group of well-treated preschoolers with PKU, no impairments in cognitive performance and bone turnover were observed, while vitamin D supplementation of amino acid supplements seems to be sufficient to achieve good vitamin D status.
Collapse
Affiliation(s)
- Beatrice Hanusch
- Research Department of Child Nutrition, University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | | | - Stefan Volkenstein
- Department of Otorhinolaryngology, Head and Neck Surgery, Johannes Wesling Klinikum Minden, Ruhr-University Bochum, 32429 Minden, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital Bochum, Ruhr-University Bochum, 44787 Bochum, Germany
| | - Thomas Lücke
- Research Department of Child Nutrition, University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Kathrin Sinningen
- Research Department of Child Nutrition, University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
2
|
Prepok FF, Schnabel KK, Sumánszki C, Barta AG, Tislér A, Reismann P. Long-Term Renal Function in Adult Patients with Phenylketonuria. Nephron Clin Pract 2023; 148:195-203. [PMID: 37757776 DOI: 10.1159/000531913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/04/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION In phenylketonuria (PKU), toxic phenylalanine (Phe) can harm other organs beyond the brain. Furthermore, the lifelong therapy of PKU consists of consumption of increased amounts of amino-acid mixture that provoke hyperfiltration in the glomeruli. Therefore, the adherence to therapy in PKU might influence the long-term kidney function in PKU patients. METHODS Data from 41 adult, early treated PKU patients were analyzed in this 10-year, retrospective, monocentric study. Two subgroups were created according to their therapy adherence: one with long-term blood Phe levels in the therapeutic range (<600 µmol/L), and one with suboptimal blood Phe levels. Renal function and metabolic parameters were collected over 10 years. Kidney function parameters were compared between the two groups and associations between blood Phe levels and kidney function were tested. RESULTS After 10 years, serum creatinine levels (p = 0.369) and estimated glomerular filtration rate (eGFR) (p = 0.723) did not change significantly from baseline in the good therapeutic group. The suboptimal therapeutic group's eGFR decreased in the same period (from 110.4 ± 14 mL/min/1.73 m2 to 94.2 ± 16 mL/min/1.73 m2, p = 0.017). At 10 years, the suboptimal therapeutic group had an increased serum creatinine level (81 ± 14.4 μmol/L vs. 71.5 ± 13 μmol/L, p = 0.038), and a decreased eGFR (94.2 ± 16 mL/min/1.73 m2 vs. 103.3 ± 13 mL/min/1.73 m2p = 0.031) compared to the good adhering group. Significant negative correlation between Phe levels and eGFR (r = -0.41, p = 0.008) was observed. CONCLUSION Long-term suboptimal therapy adherence in PKU patients with high blood Phe levels may lead to deterioration in kidney function.
Collapse
Affiliation(s)
| | | | - Csaba Sumánszki
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - András Gellért Barta
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - András Tislér
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Péter Reismann
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
4
|
Verduci E, Carbone MT, Borghi E, Ottaviano E, Burlina A, Biasucci G. Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients 2020; 12:E3319. [PMID: 33138040 PMCID: PMC7692600 DOI: 10.3390/nu12113319] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The composition and functioning of the gut microbiota, the complex population of microorganisms residing in the intestine, is strongly affected by endogenous and exogenous factors, among which diet is key. Important perturbations of the microbiota have been observed to contribute to disease risk, as in the case of neurological disorders, inflammatory bowel disease, obesity, diabetes, cardiovascular disease, among others. Although mechanisms are not fully clarified, nutrients interacting with the microbiota are thought to affect host metabolism, immune response or disrupt the protective functions of the intestinal barrier. Similarly, key intermediaries, whose presence may be strongly influenced by dietary habits, sustain the communication along the gut-brain-axis, influencing brain functions in the same way as the brain influences gut activity. Due to the role of diet in the modulation of the microbiota, its composition is of high interest in inherited errors of metabolism (IEMs) and may reveal an appealing therapeutic target. In IEMs, for example in phenylketonuria (PKU), since part of the therapeutic intervention is based on chronic or life-long tailored dietetic regimens, important variations of the microbial diversity or relative abundance have been observed. A holistic approach, including a healthy composition of the microbiota, is recommended to modulate host metabolism and affected neurological functions.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children’s Hospital-University of Milan, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Maria Teresa Carbone
- UOS Metabolic and Rare Diseases, AORN Santobono, Via Mario Fiore 6, 80122 Naples, Italy;
| | - Elisa Borghi
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Emerenziana Ottaviano
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Via Orus 2B, 35129 Padua, Italy;
| | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Via Taverna Giuseppe, 49, 29121 Piacenza, Italy;
| |
Collapse
|
5
|
Stroup BM, Murali SG, Schwahn DJ, Sawin EA, Lankey EM, Bächinger HP, Ney DM. Sex effects of dietary protein source and acid load on renal and bone status in the Pah enu2 mouse model of phenylketonuria. Physiol Rep 2020; 7:e14251. [PMID: 31650703 PMCID: PMC6813258 DOI: 10.14814/phy2.14251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/17/2023] Open
Abstract
The low‐phenylalanine (Phe) diet with amino acid (AA) medical foods is associated with low bone mineral density (BMD) and renal dysfunction in human phenylketonuria (PKU). Our objective was to determine if diets differing in dietary protein source and acid load alter bone and renal outcomes in Pah−/− and wild‐type (WT) mice. Female and male Pah−/− (Pahenu2/enu2) and WT littermates (C57BL/6 background) were fed high‐acid AA, buffered AA (BAA), glycomacropeptide (GMP), or high‐Phe casein diets from 3 to 24 weeks of age. The BAA diet significantly reduced the excretion of renal net acid and ammonium compared with the AA diet. Interestingly, the BAA diet did not improve renal dilation in hematoxylin and eosin (H&E) stained renal sections, femoral biomechanical parameters, or femoral bone mineral content (BMC). Significantly lower femoral BMC and strength occurred in Pah−/− versus WT mice, with greater decline in female Pah−/− mice. Polyuria and mild vacuolation in the proximal convoluted tubules were observed in male Pah−/− and WT mice fed the high‐acid AA diet versus absent/minimal cortical vacuolation in males fed the GMP, BAA, or casein diets. Vacuole contents in male mice were proteinaceous. Cortical vacuolation was absent in female mice. Dilated medullary tubules were observed in all Pah−/− mice, except for male Pah−/− mice fed the GMP diet. In summary, the PKU genotype and diet showed differential effects on renal and bone status in male and female mice. Renal status improved in male Pah−/− mice fed the GMP diet.
Collapse
Affiliation(s)
- Bridget M Stroup
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sangita G Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Emily A Sawin
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emma M Lankey
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon
| | - Denise M Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|