1
|
Arnold JI, Yogev A, Nelson H, van Hooff M, Koehle MS. Muscle reoxygenation is slower after higher cycling intensity, and is faster and more reliable in locomotor than in accessory muscle sites. Front Physiol 2024; 15:1449384. [PMID: 39206382 PMCID: PMC11349675 DOI: 10.3389/fphys.2024.1449384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Wearable near-infrared spectroscopy (NIRS) can be used during dynamic exercise to reflect the balance of muscle oxygen delivery and uptake. This study describes the behaviour and reliability of postexercise reoxygenation with NIRS as a function of exercise intensity at four muscle sites during an incremental cycling test. We discuss physiological components of faster and slower reoxygenation kinetics in the context of sport science and clinical applications. We hypothesised that reoxygenation would be slower at higher intensity, and that locomotor muscles would be faster than accessory muscles. We quantified test-retest reliability and agreement for each site. Methods Twenty-one trained cyclists performed two trials of an incremental cycling protocol with 5-min work stages and 1-min rest between stages. NIRS was recorded from the locomotor vastus lateralis and rectus femoris muscles, and accessory lumbar paraspinal and lateral deltoid muscles. Reoxygenation time course was analysed as the half-recovery time (HRT) from the end of work to half of the peak reoxygenation amplitude during rest. Coefficient of variability (CV) between participants, standard error of the measurement (SEM) within participants, and intraclass correlation coefficient (ICC) for test-retest reliability were evaluated at 50%, 75%, and 100% peak workloads. A linear mixed-effects model was used to compare differences between workloads and muscle sites. Results HRT was slower with increasing workload in the VL, RF, and PS, but not DL. VL had the fastest reoxygenation (lowest HRT) across muscle sites at all workloads (HRT = 8, 12, 17 s at 50%, 75%, 100% workload, respectively). VL also had the greatest reliability and agreement. HRT was sequentially slower between muscle sites in the order of VL < RF < PS < DL, and reliability was lower than for the VL. Discussion This study highlights the potential for using wearable NIRS on multiple muscle sites during exercise. Reoxygenation kinetics differ between local muscle sites with increasing intensity. Moderate-to-good reliability in the VL support its increasing use in sport science and clinical applications. Lower reliability in other muscle sites suggest they are not appropriate to be used alone, but may add information when combined to better reflect systemic intensity and fatigue during exercise at different intensities.
Collapse
Affiliation(s)
- Jem I. Arnold
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Assaf Yogev
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Hannah Nelson
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Martijn van Hooff
- Department of Sports and Exercise, Máxima Medical Centre, Veldhoven, Netherlands
| | - Michael S. Koehle
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
- Division of Sport and Exercise Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Rasica L, Inglis EC, Mazzolari R, Iannetta D, Murias JM. Methodological considerations on near-infrared spectroscopy derived muscle oxidative capacity. Eur J Appl Physiol 2024; 124:2069-2079. [PMID: 38400931 PMCID: PMC11199286 DOI: 10.1007/s00421-024-05421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/15/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Different strategies for near-infrared spectroscopy (NIRS)-derived muscle oxidative capacity assessment have been reported. This study compared and evaluated (I) approaches for averaging trials; (II) NIRS signals and blood volume correction equations; (III) the assessment of vastus lateralis (VL) and tibialis anterior (TA) muscles in two fitness levels groups. METHODS Thirty-six participants [18 chronically trained (CT: 14 males, 4 females) and 18 untrained (UT: 10 males, 8 females)] participated in this study. Two trials of twenty transient arterial occlusions were performed for NIRS-derived muscle oxidative capacity assessment. Muscle oxygen consumption ( V ˙ O2m) was estimated from deoxygenated hemoglobin (HHb), corrected for blood volume changes following Ryan (HHbR) and Beever (HHbB) equations, and from oxygen saturation (StO2) in VL and TA. RESULTS Superimposing or averaging V ˙ O2m or averaging the rate constants (k) from the two trials resulted in equivalent k values [two one-sided tests (TOST) procedure with 5% equivalence margin-P < 0.001]. Whereas HHbR (2.35 ± 0.61 min-1) and HHbB (2.34 ± 0.58 min-1) derived k were equivalent (P < 0.001), StO2 derived k (2.81 ± 0.92 min-1) was greater (P < 0.001) than both. k values were greater in CT vs UT in both muscles (VL: + 0.68 min-1, P = 0.002; TA: + 0.43 min-1, P = 0.01). CONCLUSION Different approaches for averaging trials lead to similar k. HHb and StO2 signals provided different k, although different blood volume corrections did not impact k. Group differences in k were detected in both muscles.
Collapse
Affiliation(s)
- Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - Raffaele Mazzolari
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
3
|
Lanferdini FJ, Kons RL, Detanico D, Dal Pupo J, DE Lucas RD, Vaz MA. Anthropometric, neuromuscular, physiologic and training variables as determinants to laboratory cycling performance. J Sports Med Phys Fitness 2024; 64:432-438. [PMID: 38411044 DOI: 10.23736/s0022-4707.24.15547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND The goal of this study was to verify whether anthropometric, physiological and neuromuscular factors, as well as training characteristics, could predict cycling performance during maximal incremental and time-to-exhaustion tests. METHODS Twenty cyclists were evaluated: Anthropometric variables, knee extensor muscle activation and architecture, training history, and training volume were assessed. Second ventilatory threshold (VT2), maximal oxygen uptake (VO2MAX), and maximal power output (POMAX) were assessed during the incremental test. Muscle architecture of the vastus lateralis (VL) and rectus femoris (RF) muscles was evaluated bilaterally to calculate the mean thighs' muscle thickness, pennation angle and fascicle length, at rest condition. After that, time-to-exhaustion test at POMAX was performed. Muscle activation of the VL, RF and vastus medialis (VM) was evaluated of both legs. RESULTS Cyclists' height (r2=0.37), experience time and training volume (r2=0.46) were predictors of POMAX (P<0.02), while cadence (r2=0.30) was the only predictive variable for the time-to-exhaustion performance (P<0.01). CONCLUSIONS These results suggest that training characteristics and experience are important when training for incremental cycling conditions, whereas cadence (and its determinant variables) should be looked at during maximal and exhaustive conditions.
Collapse
Affiliation(s)
- Fábio J Lanferdini
- Laboratory of Biomechanics, Center of Sports, Federal University of Santa Maria, Santa Maria, Brazil -
| | - Rafael L Kons
- Department of Physical Education, Federal University of Bahia, Salvador, Brazil
| | - Daniele Detanico
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Juliano Dal Pupo
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ricardo D DE Lucas
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marco A Vaz
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Venckunas T, Satas A, Brazaitis M, Eimantas N, Sipaviciene S, Kamandulis S. Near-InfraRed Spectroscopy Provides a Reproducible Estimate of Muscle Aerobic Capacity, but Not Whole-Body Aerobic Power. SENSORS (BASEL, SWITZERLAND) 2024; 24:2277. [PMID: 38610488 PMCID: PMC11014184 DOI: 10.3390/s24072277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Near-infrared spectroscopy (NIRS) during repeated limb occlusions is a noninvasive tool for assessing muscle oxidative capacity. However, the method's reliability and validity remain under investigation. This study aimed to determine the reliability of the NIRS-derived mitochondrial power of the musculus vastus lateralis and its correlation with whole-body (cycling) aerobic power (V̇O2 peak). Eleven healthy active men (28 ± 10 y) twice (2 days apart) underwent repeated arterial occlusions to induce changes in muscle oxygen delivery after 15 s of electrical muscle stimulation. The muscle oxygen consumption (mV̇O2) recovery time and rate (k) constants were calculated from the NIRS O2Hb signal. We assessed the reliability (coefficient of variation and intraclass coefficient of correlation [ICC]) and equivalency (t-test) between visits. The results showed high reproducibility for the mV̇O2 recovery time constant (ICC = 0.859) and moderate reproducibility for the k value (ICC = 0.674), with no significant differences between visits (p > 0.05). NIRS-derived k did not correlate with the V̇O2 peak relative to body mass (r = 0.441, p = 0.17) or the absolute V̇O2 peak (r = 0.366, p = 0.26). In conclusion, NIRS provides a reproducible estimate of muscle mitochondrial power, which, however, was not correlated with whole-body aerobic capacity in the current study, suggesting that even if somewhat overlapping, not the same set of factors underpin these distinct indices of aerobic capacity at the different (peripheral and whole-body systemic) levels.
Collapse
Affiliation(s)
- Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Andrius Satas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Saule Sipaviciene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| |
Collapse
|
5
|
Perrey S, Quaresima V, Ferrari M. Muscle Oximetry in Sports Science: An Updated Systematic Review. Sports Med 2024; 54:975-996. [PMID: 38345731 PMCID: PMC11052892 DOI: 10.1007/s40279-023-01987-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 04/28/2024]
Abstract
BACKGROUND In the last 5 years since our last systematic review, a significant number of articles have been published on the technical aspects of muscle near-infrared spectroscopy (NIRS), the interpretation of the signals and the benefits of using the NIRS technique to measure the physiological status of muscles and to determine the workload of working muscles. OBJECTIVES Considering the consistent number of studies on the application of muscle oximetry in sports science published over the last 5 years, the objectives of this updated systematic review were to highlight the applications of muscle oximetry in the assessment of skeletal muscle oxidative performance in sports activities and to emphasize how this technology has been applied to exercise and training over the last 5 years. In addition, some recent instrumental developments will be briefly summarized. METHODS Preferred Reporting Items for Systematic Reviews guidelines were followed in a systematic fashion to search, appraise and synthesize existing literature on this topic. Electronic databases such as Scopus, MEDLINE/PubMed and SPORTDiscus were searched from March 2017 up to March 2023. Potential inclusions were screened against eligibility criteria relating to recreationally trained to elite athletes, with or without training programmes, who must have assessed physiological variables monitored by commercial oximeters or NIRS instrumentation. RESULTS Of the identified records, 191 studies regrouping 3435 participants, met the eligibility criteria. This systematic review highlighted a number of key findings in 37 domains of sport activities. Overall, NIRS information can be used as a meaningful marker of skeletal muscle oxidative capacity and can become one of the primary monitoring tools in practice in conjunction with, or in comparison with, heart rate or mechanical power indices in diverse exercise contexts and across different types of training and interventions. CONCLUSIONS Although the feasibility and success of the use of muscle oximetry in sports science is well documented, there is still a need for further instrumental development to overcome current instrumental limitations. Longitudinal studies are urgently needed to strengthen the benefits of using muscle oximetry in sports science.
Collapse
Affiliation(s)
- Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
6
|
Koutlas A, Smilios I, Kokkinou EM, Myrkos A, Kounoupis A, Dipla K, Zafeiridis A. NIRS-Derived Muscle-Deoxygenation and Microvascular Reactivity During Occlusion-Reperfusion at Rest Are Associated With Whole-Body Aerobic Fitness. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:127-139. [PMID: 36689603 DOI: 10.1080/02701367.2022.2159309] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Purpose: Near-infrared spectroscopy (NIRS) indices during arterial occlusion-reperfusion maneuver have been used to examine the muscle's oxidative metabolism and microvascular function-important determinants of whole-body aerobic-fitness. The association of NIRS-derived parameters with whole-body VO2max was previously examined using a method requiring exercise (or electrical stimulation) followed by multiple arterial occlusions. We examined whether NIRS-derived indices of muscle deoxygenation and microvascular reactivity assessed during a single occlusion-reperfusion at rest are (a) associated with maximal/submaximal indices of whole-body aerobic-fitness and (b) could discriminate individuals with different VO2max. We, also, investigated which NIRS-parameter during occlusion-reperfusion correlates best with whole-body aerobic-fitness. Methods: Twenty-five young individuals performed an arterial occlusion-reperfusion at rest. Changes in oxygenated- and deoxygenated-hemoglobin (O2Hb and HHb, respectively) in vastus-lateralis were monitored; adipose tissue thickness (ATT) at NIRS-application was assessed. Participants also underwent a maximal incremental exercise test for VO2max, maximal aerobic velocity (MAV), and ventilatory-thresholds (VTs) assessments. Results: The HHbslope and HHbmagnitude of increase (occlusion-phase) and O2Hbmagnitude of increase (reperfusion-phase) were strongly correlated with VO2max (r = .695-.763, p < .001) and moderately with MAV (r = .468-.530; p < .05). O2Hbmagnitude was moderately correlated with VTs (r = .399-.414; p < .05). After controlling for ATT, the correlations remained significant for VO2max (r = .672-.704; p < .001) and MAV (r = .407; p < .05). Individuals in the high percentiles after median and tritile splits for HHbslope and O2Hbmagnitude had significantly greater VO2max vs. those in low percentiles (p < .01-.05). The HHbslope during occlusion was the best predictor of VO2max. Conclusion: NIRS-derived muscle deoxygenation/reoxygenation indices during a single arterial occlusion-reperfusion maneuver are strongly associated with whole-body maximal indices of aerobic-fitness (VO2max, MAV) and may discriminate individuals with different VO2max.
Collapse
|
7
|
Tripp TR, McDougall RM, Frankish BP, Wiley JP, Lun V, MacInnis MJ. Contraction intensity affects NIRS-derived skeletal muscle oxidative capacity but not its relationships to mitochondrial protein content or aerobic fitness. J Appl Physiol (1985) 2024; 136:298-312. [PMID: 38059287 DOI: 10.1152/japplphysiol.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/16/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
To further refine the near-infrared spectroscopy (NIRS)-derived measure of skeletal muscle oxidative capacity in humans, we sought to determine whether the exercise stimulus intensity affected the τ value and/or influenced the magnitude of correlations with in vitro measures of mitochondrial content and in vivo indices of exercise performance. Males (n = 12) and females (n = 12), matched for maximal aerobic fitness per fat-free mass, completed NIRS-derived skeletal muscle oxidative capacity tests for the vastus lateralis following repeated contractions at 40% (τ40) and 100% (τ100) of maximum voluntary contraction, underwent a skeletal muscle biopsy of the same muscle, and performed multiple intermittent isometric knee extension tests to task failure to establish critical torque (CT). The value of τ100 (34.4 ± 7.0 s) was greater than τ40 (24.2 ± 6.9 s, P < 0.001), but the values were correlated (r = 0.688; P < 0.001). The values of τ40 (r = -0.692, P < 0.001) and τ100 (r = -0.488, P = 0.016) correlated with myosin heavy chain I percentage and several markers of mitochondrial content, including COX II protein content in whole muscle (τ40: r = -0.547, P = 0.006; τ100: r = -0.466, P = 0.022), type I pooled fibers (τ40: r = -0.547, P = 0.006; τ100: r = -0.547, P = 0.006), and type II pooled fibers (τ40: r = -0.516, P = 0.009; τ100: r = -0.635, P = 0.001). The value of τ40 (r = -0.702, P < 0.001), but not τ100 (r = -0.378, P = 0.083) correlated with critical torque (CT); however, neither value correlated with W' (τ40: r = 0.071, P = 0.753; τ100: r = 0.054, P = 0.812). Overall, the NIRS method of assessing skeletal muscle oxidative capacity is sensitive to the intensity of skeletal muscle contraction but maintains relationships to whole body fitness, isolated limb critical intensity, and mitochondrial content regardless of intensity.NEW & NOTEWORTHY Skeletal muscle oxidative capacity measured using near-infrared spectroscopy (NIRS) was lower following high-intensity compared with low-intensity isometric knee extension contractions. At both intensities, skeletal muscle oxidative capacity was correlated with protein markers of mitochondrial content (in whole muscle and pooled type I and type II muscle fibers) and critical torque. These findings highlight the importance of standardizing contraction intensity while using the NIRS method with isometric contractions and further demonstrate its validity.
Collapse
Affiliation(s)
- Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
McDougall RM, Tripp TR, Frankish BP, Doyle-Baker PK, Lun V, Wiley JP, Aboodarda SJ, MacInnis MJ. The influence of skeletal muscle mitochondria and sex on critical torque and performance fatiguability in humans. J Physiol 2023; 601:5295-5316. [PMID: 37902588 DOI: 10.1113/jp284958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Critical torque (CT) represents the highest oxidative steady state for intermittent knee extensor exercise, but the extent to which it is influenced by skeletal muscle mitochondria and sex is unclear. Vastus lateralis muscle biopsy samples were collected from 12 females and 12 males -matched for relative maximal oxygen uptake normalized to fat-free mass (FFM) (F: 57.3 (7.5) ml (kg FFM)-1 min-1 ; M: 56.8 (7.6) ml (kg FFM)-1 min-1 ; P = 0.856) - prior to CT determination and performance fatiguability trials. Males had a lower proportion of myosin heavy chain (MHC) I isoform (40.6 (18.4)%) compared to females (59.5 (18.9)%; P = 0.021), but MHC IIa and IIx isoform distributions and protein markers of mitochondrial content were not different between sexes (P > 0.05). When normalized to maximum voluntary contraction (MVC), the relative CT (F: 42.9 (8.3)%; M: 37.9 (9.0)%; P = 0.172) and curvature constant, W' (F: 26.6 (11.0) N m s (N m)-1 ; M: 26.4 (6.5) N m s (N m)-1 ; P = 0.962) were not significantly different between sexes. All protein biomarkers of skeletal muscle mitochondrial content, as well as the proportion of MHC I isoform, positively correlated with relative CT (0.48 < r < 0.70; P < 0.05), and the proportion of MHC IIx isoform correlated positively with relative W' (r = 0.57; P = 0.007). Indices of performance fatiguability were not different between males and females for MVC- and CT-controlled trials (P > 0.05). Greater mitochondrial protein abundance was associated with attenuated declines in potentiated twitch torque for exercise at 60% MVC (P < 0.05); however, the influence of mitochondrial protein abundance on performance fatiguability was reduced when exercise was prescribed relative to CT. Whether these findings translate to whole-body exercise requires additional research. KEY POINTS: The quadriceps critical torque represents the highest intensity of intermittent knee extensor exercise for which an oxidative steady state is attainable, but its relationship with skeletal muscle mitochondrial protein abundance is unknown. Matching males and females for maximal oxygen uptake relative to fat-free mass facilitates investigations of sex differences in exercise physiology, but studies that have compared critical torque and performance fatiguability during intermittent knee extensor exercise have not ensured equal aerobic fitness between sexes. Skeletal muscle mitochondrial protein abundance was correlated with critical torque and fatigue resistance for exercise prescribed relative to maximum voluntary contraction but not for exercise performed relative to the critical torque. Differences between sexes in critical torque, skeletal muscle mitochondrial protein abundance and performance fatiguability were not statistically significant. Our results suggest that skeletal muscle mitochondrial protein abundance may contribute to fatigue resistance by influencing the critical intensity of exercise.
Collapse
Affiliation(s)
| | - Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - S Jalal Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Possamai LT, de Aguiar RA, Borszcz FK, do Nascimento Salvador PC, de Lucas RD, Turnes T. Muscle Oxidative Capacity in Vivo Is Associated With Physiological Parameters in Trained Rowers. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1020-1027. [PMID: 36048498 DOI: 10.1080/02701367.2022.2100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Purpose: The muscle oxygen uptake (m V ˙ O 2 ) kinetics following exercise, measured by near-infrared spectroscopy, has been used as a functional evaluation of muscle oxidative metabolism. This study aimed to determine the m V ˙ O 2 off-kinetics and verify the relationship of the recovery rate of m V ˙ O 2 (k) with time-trial performance and different aerobic parameters in trained rowers. Methods: Eleven male rowers (age: 20 ± 3 years; V ˙ O 2 m a x : 4.28 ± 0.35 L·min-1) used a rowing ergometer to perform (I) an incremental test to determine the maximal oxygen uptake (V ˙ O 2 m a x ) and peak power output (Ppeak); (II) several visits to determine maximal lactate steady state (MLSS); and (III) a 2000-m rowing ergometer performance test. Also, one test to determine m V ˙ O 2 off-kinetics of the vastus lateralis muscle using a repeated arterial occlusions protocol. Results: The m V ˙ O 2 generated a good monoexponential fit (R2 = 0.960 ± 0.030; SEE = 0.041 ± 0.018%.s-1). The k of m V ˙ O 2 (2.06 ± 0.58 min-1) was associated with relative V ˙ O 2 m a x (r = 0.79), power output at MLSS (r = 0.76), and Ppeak (r = 0.83); however, it was not related with 2000-m rowing performance (r = -0.38 to 0.52; p > .152). Conclusion: These findings suggest that although not associated with rowing performance, the m V ˙ O 2 off-kinetics determined after a submaximal isometric knee extension may be a practical and less-exhaustive approach than invasive responses and incremental tests to assess the muscle oxidative metabolism during a training program.
Collapse
|
10
|
Batterson PM, Kirby BS, Hasselmann G, Feldmann A. Muscle oxygen saturation rates coincide with lactate-based exercise thresholds. Eur J Appl Physiol 2023; 123:2249-2258. [PMID: 37261552 DOI: 10.1007/s00421-023-05238-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Monitoring muscle metabolic activity via blood lactate is a useful tool for understanding the physiological response to a given exercise intensity. Recent indications suggest that skeletal muscle oxygen saturation (SmO2), an index of the balance between local O2 supply and demand, may describe and predict endurance performance outcomes. PURPOSE We tested the hypothesis that SmO2 rate is tightly related to blood lactate concentration across exercise intensities, and that deflections in SmO2 rate would coincide with established blood lactate thresholds (i.e., lactate thresholds 1 and 2). METHODS Ten elite male soccer players completed an incremental running protocol to exhaustion using 3-min work to 30 s rest intervals. Blood lactate samples were collected during rest and SmO2 was collected continuously via near-infrared spectroscopy from the right and left vastus lateralis, left biceps femoris and the left gastrocnemius. RESULTS Muscle O2 saturation rate (%/min) was quantified after the initial 60 s of each 3-min segment. The SmO2 rate was significantly correlated with blood lactate concentrations for all muscle sites; RVL, r = - 0.974; LVL, r = - 0.969; LG, r = - 0.942; LHAM, r = - 0.907. Breakpoints in SmO2 rate were not significantly different from LT1 or LT2 at any muscle sites (P > 0.05). Bland-Altman analysis showed speed threshold estimates via SmO2 rate and lactate are similar at LT2, but slightly greater for SmO2 rate at LT1. CONCLUSIONS Muscle O2 saturation rate appears to provide actionable information about maximal metabolic steady state and is consistent with bioenergetic reliance on oxygen and its involvement in the attainment of metabolic steady state.
Collapse
Affiliation(s)
- Philip M Batterson
- Biological and Population Health Sciences, Oregon State University, 17 Milam Hall, Corvallis, OR, 97331, USA.
| | - Brett S Kirby
- Nike Sport Research Lab, Nike Inc, Beaverton, OR, USA
| | | | - Andri Feldmann
- Institute of Sport Science, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Vasquez-Bonilla AA, Brazo-Sayavera J, Timón R, Olcina G. Monitoring Muscle Oxygen Asymmetry as a Strategy to Prevent Injuries in Footballers. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:609-617. [PMID: 35442862 DOI: 10.1080/02701367.2022.2026865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Purpose: It has been hypothesized that sports injury risk is explained by muscle metabolism. The objective was to evaluate the muscle oxygen saturation slopes (ΔSmO2 slopes) and muscle oxygenation asymmetry (MO2Asy) at rest and to study their associations with injuries during the pre-season. Methods: A total of 16 male and 10 female footballers participated in this study. Injuries were diagnosed and classified by level of severity during the pre-season. The workload was also evaluated using the rate of perceived exertion × training time, from which the accumulated loads. The SmO2 was measured at rest in the gastrocnemius muscle using the arterial occlusion method in the dominant and non-dominant legs. The repeated measures ANOVA, relative risk, and binary logistic regression were applied to assess the probability of injury with SmO2 and workload. Results: Higher MO2Asy and ΔSmO2 Slope 2 were found among footballer who suffered high-severity injuries and those who presented no injuries. In addition, an MO2Asy greater than 15% and an increase in accumulated load were variables that explained a greater probability of injury. Conclusion: This study presents the new concept of muscle oxygenation asymmetry in sports science and its possible application in injury prevention through the measurement of SmO2 at rest.
Collapse
|
12
|
Quadriceps Muscle Morphology Is an Important Determinant of Maximal Isometric and Crank Torques of Cyclists. Sports (Basel) 2023; 11:sports11020022. [PMID: 36828307 PMCID: PMC9958782 DOI: 10.3390/sports11020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to determine if quadriceps morphology [muscle volume (MV); cross-sectional area (CSA)], vastus lateralis (VL) muscle architecture, and muscle quality [echo intensity (ECHO)] can explain differences in knee extensor maximal voluntary isometric contraction (MVIC), crank torque (CT) and time-to-exhaustion (TTE) in trained cyclists. Twenty male competitive cyclists performed a maximal incremental ramp to determine their maximal power output (POMAX). Muscle morphology (MV; CSA), muscle architecture of VL and muscle quality (ECHO) of both quadriceps muscles were assessed. Subsequently, cyclists performed three MVICs of both knee extensor muscles and finally performed a TTE test at POMAX with CT measurement during TTE. Stepwise multiple regression results revealed right quadriceps MV determined right MVIC (31%) and CT (33%). Left MV determined CT (24%); and left VL fascicle length (VL-FL) determined MVIC (64%). However, quadriceps morphological variables do not explain differences in TTE. No significant differences were observed between left and right quadriceps muscle morphology (p > 0.05). The findings emphasize that quadriceps MV is an important determinant of knee extensor MVIC and CT but does not explain differences in TTE at POMAX. Furthermore, quadriceps morphological variables were similar between the left and right quadriceps in competitive cyclists.
Collapse
|
13
|
Lanferdini FJ, Diefenthaeler F, Ardigò LP, Peyré-Tartaruga LA, Padulo J. Editorial: Structural and mechanistic determinants of endurance performance. Front Physiol 2022; 13:1035583. [PMID: 36311231 PMCID: PMC9615566 DOI: 10.3389/fphys.2022.1035583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fábio Juner Lanferdini
- Laboratório de Biomecânica, Universidade Federal de Santa Maria, Santa Maria, Brazil
- *Correspondence: Fábio Juner Lanferdini,
| | - Fernando Diefenthaeler
- Laboratório de Biomecânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, Oslo, Norway
- Department of Neurosciences, Biomedicine and Movement Sciences School of Exercise and Sport Science, University of Verona, Verona, Italy
| | | | - Johnny Padulo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
de Aguiar RA, Turnes T, Borszcz FK, Raimundo JAG, Caputo F. NIRS-derived muscle V̇O 2 kinetics after moderate running exercise in healthy males: reliability and associations with parameters of aerobic fitness. Exp Physiol 2022; 107:476-488. [PMID: 35244956 DOI: 10.1113/ep090105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? In vivo muscle oxidative capacity has been evaluated through the mV̇O2 kinetics following single joint exercise using NIRS system. Here, we demonstrated its utility following running exercise. What is the main finding and its importance? We demonstrated that time constant of mV̇O2 kinetics in gastrocnemius following moderate running exercise presents good to excellent reliability. In addition, it was well correlated with parameters of aerobic fitness, such as maximal speed of the incremental test, ventilatory threshold and pulmonary V̇O2 on-kinetics. Therefore, NIRS-derived muscle oxidative capacity together with other physiological measurements may allow a concomitant local and systemic analysis of the components of the oxidative system. ABSTRACT NIRS-derived muscle oxygen uptake (mV̇O2 ) kinetics following single-joint exercise has been used to assess muscle oxidative capacity. However, little evidence is available on the use of this technique following whole-body exercises. Therefore, this study aimed to assess the reliability of the NIRS-derived mV̇O2 kinetics following running exercise and to investigate the relationship between the time constant of mV̇O2 off-kinetics (τmV̇O2 ) with parameters of aerobic fitness. After an incremental test to determine V̇O2 max, first (VT1 ) and second (VT2 ) ventilatory thresholds, and maximal speed (Smax), thirteen males (age = 21 ± 4 years; V̇O2 max = 55.9 ± 3.4 mlꞏkg-1ꞏmin-1) performed three sets (two in the first day and one on a subsequent day) of two repetitions of 6-min running exercise at 90%VT1 . The pulmonary V̇O2 on-kinetics (pV̇O2 ) and mV̇O2 off-kinetics in gastrocnemius were assessed. τmV̇O2 presented no systematic change and satisfactory reliability (SEM and ICC of 4.21 s and 0.49 for between transitions; and 2.65 s and 0.74 averaging τmV̇O2 within each time-set), with no difference (p > 0.3) between the within- (SEM = 2.92 s) and between-day variability (SEM = 2.78 s and 2.19 s between first vs. third set, and second vs. third set, respectively). τmV̇O2 (28.5 ± 4.17 s) correlated significantly (p < 0.05) with Smax (r = -0.66), VT1 (r = -0.64) and time constant of the pV̇O2 on-kinetics (r = 0.69). These findings indicate that NIRS-derived mV̇O2 kinetics in the gastrocnemius following moderate running exercise is a useful and reliable method to assess muscle oxidative capacity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rafael A de Aguiar
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Tiago Turnes
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil.,Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fernando K Borszcz
- Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - João A G Raimundo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Fabrizio Caputo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| |
Collapse
|
15
|
Machado E, Lanferdini FJ, da Silva ES, Geremia JM, Sonda FC, Fletcher JR, Vaz MA, Peyré-Tartaruga LA. Triceps Surae Muscle-Tendon Properties as Determinants of the Metabolic Cost in Trained Long-Distance Runners. Front Physiol 2022; 12:767445. [PMID: 35058793 PMCID: PMC8764303 DOI: 10.3389/fphys.2021.767445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study aimed to determine whether triceps surae's muscle architecture and Achilles tendon parameters are related to running metabolic cost (C) in trained long-distance runners. Methods: Seventeen trained male recreational long-distance runners (mean age = 34 years) participated in this study. C was measured during submaximal steady-state running (5 min) at 12 and 16 km h-1 on a treadmill. Ultrasound was used to determine the gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and soleus (SO) muscle architecture, including fascicle length (FL) and pennation angle (PA), and the Achilles tendon cross-sectional area (CSA), resting length and elongation as a function of plantar flexion torque during maximal voluntary plantar flexion. Achilles tendon mechanical (force, elongation, and stiffness) and material (stress, strain, and Young's modulus) properties were determined. Stepwise multiple linear regressions were used to determine the relationship between independent variables (tendon resting length, CSA, force, elongation, stiffness, stress, strain, Young's modulus, and FL and PA of triceps surae muscles) and C (J kg-1m-1) at 12 and 16 km h-1. Results: SO PA and Achilles tendon CSA were negatively associated with C (r 2 = 0.69; p < 0.001) at 12 km h-1, whereas SO PA was negatively and Achilles tendon stress was positively associated with C (r 2 = 0.63; p = 0.001) at 16 km h-1, respectively. Our results presented a small power, and the multiple linear regression's cause-effect relation was limited due to the low sample size. Conclusion: For a given muscle length, greater SO PA, probably related to short muscle fibers and to a large physiological cross-sectional area, may be beneficial to C. Larger Achilles tendon CSA may determine a better force distribution per tendon area, thereby reducing tendon stress and C at submaximal speeds (12 and 16 km h-1). Furthermore, Achilles tendon morphological and mechanical properties (CSA, stress, and Young's modulus) and triceps surae muscle architecture (GM PA, GM FL, SO PA, and SO FL) presented large correlations with C.
Collapse
Affiliation(s)
- Esthevan Machado
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada
| | - Fábio Juner Lanferdini
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Biomecânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edson Soares da Silva
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeam Marcel Geremia
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francesca Chaida Sonda
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jared R. Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada
| | - Marco Aurélio Vaz
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
16
|
van der Zwaard S, Brocherie F, Jaspers RT. Under the Hood: Skeletal Muscle Determinants of Endurance Performance. Front Sports Act Living 2021; 3:719434. [PMID: 34423293 PMCID: PMC8371266 DOI: 10.3389/fspor.2021.719434] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
In the past decades, researchers have extensively studied (elite) athletes' physiological responses to understand how to maximize their endurance performance. In endurance sports, whole-body measurements such as the maximal oxygen consumption, lactate threshold, and efficiency/economy play a key role in performance. Although these determinants are known to interact, it has also been demonstrated that athletes rarely excel in all three. The leading question is how athletes reach exceptional values in one or all of these determinants to optimize their endurance performance, and how such performance can be explained by (combinations of) underlying physiological determinants. In this review, we advance on Joyner and Coyle's conceptual framework of endurance performance, by integrating a meta-analysis of the interrelationships, and corresponding effect sizes between endurance performance and its key physiological determinants at the macroscopic (whole-body) and the microscopic level (muscle tissue, i.e., muscle fiber oxidative capacity, oxygen supply, muscle fiber size, and fiber type). Moreover, we discuss how these physiological determinants can be improved by training and what potential physiological challenges endurance athletes may face when trying to maximize their performance. This review highlights that integrative assessment of skeletal muscle determinants points toward efficient type-I fibers with a high mitochondrial oxidative capacity and strongly encourages well-adjusted capillarization and myoglobin concentrations to accommodate the required oxygen flux during endurance performance, especially in large muscle fibers. Optimisation of endurance performance requires careful design of training interventions that fine tune modulation of exercise intensity, frequency and duration, and particularly periodisation with respect to the skeletal muscle determinants.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Richard T. Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
17
|
Żebrowska M, Weippert M, Petelczyc M. Oxyhemoglobin Concentration and Oxygen Uptake Signal During Recovery From Exhaustive Exercise in Healthy Subjects-Relationship With Aerobic Capacity. Front Physiol 2021; 12:695569. [PMID: 34276414 PMCID: PMC8284098 DOI: 10.3389/fphys.2021.695569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
This proof of concept study is dedicated to the quantification of the short-term recovery phase of the muscle oxygenation and whole-body oxygen uptake kinetics following an exhaustive cycling protocol. Data of 15 healthy young participants (age 26.1 ± 2.8 years, peak oxygen uptake 54.1 ± 5.1 mL∗min-1∗kg-1) were recorded during 5 min cool down-cycling with a power output of 50 W on an electro-magnetically braked cycle ergometer. The oxygen uptake (VO2) signal during recovery was modeled by exponential function. Using the model parameters, the time (T1/2) needed to return VO2 to 50% of VO2peak was determined. The Hill’s model was used to analyze the kinetics of oxyhemoglobin concentration (Sm, %), non-invasively recorded by near-infrared spectroscopy (NIRS) over the M. vastus lateralis. Analysis of the Pearson correlation results in statistically significant negative relationships between T1/2 and relative VO2peak (r = −0.7). Relevant significant correlations were determined between constant defining the slope of VO2 decrease (parameter B) and the duration of the anaerobic phase (r = −0.59), as well as between Hill’s coefficient and average median Smmax for the final 2 min of recovery. The high correlation between traditional variables commonly used to represent the cardio-metabolic capacity and the parameters of fits from exponential and Hill models attests the validity of our approach. Thus, proposed descriptors, derived from non-invasive NIRS monitoring during recovery, seem to reflect aerobic capacity. However, the practical usefulness of such modeling for clinical or other vulnerable populations has to be explored in studies using alternative testing protocols.
Collapse
Affiliation(s)
| | | | - Monika Petelczyc
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
18
|
Lagerwaard B, Janssen JJE, Cuijpers I, Keijer J, de Boer VCJ, Nieuwenhuizen AG. Muscle mitochondrial capacity in high- and low-fitness females using near-infrared spectroscopy. Physiol Rep 2021; 9:e14838. [PMID: 33991439 PMCID: PMC8123566 DOI: 10.14814/phy2.14838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
The recovery of muscle oxygen consumption (m V ˙ O2 ) after exercise measured using near-infrared spectroscopy (NIRS) provides a measure of skeletal muscle mitochondrial capacity. Nevertheless, due to sex differences in factors that can influence scattering and thus penetration depth of the NIRS signal in the tissue, e.g., subcutaneous adipose tissue thickness and intramuscular myoglobin and hemoglobin, it is unknown whether results in males can be extrapolated to a female population. Therefore, the aim of this study was to measure skeletal muscle mitochondrial capacity in females at different levels of aerobic fitness to test whether NIRS can measure relevant differences in mitochondrial capacity. Mitochondrial capacity was analyzed in the gastrocnemius muscle and the wrist flexors of 32 young female adults, equally divided in relatively high ( V ˙ O2 peak ≥ 47 ml/kg/min) and relatively low aerobic fitness group ( V ˙ O2 peak ≤ 37 ml/kg/min). m V ˙ O2 recovery was significantly faster in the high- compared to the low-fitness group in the gastrocnemius, but not in the wrist flexors (p = 0.009 and p = 0.0528, respectively). Furthermore, V ˙ O2 peak was significantly correlated to m V ˙ O2 recovery in both gastrocnemius (R2 = 0.27, p = 0.0051) and wrist flexors (R2 = 0.13, p = 0.0393). In conclusion, NIRS measurements can be used to assess differences in mitochondrial capacity within a female population and is correlated to V ˙ O2 peak. This further supports NIRS assessment of muscle mitochondrial capacity providing additional evidence for NIRS as a promising approach to monitor mitochondrial capacity, also in an exclusively female population.
Collapse
Affiliation(s)
- Bart Lagerwaard
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - Joëlle J E Janssen
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Iris Cuijpers
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
19
|
Jacobs RA, Lundby C. Contextualizing the biological relevance of standardized high-resolution respirometry to assess mitochondrial function in permeabilized human skeletal muscle. Acta Physiol (Oxf) 2021; 231:e13625. [PMID: 33570804 PMCID: PMC8047922 DOI: 10.1111/apha.13625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Aim This study sought to provide a statistically robust reference for measures of mitochondrial function from standardized high‐resolution respirometry with permeabilized human skeletal muscle (ex vivo), compare analogous values obtained via indirect calorimetry, arterial‐venous O2 differences and 31P magnetic resonance spectroscopy (in vivo) and attempt to resolve differences across complementary methodologies as necessary. Methods Data derived from 831 study participants across research published throughout March 2009 to November 2019 were amassed to examine the biological relevance of ex vivo assessments under standard conditions, ie physiological temperatures of 37°C and respiratory chamber oxygen concentrations of ~250 to 500 μmol/L. Results Standard ex vivo‐derived measures are lower (Z ≥ 3.01, P ≤ .0258) en masse than corresponding in vivo‐derived values. Correcting respiratory values to account for mitochondrial temperatures 10°C higher than skeletal muscle temperatures at maximal exercise (~50°C): (i) transforms data to resemble (Z ≤ 0.8, P > .9999) analogous yet context‐specific in vivo measures, eg data collected during maximal 1‐leg knee extension exercise; and (ii) supports the position that maximal skeletal muscle respiratory rates exceed (Z ≥ 13.2, P < .0001) those achieved during maximal whole‐body exercise, e.g. maximal cycling efforts. Conclusion This study outlines and demonstrates necessary considerations when actualizing the biological relevance of human skeletal muscle respiratory control, metabolic flexibility and bioenergetics from standard ex vivo‐derived assessments using permeabilized human muscle. These findings detail how cross‐procedural comparisons of human skeletal muscle mitochondrial function may be collectively scrutinized in their relationship to human health and lifespan.
Collapse
Affiliation(s)
- Robert A. Jacobs
- Department of Human Physiology & Nutrition University of Colorado Colorado Springs (UCCS) Colorado Springs CO USA
| | - Carsten Lundby
- Innland University of Applied Sciences Lillehammer Norway
| |
Collapse
|