1
|
Johnson NE, Burma JS, Neill MG, Burkart JJ, Fletcher EKS, Smirl JD. Challenging dynamic cerebral autoregulation across the physiological CO 2 spectrum: Influence of biological sex and cardiac cycle. Exp Physiol 2025; 110:147-165. [PMID: 39557629 DOI: 10.1113/ep092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
This study applied alterations in partial pressure of end-tidal carbon dioxide (P ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) to challenge dynamic cerebral autoregulation (dCA) responses across the cardiac cycle in both biological sexes. A total of 20 participants (10 females and 10 males; aged 19-34 years) performed 4-min bouts of repeated squat-stand manoeuvres (SSMs) at 0.05 and 0.10 Hz (randomized orders) withP ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ clamped at ∼40 mmHg. The protocol was repeated for hypercapnic (∼55 mmHg) and hypocapnic (∼20 mmHg) conditions. Middle cerebral artery (MCA) and posterior cerebral artery (PCA) were insonated via transcranial Doppler ultrasound. Dynamic end-tidal forcing clampedP ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , and finger photoplethysmography quantified beat-to-beat changes in blood pressure. Linear regressions were performed for transfer function analysis metrics including power spectrum densities, coherence, phase, gain and normalized gain (nGain) with adjustment for sex. During hypercapnic conditions, phase metrics were reduced from eucapnic levels (all P < 0.009), while phase increased during the hypocapnic stage during both 0.05 and 0.10 Hz SSMs (all P < 0.037). Sex differences were present with females displaying greater gain and nGain systole metrics during 0.10 Hz SSMs (all P < 0.041). AcrossP ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ stages, females displayed reduced buffering against systolic aspects of the cardiac cycle and augmented gain. Sex-related variances in dCA could explain sex differences in the occurrence of clinical conditions such as orthostatic intolerance and stroke, though the effect of fluctuating sex hormones and contraceptive use on dCA metrics is not yet understood.
Collapse
Affiliation(s)
- Nathan E Johnson
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthew G Neill
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Joshua J Burkart
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Burma JS, Neill MG, Fletcher EKS, Dennett BE, Johnson NE, Javra R, Griffiths JK, Smirl JD. Examining the upper frequency limit of dynamic cerebral autoregulation: Considerations across the cardiac cycle during eucapnia. Exp Physiol 2024; 109:2100-2121. [PMID: 39382938 DOI: 10.1113/ep091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/21/2024] [Indexed: 10/10/2024]
Abstract
There are differences within the literature regarding the upper frequency cut-off point of the dynamic cerebral autoregulation (CA) high-pass filter. The projection pursuit regression approach has demonstrated that the upper frequency limit is ∼0.07 Hz, whereas another approach [transfer function analysis (TFA) phase approaching zero] indicated a theoretical upper frequency limit for the high-pass filter of 0.24 Hz. We investigated how these limits accurately represent the CA upper frequency limit, in addition to extending earlier findings with respect to biological sexes and across the cardiac cycle. Sixteen participants (nine females and seven males) performed repeated squat-stand manoeuvres at frequencies of 0.05, 0.10, 0.15, 0.20 and 0.25 Hz, with insonation of the middle and posterior cerebral arteries. Linear regression modelling with adjustment for sex and order of squat completion was used to compared TFA gain and phase with 0.25 Hz (above the theoretical limit of CA). The upper frequency limit of CA with TFA gain was within the range of 0.05-0.10 Hz, whereas TFA phase was within the range of 0.20-0.25 Hz, and consistent between vessels, between sexes and across the cardiac cycle. Females displayed greater middle cerebral artery gain compared with males (all P < 0.047), and no phase differences were present (all P > 0.072). Although sex-specific differences were present for specific TFA metrics at a given frequency, the upper frequency limit of autoregulation was similar between cerebral conduit vessels, cardiac cycle phase and biological sex. Future work is warranted to determine whether an upper frequency limit exists with respect to hysteresis analyses.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthew G Neill
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Brooke E Dennett
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Raelyn Javra
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - James K Griffiths
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Javra R, Burma JS, Johnson NE, Smirl JD. Feasibility of superimposed supine cycling and lower body negative pressure as an effective means of prolonging exercise tolerance in individuals experiencing persisting post-concussive symptoms: Preliminary results. Exp Physiol 2024. [PMID: 39102430 DOI: 10.1113/ep091677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
To examine the feasibility, utility and safety of superimposed lower body negative pressure (LBNP) and tilt during supine cycling in individuals suffering from persisting post-concussive symptoms (PPCS). Eleven individuals aged 17-31 (6 females/5 males) participated in two randomized separate visits, 1 week apart. A ramp-incremental test was performed during both visits until volitional failure. Visits included no pressure (control) or LBNP at -40 Torr (experimental) with head-up tilt at 15 degrees (females) or 30 degrees (males). Transcranial Doppler ultrasound was utilized to quantify middle cerebral artery velocity (MCAv), while symptom reports were filled out before and 0, 10, and 60 min post-exertion. Ratings of exertion and overall condition followed similar trends for participants across both tests. The relative increase in MCAv was blunted during the experimental condition (8%) compared to control (24%), while a greater heart rate (17 beats/min) was achieved during the LBNP condition (P = 0.047). Symptom severity at the 0 and 10 min post-exertion time points displayed negligible-to-small effect sizes between conditions (Wilcoxon's r < 0.11). Symptom reporting was lower at the 60 min post-exertion time point with these displaying a moderate effect size (Wilcoxon's r = 0.31). The combination of LBNP and tilt during supine cycling did not change the participants' subjective interpretation of the exertional test but attenuated the hyperpnia-induced vasodilatory MCAv response, while also enabling participants to achieve a higher heart rate during exercise and reduced symptoms 1 h later. As this protocol is safe and feasible, further research is warranted in this area for developing PPCS treatment options. HIGHLIGHTS: What is the central question of this study? What are the feasibility, safety and utility of combining head-up tilt with lower body negative pressure during supine cycling for blunting the increase in cerebral blood velocity seen during moderate-intensity exercise in individuals experiencing persisting post-concussion symptoms? What is the main finding and its importance? Although no differences were found in symptoms between conditions within the first 10 min following exertion, symptom severity scores showed a clinically meaningful reduction 60 min following the experimental condition compared to the non-experimental control condition.
Collapse
Affiliation(s)
- Raelyn Javra
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Burma JS, Roy MA, Kennedy CM, Labrecque L, Brassard P, Smirl JD. A systematic review, meta-analysis and meta-regression amalgamating the driven approaches used to quantify dynamic cerebral autoregulation. J Cereb Blood Flow Metab 2024; 44:1271-1297. [PMID: 38635887 PMCID: PMC11342731 DOI: 10.1177/0271678x241235878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/20/2024]
Abstract
Numerous driven techniques have been utilized to assess dynamic cerebral autoregulation (dCA) in healthy and clinical populations. The current review aimed to amalgamate this literature and provide recommendations to create greater standardization for future research. The PubMed database was searched with inclusion criteria consisting of original research articles using driven dCA assessments in humans. Risk of bias were completed using Scottish Intercollegiate Guidelines Network and Methodological Index for Non-Randomized Studies. Meta-analyses were conducted for coherence, phase, and gain metrics at 0.05 and 0.10 Hz using deep-breathing, oscillatory lower body negative pressure (OLBNP), sit-to-stand maneuvers, and squat-stand maneuvers. A total of 113 studies were included, with 40 of these incorporating clinical populations. A total of 4126 participants were identified, with younger adults (18-40 years) being the most studied population. The most common techniques were squat-stands (n = 43), deep-breathing (n = 25), OLBNP (n = 20), and sit-to-stands (n = 16). Pooled coherence point estimates were: OLBNP 0.70 (95%CI:0.59-0.82), sit-to-stands 0.87 (95%CI:0.79-0.95), and squat-stands 0.98 (95%CI:0.98-0.99) at 0.05 Hz; and deep-breathing 0.90 (95%CI:0.81-0.99); OLBNP 0.67 (95%CI:0.44-0.90); and squat-stands 0.99 (95%CI:0.99-0.99) at 0.10 Hz. This review summarizes clinical findings, discusses the pros/cons of the 11 unique driven techniques included, and provides recommendations for future investigations into the unique physiological intricacies of dCA.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Rivera-Rivera LA, Roberts GS, Peret A, Langhough RE, Jonaitis EM, Du L, Field A, Eisenmenger L, Johnson SC, Johnson KM. Unraveling diurnal and technical variability in cerebral hemodynamics from neurovascular 4D-Flow MRI. J Cereb Blood Flow Metab 2024; 44:1362-1375. [PMID: 38340787 PMCID: PMC11342721 DOI: 10.1177/0271678x241232190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024]
Abstract
Neurovascular 4D-Flow MRI enables non-invasive evaluation of cerebral hemodynamics including measures of cerebral blood flow (CBF), vessel pulsatility index (PI), and cerebral pulse wave velocity (PWV). 4D-Flow measures have been linked to various neurovascular disorders including small vessel disease and Alzheimer's disease; however, physiological and technical sources of variability are not well established. Here, we characterized sources of diurnal physiological and technical variability in cerebral hemodynamics using 4D-Flow in a retrospective study of cognitively unimpaired older adults (N = 750) and a prospective study of younger adults (N = 10). Younger participants underwent repeated MRI sessions at 7am, 4 pm, and 10 pm. In the older cohort, having an MRI earlier on the day was significantly associated with higher CBF and lower PI. In prospective experiments, time of day significantly explained variability in CBF and PI; however, not in PWV. Test-retest experiments showed high CBF intra-session repeatability (repeatability coefficient (RPC) =7.2%), compared to lower diurnal repeatability (RPC = 40%). PI and PWV displayed similar intra-session and diurnal variability (PI intra-session RPC = 22%, RPC = 24% 7am vs 4 pm; PWV intra-session RPC = 17%, RPC = 21% 7am vs 4 pm). Overall, CBF measures showed low technical variability, supporting diurnal variability is from physiology. PI and PWV showed higher technical variability but less diurnal variability.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony Peret
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca E Langhough
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lianlian Du
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aaron Field
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
6
|
Olsen MH, Riberholt C, Capion T, Plovsing RR, Møller K, Berg RMG. Test-retest reliability of transfer function analysis metrics for assessing dynamic cerebral autoregulation to spontaneous blood pressure oscillations. Exp Physiol 2024; 109:1024-1039. [PMID: 38590228 PMCID: PMC11215465 DOI: 10.1113/ep091500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Transfer function analysis (TFA) is a widely used method for assessing dynamic cerebral autoregulation in humans. In the present study, we assessed the test-retest reliability of established TFA metrics derived from spontaneous blood pressure oscillations and based on 5 min recordings. The TFA-based gain, phase and coherence in the low-frequency range (0.07-0.20 Hz) from 19 healthy volunteers, 37 patients with subarachnoid haemorrhage and 19 patients with sepsis were included. Reliability assessments included the smallest real difference (SRD) and the coefficient of variance for comparing consecutive 5 min recordings, temporally separated 5 min recordings and consecutive recordings with a minimal length of 10 min. In healthy volunteers, temporally separating the 5 min recordings led to a 0.38 (0.01-0.79) cm s-1 mmHg-1 higher SRD for gain (P = 0.032), and extending the duration of recordings did not affect the reliability. In subarachnoid haemorrhage, temporal separation led to a 0.85 (-0.13 to 1.93) cm s-1 mmHg-1 higher SRD (P = 0.047) and a 20 (-2 to 41)% higher coefficient of variance (P = 0.038) for gain, but neither metric was affected by extending the recording duration. In sepsis, temporal separation increased the SRD for phase by 94 (23-160)° (P = 0.006) but was unaffected by extending the recording. A recording duration of 8 min was required to achieve stable gain and normalized gain measures in healthy individuals, and even longer recordings were required in patients. In conclusion, a recording duration of 5 min appears insufficient for obtaining stable and reliable TFA metrics when based on spontaneous blood pressure oscillations, particularly in critically ill patients with subarachnoid haemorrhage and sepsis.
Collapse
Affiliation(s)
- Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Christian Riberholt
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Neurorehabilitation/Traumatic Brain Injury Unit, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Tenna Capion
- Department of Neurosurgery, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Ronni R. Plovsing
- Department of Anaesthesia and Intensive CareCopenhagen University Hospital – HvidovreCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ronan M. G. Berg
- Department of Clinical Physiology and Nuclear Medicine, The Diagnostic CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Centre for Physical Activity ResearchCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| |
Collapse
|
7
|
Burma JS, Smirl JD. Letter to the editor: Deriving transfer function analysis metrics from driven methods. J Cereb Blood Flow Metab 2024; 44:1053-1056. [PMID: 38466898 PMCID: PMC11318404 DOI: 10.1177/0271678x231224504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 03/13/2024]
Abstract
Driven and spontaneous methods have been used to quantify the cerebral pressure-flow relationship via transfer function analysis (TFA). Commonly, TFA derived estimates are assessed using band averages within the very-low (0.02-0.07 Hz) and low (0.07-0.20 Hz) frequency during spontaneous oscillations but are quantified at frequencies of interest where blood pressure oscillations are driven (e.g., 0.05 and/or 0.10 Hz). Driven estimates more closely resemble the autoregulatory challenges individuals experience on a daily basis, while also eliciting higher levels of reliability. While driven estimates with point-estimates are not feasible for all clinical populations, these approaches increase the ability to understand pathophysiological changes.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Webb AJ, Klerman EB, Mandeville ET. Circadian and Diurnal Regulation of Cerebral Blood Flow. Circ Res 2024; 134:695-710. [PMID: 38484025 PMCID: PMC10942227 DOI: 10.1161/circresaha.123.323049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Circadian and diurnal variation in cerebral blood flow directly contributes to the diurnal variation in the risk of stroke, either through factors that trigger stroke or due to impaired compensatory mechanisms. Cerebral blood flow results from the integration of systemic hemodynamics, including heart rate, cardiac output, and blood pressure, with cerebrovascular regulatory mechanisms, including cerebrovascular reactivity, autoregulation, and neurovascular coupling. We review the evidence for the circadian and diurnal variation in each of these mechanisms and their integration, from the detailed evidence for mechanisms underlying the nocturnal nadir and morning surge in blood pressure to identifying limited available evidence for circadian and diurnal variation in cerebrovascular compensatory mechanisms. We, thus, identify key systemic hemodynamic factors related to the diurnal variation in the risk of stroke but particularly identify the need for further research focused on cerebrovascular regulatory mechanisms.
Collapse
Affiliation(s)
- Alastair J.S. Webb
- Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
| | - Elizabeth B. Klerman
- Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
- Department of Neurology, Massachusetts General Hospital, Boston (E.B.K.)
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (E.B.K.)
- Division of Sleep Medicine, Harvard Medical School, Boston, MA (E.B.K.)
| | - Emiri T. Mandeville
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.T.M.)
| |
Collapse
|
9
|
Wallis WEG, Al-Alem Q, Lorimer H, Smail OJ, Williams GKR, Bond B. The acute influence of amateur boxing on dynamic cerebral autoregulation and cerebrovascular reactivity to carbon dioxide. Eur J Appl Physiol 2024; 124:993-1003. [PMID: 37768343 PMCID: PMC10879355 DOI: 10.1007/s00421-023-05324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE The purpose of this study was to investigate the acute effect of head impacts, sustained over the course of three rounds of amateur boxing, on indices of cerebrovascular function. METHODS Eighteen university amateur boxers (six female) completed three experimental trials in a randomised order; (1) three rounds of boxing (BOX), (2) an equivalent bout of pad boxing (where no blows to the head were sustained; PAD), and (3) a time-matched seated control trial (CON). Indices of cerebrovascular function were determined immediately before and 45 min after each trial. Specifically, dynamic cerebral autoregulation (dCA) was determined by considering the relationship between changes in cerebral blood velocity and mean arterial pressure during 5 min of squat-stand manoeuvres at 0.05 and 0.10 Hz. Cerebrovascular reactivity was determined using serial breath holding and hyperventilation attempts. RESULTS Participants received an average of 40 ± 16 punches to the head during the BOX trial. Diastolic, mean and systolic dCA phase during squat stand manoeuvres at 0.05 Hz was lower after BOX compared to pre BOX (P ≤ 0.02, effect size (d) ≥ 0.74). No other alterations in dCA outcomes were observed at 0.05 or 0.10 Hz. The number of head impacts received during the BOX trial was associated with the change in systolic phase (r = 0.50, P = 0.03). No differences in cerebrovascular reactivity to breath holding or hyperventilation were observed. CONCLUSIONS A typical bout of amateur boxing (i.e., three rounds) can subtly alter cerebral pressure-flow dynamics, and the magnitude of this change may be related to head impact exposure.
Collapse
Affiliation(s)
- W E G Wallis
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Q Al-Alem
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - H Lorimer
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - O J Smail
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - G K R Williams
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - B Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK.
| |
Collapse
|
10
|
Chen H, Cui L, Chen S, Liu R, Pan X, Zhou F, Xing Y. Comparable dynamic cerebral autoregulation and neurovascular coupling of the posterior cerebral artery between healthy men and women. CNS Neurosci Ther 2024; 30:e14584. [PMID: 38421125 PMCID: PMC10851316 DOI: 10.1111/cns.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS Most studies focus on dynamic cerebral autoregulation (dCA) in the middle cerebral artery (MCA), and few studies investigated neurovascular coupling (NVC) and dCA in the posterior cerebral artery (PCA). We investigated NVC and dCA of the PCA in healthy volunteers to identify sex differences. METHODS Thirty men and 30 age-matched women completed dCA and NCV assessments. The cerebral blood flow velocity (CBFV) and mean arterial pressure were evaluated using transcranial Doppler ultrasound and a servo-controlled plethysmograph, respectively. The dCA parameters were analyzed using transfer function analysis. The NCV was evaluated by eyes-open and eyes-closed (24 s each) periodically based on voice prompts. The eyes-open visual stimulation comprised silent reading of Beijing-related tourist information. RESULTS The PCA gain was lower than that of the MCA in all frequency ranges (all p < 0.05). Phase was consistent across the cerebrovascular territories. The cerebrovascular conductance index (CVCi) and mean CBFV (MV) of the PCA were significantly higher during the eyes-open than eyes-closed period (CVCi: 0.50 ± 0.12 vs. 0.38 ± 0.10; MV: 42.89 ± 8.49 vs. 32.98 ± 7.25, both p < 0.001). The PCA dCA and NVC were similar between the sexes. CONCLUSION We assessed two major mechanisms that maintain cerebral hemodynamic stability in healthy men and women. The visual stimulation-evoked CBFV of the PCA was significantly increased compared to that during rest, confirming the activation of NVC. Men and women have similar functions in PCA dCA and NCV.
Collapse
Affiliation(s)
- Hongxiu Chen
- Department of Vascular UltrasonographyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Liuping Cui
- Department of Vascular UltrasonographyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Songwei Chen
- Department of Vascular UltrasonographyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Ran Liu
- Department of Vascular UltrasonographyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Xijuan Pan
- Department of Vascular UltrasonographyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Fubo Zhou
- Department of Vascular UltrasonographyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yingqi Xing
- Department of Vascular UltrasonographyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Diagnostic Center of Vascular UltrasoundBeijingChina
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Burma JS, Griffiths JK, Smirl JD. Validity and reliability of deriving the autoregulatory plateau through projection pursuit regression from driven methods. Physiol Rep 2024; 12:e15919. [PMID: 38262711 PMCID: PMC10805621 DOI: 10.14814/phy2.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
To compare the construct validity and between-day reliability of projection pursuit regression (PPR) from oscillatory lower body negative pressure (OLBNP) and squat-stand maneuvers (SSMs). Nineteen participants completed 5 min of OLBNP and SSMs at driven frequencies of 0.05 and 0.10 Hz across two visits. Autoregulatory plateaus were derived at both point-estimates and across the cardiac cycle. Between-day reliability was assessed with intraclass correlation coefficients (ICCs), Bland-Altman plots with 95% limits of agreement (LOA), coefficient of variation (CoV), and smallest real differences. Construct validity between OLBNP-SSMs were quantified with Bland-Altman plots and Cohen's d. The expected autoregulatory curve with positive rising and negative falling slopes were present in only ~23% of the data. The between-day reliability for the ICCs were poor-to-good with the CoV estimates ranging from ~50% to 70%. The 95% LOA were very wide with an average spread of ~450% for OLBNP and ~350% for SSMs. Plateaus were larger from SSMs compared to OLBNPs (moderate-to-large effect sizes). The cerebral pressure-flow relationship is a complex regulatory process, and the "black-box" nature of this system can make it challenging to quantify. The current data reveals PPR analysis does not always elicit a clear-cut central plateau with distinctive rising/falling slopes.
Collapse
Affiliation(s)
- Joel S. Burma
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
| | - James K. Griffiths
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
12
|
Brassard P, Roy MA, Burma JS, Labrecque L, Smirl JD. Quantification of dynamic cerebral autoregulation: welcome to the jungle! Clin Auton Res 2023; 33:791-810. [PMID: 37758907 DOI: 10.1007/s10286-023-00986-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms. METHODS In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions. RESULTS Following some historical background, this narrative review provides a brief overview of the concept of cerebral autoregulation, with a focus on the quantification of dynamic cerebral autoregulation. We then discuss the main protocols and analytical approaches to assess dynamic cerebral autoregulation, including recent advances and important issues which need to be tackled. CONCLUSION The researcher or clinician new to this field needs an adequate comprehension of the toolbox they have to adequately assess, and interpret, the complex relationship between arterial blood pressure and cerebral blood flow in healthy individuals and clinical populations, including patients with autonomic disorders.
Collapse
Affiliation(s)
- Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada.
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Johnson NE, Burma JS, Seok J, Miutz LN, Smirl JD. Influence of sex on the reliability of cerebral blood velocity regulation during lower body negative pressure and supine cycling with considerations of the menstrual cycle. Physiol Meas 2023; 44:114001. [PMID: 37848016 DOI: 10.1088/1361-6579/ad0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Objective.To evaluate sex differences in the reliability of absolute and relative cerebral blood velocity (CBv) during concurrent supine cycling with lower body negative pressure (LBNP).Approach. A total of 19 participants (11 females; aged 20-33 years) completed five testing sessions, occurring on 7 d intervals. Visit 1 was a maximal-ramp-cycle test to ascertain peak CBv wattage. During visits 2-5, supine cycling protocol occurred at individualized peak CBv wattages with progressive decreases in LBNP from 0 to -20, -40, -60, -70, and -80 Torr. Menstrual cycle day was self-reported via the Rhinessa Women's Questionnaire. Transcranial Doppler ultrasound insonated bilateral middle cerebral artery velocity (MCAv). Two-way ANOVA assessed potential day- and sex-differences at each LBNP stage. Reliability was determined using intraclass correlation coefficients (ICC) and coefficient of variation (CoV).Main results. For all physiological measures, no main-effects were present for day- or interaction-terms (p> 0.067; negligible-to-small effect sizes), while sex differences were noted for MCAv, blood pressure, and heart rate (p< 0.046). Across visits, males and females displayed excellent and good-to-excellent levels of reliability for MCAv metrics, respectively (ICC range: 0.745-0.999; CoV range: 0.33%-9.90%).Significance. During the current investigation, both relative and absolute CBv demonstrated high reliability in both male and female participants during a supine LBNP cycling protocol. An exploratory analysis revealed increased variance was found in female participants dependent on contraceptive use. Despite this, results indicate future LBNP studies may include females at any menstrual cycle stage.
Collapse
Affiliation(s)
- Nathan E Johnson
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Jina Seok
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, OH, United States of America
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Burma JS, Seok J, Johnston NE, Smirl JD. Cerebral blood velocity during concurrent supine cycling, lower body negative pressure, and head-up tilt challenges: implications for concussion rehabilitation. Physiol Meas 2023; 44:084002. [PMID: 37531960 DOI: 10.1088/1361-6579/acecd4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Introduction. The effect of concurrent head-up tilt and lower body negative pressure (LBNP) have been examined on middle cerebral artery velocity (MCAv) at rest; however, it is unknown the superimposed effect these factors have on blunting the elevation in cerebral blood velocity associated with moderate-intensity exercise.Methods. 23 healthy adults (11 females / 12 males, 20-33 years) completed three visits. The first consisted of a maximal ramp supine cycling test to identify the wattage associated with individualized maximal MCAv. Subsequent visits included randomized no LBNP (control) or LBNP at -40 Torr (experimental) with successively increasing head-up tilt stages of 0, 15, 30, and 45 degrees during the pre-described individualized wattage. Transcranial Doppler ultrasound was utilized to quantify MCAv. Two-factorial repeated measures analysis of variance with effect sizes were used to determine differences between days and tilt stages.Results. Between-day baseline values for MCAv, heart rate, and blood pressure displayed low variability with <5% variation. With no LBNP, MCAv was above baseline on average for all participants; however, 15 degrees and 30 degrees tilt with concurrent -40 Torr LBNP was sufficient to return MCAv to 100% of baseline values in females and males, respectively. Body-weight did not impact the association between tilt and pressure (R2range: 0.01-0.12).Conclusion. Combined LBNP and tilt were sufficient to reduce the increase in MCAv associated with moderate-intensity exercise. This exercise modality shows utility to enable individuals with a concussion to obtain the positive physiological adaptions associated with exercise while minimizing symptom exacerbation due to the notion of the Monro-Kellie doctrine.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Jina Seok
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Nathan E Johnston
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Burma JS, Rattana S, Oni IK, Lapointe AP, Dunn JF, Smirl JD. The temporal neurovascular coupling response remains intact during sinusoidal hypotensive and hypertensive challenges. Physiol Meas 2023; 44:074002. [PMID: 37399810 DOI: 10.1088/1361-6579/ace3a2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Introduction. Neurovascular coupling (NVC) describes the coupling of neuronal metabolic demand to blood supply, which has shown to be impaired with chronic hypertension, as well as with prolonged hypotension. However, it is unknown the extent the NVC response remains intact during transient hypo- and hyper-tensive challenges.Methods. Fifteen healthy participants (9 females/6 males) completed a visual NVC task ('Where's Waldo?') over two testing sessions, consisting of cyclical 30 s eyes closed and opened portions. The Waldo task was completed at rest (8 min) and concurrently during squat-stand maneuvers (SSMs; 5 min) at 0.05 Hz (10 s squat/stand) and 0.10 Hz (5 s squat-stand). SSMs induce 30-50 mmHg blood pressure oscillations, resulting in cyclical hypo- and hyper-tensive swings within the cerebrovasculature, allowing for the quantification of the NVC response during transient hypo- and hyper-tension. Outcome NVC metrics included baseline, peak, relative increase in cerebral blood velocity (CBv), and area-under-the-curve (AUC30) within the posterior and middle cerebral arteries indexed via transcranial Doppler ultrasound. Within-subject, between-task comparisons were conducted using analysis of variance with effect size calculations.Results. Differences were noted between rest and SSM conditions in both vessels for peak CBv (allp< 0.045) and the relative increase in CBv (allp <0.049) with small-to-large effect sizes. AUC30 metrics were similar between all tasks (allp> 0.090) with negligible-to-small effect sizes.Conclusions. Despite the SSMs eliciting ∼30-50 mmHg blood pressure oscillations, similar levels of activation occurred within the neurovascular unit across all conditions. This demonstrated the signaling of the NVC response remained intact during cyclical blood pressure challenges.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Selina Rattana
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Ibukunoluwa K Oni
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew P Lapointe
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Abadjiev DS, Toschi-Dias E, Salinet ASM, Gaykova NN, Lo MT, Nogueira RC, Hu K. Daily rhythm of dynamic cerebral autoregulation in patients after stroke. J Cereb Blood Flow Metab 2023; 43:989-998. [PMID: 36722135 PMCID: PMC10196745 DOI: 10.1177/0271678x231153750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/02/2022] [Accepted: 01/02/2022] [Indexed: 02/02/2023]
Abstract
Dynamic cerebral autoregulation (dCA) in healthy young adults displays a daily variation. Whether the rhythm exists in patients with stroke is unknown. We studied 28 stroke patients (age: 26-83 years, 7 females) within 48 hours after thrombolysis. dCA was assessed 54 times in these patients during supine rest (twice in 26 and once in 2 patients): 9 assessments between 0-9AM, 12 between 9AM-2PM, 20 between 2-7PM, and 13 between 7PM-12AM. To estimate dCA, phase shifts between spontaneous oscillations of cerebral blood flow velocity (CBFV) in the middle cerebral artery and arterial blood pressure (BP) were obtained in four frequency bands: <0.05 Hz, 0.05-0.1 Hz, 0.1-0.2 Hz, and >0.2 Hz. CBFV-BP phase shifts at <0.05 Hz were significantly larger between 2-7PM, suggesting better dCA, than those at other times (p < 0.0001), and the daily rhythm was consistent for stroke and non-stroke sides. No significant rhythms were observed at higher frequencies (all p > 0.2). All results were independent of age, sex, stroke type and severity, and other cardiovascular conditions. dCA after stroke showed a daily rhythm, leading to a better regulation of CBFV at <0.05 Hz during the afternoon. The finding may have implications for daily activity management of stroke patients.
Collapse
Affiliation(s)
- Daniel S Abadjiev
- Medical Biodynamics Program,
Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
| | - Edgar Toschi-Dias
- Neurology Department, School of
Medicine, Hospital das Clinicas, University of São Paulo, São Paulo ,
Brazil
| | - Angela SM Salinet
- Neurology Department, School of
Medicine, Hospital das Clinicas, University of São Paulo, São Paulo ,
Brazil
| | - Nicole N Gaykova
- Medical Biodynamics Program,
Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
| | - Men-Tzung Lo
- Institute of Translational and
Interdisciplinary Medicine and Department of Biomedical Sciences and
Engineering, National Central University, Taoyuan
| | - Ricardo C Nogueira
- Neurology Department, School of
Medicine, Hospital das Clinicas, University of São Paulo, São Paulo ,
Brazil
- Neurology Department, Hospital
Sirio Libanes, São Paulo, Brazil
| | - Kun Hu
- Medical Biodynamics Program,
Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard
Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Smail OJ, Clarke DJ, Al‐Alem Q, Wallis W, Barker AR, Smirl JD, Bond B. Resistance exercise acutely elevates dynamic cerebral autoregulation gain. Physiol Rep 2023; 11:e15676. [PMID: 37100594 PMCID: PMC10132945 DOI: 10.14814/phy2.15676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Dynamic cerebral autoregulation (dCA) describes the regulation of cerebral blood flow (CBF) in response to fluctuations in systemic blood pressure (BP). Heavy resistance exercise is known to induce large transient elevations in BP, which are translated into perturbations of CBF, and may alter dCA in the immediate aftermath. This study aimed to better quantify the time course of any acute alterations in dCA after resistance exercise. Following familiarisation to all procedures, 22 (14 male) healthy young adults (22 ± 2 years) completed an experimental trial and resting control trial, in a counterbalanced order. Repeated squat-stand manoeuvres (SSM) at 0.05 and 0.10 Hz were used to quantify dCA before, and 10 and 45 min after four sets of ten repetition back squats at 70% of one repetition maximum, or time matched seated rest (control). Diastolic, mean and systolic dCA were quantified by transfer function analysis of BP (finger plethysmography) and middle cerebral artery blood velocity (transcranial Doppler ultrasound). Mean gain (p = 0.02; d = 0.36) systolic gain (p = 0.01; d = 0.55), mean normalised gain (p = 0.02; d = 0.28) and systolic normalised gain (p = 0.01; d = 0.67) were significantly elevated above baseline during 0.10 Hz SSM 10-min post resistance exercise. This alteration was not present 45 min post-exercise, and dCA indices were never altered during SSM at 0.05 Hz. dCA metrics were acutely altered 10 min post resistance exercise at the 0.10 Hz frequency only, which indicate changes in the sympathetic regulation of CBF. These alterations recovered 45 min post-exercise.
Collapse
Affiliation(s)
- Oliver J. Smail
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Daniel J. Clarke
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Qais Al‐Alem
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - William Wallis
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Alan R. Barker
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
- Children's Health and Exercise Research CentreUniversity of ExeterExeterUK
| | - Jonathan D. Smirl
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Reach InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
- Cerebrovascular Concussion LabUniversity of CalgaryCalgaryAlbertaCanada
| | - Bert Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
- Children's Health and Exercise Research CentreUniversity of ExeterExeterUK
| |
Collapse
|
18
|
Burma JS, Rattana S, Johnson NE, Smirl JD. Do mean values tell the full story? Cardiac cycle and biological sex comparisons in temporally derived neurovascular coupling metrics. J Appl Physiol (1985) 2023; 134:426-443. [PMID: 36603050 DOI: 10.1152/japplphysiol.00170.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous reports have noted cerebrovascular regulation differs across the cardiac cycle, with greater regulation occurring within systole. However, this methodological notion has not been meticulously scrutinized during temporally deduced neurovascular coupling (NVC) metrics with additional respect to biological sex. Analyses of 111 healthy individuals (40 females/71 males) were performed where participants engaged in the "Where's Waldo?" paradigm. All NVC parameters were quantified in the posterior and middle cerebral arteries at 310 unique timepoints. Several individuals completed repeat testing which enabled for between-day (3 timepoints) and within-day (7 timepoints) reliability comparisons in 17 and 11 individuals, respectively. One-way analysis of variance compared NVC metrics between diastole, mean, and systole values, as well as differences between biological sexes. Greater absolute cerebral blood velocity (CBv; baseline and peak) and total activation (area under the curve) were noted within systole for both posterior cerebral artery (PCA; P < 0.001) and middle cerebral artery (MCA; P < 0.001) values; however, the relative percent increase in CBv was greater within diastole (P < 0.001). Females had an elevated diastolic and mean CBv and a greater diastolic cerebrovascular conductance (P < 0.050). No sex differences were present for systolic CBv measures and within parameters quantifying the NVC response (area under the curve/relative CBv increase) across the cardiac cycle (P > 0.072). Future investigations seeking to differentiate cerebral regulatory mechanisms between clinical populations may benefit by performing their analyses across the cardiac cycle, as certain pathogenesis may affect one aspect of the cardiac cycle independently. Minimal differences were noted between females and males for metrics characterizing the NVC response across the cardiac cycle.NEW & NOTEWORTHY Neurovascular coupling (NVC) studies commonly assess the mean cerebral hemodynamic response with little consideration for diastole, systole, and biological sex. Greater total activation expressed as the area under the curve was seen within systole compared with mean and diastole. Resting cerebral blood velocity sex differences were more prevalent during diastole when the cerebrovasculature was pressure-passive. Future studies should assess the NVC response across the cardiac cycle as it may help delineate the underlying pathophysiology of various clinical populations.
Collapse
Affiliation(s)
- Joel S Burma
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Selina Rattana
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Faculty of Kinesiology, Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Panerai RB, Brassard P, Burma JS, Castro P, Claassen JA, van Lieshout JJ, Liu J, Lucas SJ, Minhas JS, Mitsis GD, Nogueira RC, Ogoh S, Payne SJ, Rickards CA, Robertson AD, Rodrigues GD, Smirl JD, Simpson DM. Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update. J Cereb Blood Flow Metab 2023; 43:3-25. [PMID: 35962478 PMCID: PMC9875346 DOI: 10.1177/0271678x221119760] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, and Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Pedro Castro
- Department of Neurology, Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jurgen Ahr Claassen
- Department of Geriatric Medicine and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Johannes J van Lieshout
- Department of Internal Medicine, Amsterdam, UMC, The Netherlands and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | - Jia Liu
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China
| | - Samuel Je Lucas
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, Québec, QC, Canada
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Andrew D Robertson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel D Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jonathan D Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | | |
Collapse
|
20
|
Smirl JD, Peacock D, Burma JS, Wright AD, Bouliane KJ, Dierijck J, van Donkelaar P. Repetitive bout of controlled soccer heading does not alter heart rate variability metrics: A preliminary investigation. Front Neurol 2022; 13:980938. [PMID: 36504654 PMCID: PMC9732532 DOI: 10.3389/fneur.2022.980938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives There is elevated unease regarding how repetitive head impacts, such as those associated with soccer heading, contribute to alterations in brain function. This study examined the extent heart rate variability (HRV) and cardiac baroreceptor sensitivity (BRS) metrics are altered immediately following an acute bout of soccer heading. Methods Seven male elite soccer players (24.1 ± 1.5 years) completed 40 successful soccer headers in 20-min. The headers were performed under controlled circumstances using a soccer ball launcher located 25 meters away and using an initial ball velocity of 77.5 ± 3.7 km/h (heading condition). An accelerometer (xPatch) on the right mastoid process quantified linear/rotational head accelerations. Participants also completed sham (body contact) and control (non-contact) sessions. A three-lead ECG and finger photoplethysmography characterized short-term spontaneous HRV/cardiac BRS, before and after each condition. The SCAT3 indexed symptom scores pre-post exposures to all three conditions. Results During the heading condition, cumulative linear and rotational accelerations experienced were 1,574 ± 97.9 g and 313,761 ± 23,966 rad/s2, respectively. Heart rate trended toward an increase from pre- to post-heading (p = 0.063), however HRV metrics in the time-domain (ps > 0.260) and frequency-domain (ps > 0.327) as well as cardiac BRS (ps > 0.144) were not significantly changed following all three conditions. Following the heading condition, SCAT3 symptom severity increased (p = 0.030) with a trend for symptom score augmentation (p = 0.078) compared to control and sham. Conclusion Whereas, symptoms as measured by the SCAT3 were induced following an acute bout of controlled soccer heading, these preliminary findings indicate they were not accompanied by alterations to autonomic function. Ultimately, this demonstrates further research is needed to understand the physiological underpinnings of alterations in brain function occurring immediately after a bout of soccer heading and how these may, over time, contribute to long-term neurological impairments.
Collapse
Affiliation(s)
- Jonathan David Smirl
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada,*Correspondence: Jonathan David Smirl
| | - Dakota Peacock
- Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,Division of Neurology, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Joel Stephen Burma
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Alexander D. Wright
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,University of British Columbia, Vancouver, BC, Canada,Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin J. Bouliane
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| | - Jill Dierijck
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Paul van Donkelaar
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
21
|
Burma JS, Van Roessel RK, Oni IK, Dunn JF, Smirl JD. Neurovascular coupling on trial: How the number of trials completed impacts the accuracy and precision of temporally derived neurovascular coupling estimates. J Cereb Blood Flow Metab 2022; 42:1478-1492. [PMID: 35209741 PMCID: PMC9274868 DOI: 10.1177/0271678x221084400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Standard practices for quantifying neurovascular coupling (NVC) with transcranial Doppler ultrasound (TCD) require participants to complete one-to-ten repetitive trials. However, limited empirical evidence exists regarding how the number of trials completed influences the validity and reliability of temporally derived NVC metrics. Secondary analyses was performed on 60 young healthy participants (30 females/30 males) who completed eight cyclical eyes-closed (20-seconds), eyes-open (40-seconds) NVC trials, using the "Where's Waldo?" visual paradigm. TCD data was obtained in posterior and middle cerebral arteries (PCA and MCA, respectively). The within-day (n = 11) and between-day (n = 17) reliability were assessed at seven- and three-time points, respectively. Repeat testing from the reliability aims were also used for the concurrent validity analysis (n = 160). PCA metrics (i.e., baseline, peak, percent increase, and area-under-the-curve) demonstrated five trials produced excellent intraclass correlation coefficient (ICC) 95% confidence intervals for validity and within-day reliability (>0.900), whereas between-day reliability was good-to-excellent (>0.750). Likewise, 95% confidence intervals for coefficient of variation (CoV) measures ranged from acceptable (<20%) to excellent (<5%) with five-or-more trials. Employing fewer than five trials produced poor/unacceptable ICC and CoV metrics. Future NVC, TCD-based research should therefore have participants complete a minimum of five trials when quantifying the NVC response with TCD via a "Where's Waldo?" paradigm.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Rowan K Van Roessel
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Ibukunoluwa K Oni
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Skow RJ, Brothers RM, Claassen JAHR, Day TA, Rickards CA, Smirl JD, Brassard P. On the use and misuse of cerebral hemodynamics terminology using Transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 2022; 323:H350-H357. [PMID: 35839156 DOI: 10.1152/ajpheart.00107.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral hemodynamics (e.g., cerebral blood flow) can be measured and quantified using many different methods, with Transcranial Doppler ultrasound (TCD) being one of the most commonly utilized approaches. In human physiology, the terminology used to describe metrics of cerebral hemodynamics are inconsistent, and in some instances technically inaccurate; this is especially true when evaluating, reporting, and interpreting measures from TCD. Therefore, this perspectives article presents recommended terminology when reporting cerebral hemodynamic data. We discuss the current use and misuse of the terminology in the context of using TCD to measure and quantify cerebral hemodynamics and present our rationale and consensus on the terminology that we recommend moving forward. For example, one recommendation is to discontinue use of the term "cerebral blood flow velocity" in favor of "cerebral blood velocity" with precise indication of the vessel of interest. We also recommend clarity when differentiating between discrete cerebrovascular regulatory mechanisms, namely cerebral autoregulation, neurovascular coupling, and cerebrovascular reactivity. This will be a useful guide for investigators in the field of cerebral hemodynamics research.
Collapse
Affiliation(s)
- Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Canada
| |
Collapse
|
23
|
Pereira TJ, Wasef S, Ivry I, Assadpour E, Adeyinka B, Edgell H. Menstrual cycle and oral contraceptives influence cerebrovascular dynamics during hypercapnia. Physiol Rep 2022; 10:e15373. [PMID: 35822289 PMCID: PMC9277257 DOI: 10.14814/phy2.15373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023] Open
Abstract
Women experience fluctuating orthostatic intolerance during the menstrual cycle, suggesting sex hormones may influence cerebral blood flow. Young (aged 18-30) healthy women, either taking oral contraceptives (OC; n = 14) or not taking OC (NOC; n = 12), were administered hypercapnic gas (5%) for 5 min in the low hormone (LH; placebo pill) and high hormone (HH; active pill) menstrual phases. Hemodynamic and cerebrovascular variables were continuously measured. Cerebral blood velocity changes were monitored using transcranial doppler ultrasound of the middle cerebral artery to determine cerebrovascular reactivity. Cerebral autoregulation was assessed using steady-state analysis (static cerebral autoregulation) and transfer function analysis (dynamic cerebral autoregulation; dCA). In response to hypercapnia, menstrual phase did not influence static cardiovascular or cerebrovascular responses (all p > 0.07); however, OC users had a greater increase of mean middle cerebral artery blood velocity compared to NOC (NOC-LH 12 ± 6 cm/s vs. NOC-HH 16 ± 9 cm/s; OC-LH 18 ± 5 cm/s vs. OC-HH 17 ± 11 cm/s; p = 0.048). In all women, hypercapnia improved high frequency (HF) and very low frequency (VLF) cerebral autoregulation (decreased nGain; p = 0.002 and <0.001, respectively), whereas low frequency (LF) Phase decreased in NOC-HH (p = 0.001) and OC-LH (p = 0.004). Therefore, endogenous sex hormones reduce LF dCA during hypercapnia in the HH menstrual phase. In contrast, pharmaceutical sex hormones (OC use) have no acute influence (HH menstrual phase) yet elicit a chronic attenuation of LF dCA (LH menstrual phase) during hypercapnia.
Collapse
Affiliation(s)
- Tania J. Pereira
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Sara Wasef
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Ilana Ivry
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Elnaz Assadpour
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | | | - Heather Edgell
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
- Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| |
Collapse
|
24
|
Kennedy CM, Burma JS, Newel KT, Brassard P, Smirl JD. Time course recovery of cerebral blood velocity metrics post aerobic exercise: A systematic review. J Appl Physiol (1985) 2022; 133:471-489. [PMID: 35708702 DOI: 10.1152/japplphysiol.00630.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Currently, the standard approach for restricting exercise prior to cerebrovascular data collection varies widely between 6-24 hours. This universally employed practice is a conservative approach to safeguard physiological alterations that could potentially confound one's study design. Therefore, the purpose of this systematic review was to amalgamate the literature that examines the extent and duration cerebrovascular function is impacted following aerobic exercise measured via transcranial Doppler ultrasound. Further, an exploratory aim was to scrutinize and discuss common biases/limitations in the previous studies to help guide future investigations. Search strategies were developed and imported into PubMed, SPORTDiscus, and Medline databases. A total of 595 records were screened and 35 articles met the inclusion criteria in this review, which included assessments of basic cerebrovascular metrics (n=35), dynamic cerebral autoregulation (dCA; n=9), neurovascular coupling (NVC; n=2); and/or cerebrovascular reactivity (CVR-CO2; n=1) following acute bouts of aerobic exercise. Across all studies, it was found NVC was impacted for 1-hour, basic cerebrovascular parameters and CVR-CO2 parameters 2-hours, and dCA metrics 6-hours post-exercise. Therefore, future studies can provide participants with these evidence-based time restrictions, regarding the minimum time to abstain from exercise prior to data collection. However, it should be noted, other physiological mechanisms could still be altered (e.g., metabolic, hormonal, and/or autonomic influences), despite cerebrovascular function returning to baseline levels. Thus, future investigations should seek to control for as many physiological influences when employing cerebrovascular assessments, immediately following these time restraints. The main limitations/biases were lack of female participants, cardiorespiratory fitness, and consideration for vessel diameter.
Collapse
Affiliation(s)
- Courtney M Kennedy
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Kailey T Newel
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Université Laval, Québec, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| |
Collapse
|
25
|
Newel KT, Burma JS, Carere J, Kennedy C, Smirl JD. Does oscillation size matter? Impact of added resistance on the cerebral pressure-flow Relationship in females and males. Physiol Rep 2022; 10:e15278. [PMID: 35581899 PMCID: PMC9114660 DOI: 10.14814/phy2.15278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Sinusoidal squat-stand maneuvers (SSM) without resistance have been shown to produce ~30-50 mmHg swings in mean arterial pressure which are largely buffered in the brain via dynamic cerebral autoregulation (dCA). This study aimed to further elucidate how this regulatory mechanism is affected during SSM with added resistance (~20% bodyweight). Twenty-five participants (sex/gender: 13 females/12 males) completed two bouts of 5-min SSM for both bodyweight and resistance conditions (10% bodyweight in each arm) at frequencies of 0.05 Hz (20-s squat/stand cycles) and 0.10 Hz (10-s squat/stand cycles). Middle and posterior cerebral artery (MCA/PCA) cerebral blood velocities were indexed with transcranial Doppler ultrasound. Beat-to-beat blood pressure (BP) was quantified via finger photoplesmography. Transfer function analysis was employed to quantify dCA in both cerebral arteries across the cardiac cycle (diastole, mean, and systole). Two-by-two Analysis of Variance with generalized eta squared effect sizes were utilized to determine differences between resistance vs. bodyweight squats and between sexes/genders. Absolute mean and diastolic BP were elevated during the resistance squats (p < 0.001); however, only the BP point-estimate power spectrum densities were augmented at 0.10 Hz (p < 0.048). No differences were noted for phase and gain metrics between bodyweight and resistance SSM (p > 0.067); however, females displayed attenuated systolic regulation (p < 0.003). Despite augmented systemic BP during resistance SSM, the brain was effective at buffering the additional stress to mitigate overperfusion/pressure. Females displayed less dCA regulation within the systolic aspect of the cardiac cycle, which may be associated with physiological underpinnings related to various clinical conditions/presentations.
Collapse
Affiliation(s)
- Kailey T. Newel
- Cerebrovascular Concussion LabFaculty of KinesiologyUniversity of CalgaryAlbertaCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Joel S. Burma
- Cerebrovascular Concussion LabFaculty of KinesiologyUniversity of CalgaryAlbertaCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
| | - Joseph Carere
- Cerebrovascular Concussion LabFaculty of KinesiologyUniversity of CalgaryAlbertaCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
| | - Courtney M. Kennedy
- Cerebrovascular Concussion LabFaculty of KinesiologyUniversity of CalgaryAlbertaCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion LabFaculty of KinesiologyUniversity of CalgaryAlbertaCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
| |
Collapse
|
26
|
Mol A, Claassen JAHR, Maier AB, van Wezel RJA, Meskers CGM. Determinants of orthostatic cerebral oxygenation assessed using near-infrared spectroscopy. Auton Neurosci 2022; 238:102942. [PMID: 35124323 DOI: 10.1016/j.autneu.2022.102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND To understand the relationship between blood pressure changes during standing up and clinical outcome, cerebral oxygenation needs to be measured, which may be performed using near-infrared spectroscopy (NIRS). However, the role of potential determinants of NIRS-derived orthostatic cerebral oxygenation, i.e., age, sex, type of postural change (i.e., standing up from sitting versus supine position), blood pressure (BP) and baroreflex sensitivity (BRS) is still unknown and needed to better interpret findings from studies using orthostatic NIRS measurements. METHODS 34 younger (median age 25 years, inter quartile range (IQR) 22-45) and 31 older adults (median age 77 years, IQR 72-81) underwent BP, BRS and NIRS measurements during standing up from sitting and supine position. Linear regression models were used to assess the potential determinant role of age, sex, type of postural change, BP and BRS in orthostatic cerebral oxygenation drop and recovery. Orthostatic cerebral oxygenation test-retest reliability was assessed using intra class correlations. RESULTS Younger age, male sex and standing up from supine compared to sitting position were positively associated with cerebral oxygenation drop; older age and standing up from sitting compared to supine position were associated with higher cerebral oxygenation recovery. Test-retest reliability was highest (ICC > 0.83) during standing up from supine position. CONCLUSION Based on the findings of this study, age, sex and type of postural change are significant determinants of NIRS-derived orthostatic cerebral oxygenation and should be taken into account in the interpretation of NIRS measurements. In the design of new studies, standing up from supine position is preferable (higher reliability) over standing up from sitting position.
Collapse
Affiliation(s)
- Arjen Mol
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT Amsterdam, the Netherlands; Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT Amsterdam, the Netherlands; Department of Medicine and Aged Care, @AgeMelbourne, The University of Melbourne, The Royal Melbourne Hospital, City Campus, Level 6 North, 300 Grattan Street, Parkville, Victoria 3050, Australia; Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, National University Health System, 10 Medical Dr, Singapore 117597, Singapore
| | - Richard J A van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Zuidhorst Building, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam Movement Sciences, P.O. Box 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
27
|
Roy MA, Labrecque L, Perry BG, Korad S, Smirl JD, Brassard P. Directional sensitivity of the cerebral pressure-flow relationship in young healthy individuals trained in endurance and resistance exercise. Exp Physiol 2022; 107:299-311. [PMID: 35213765 DOI: 10.1113/ep090159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does habitual exercise modality affect the directionality of the cerebral pressure-flow relationship? What is the main finding and its importance? These data suggest the hysteresis-like pattern of dynamic cerebral autoregulation appears present in long-term sedentary and endurance-trained individuals, but absent in resistance-trained individuals. This is the first study to expand knowledge on the directional sensitivity of the cerebral pressure-flow relationship to trained populations. ABSTRACT Evidence suggests the cerebrovasculature may be more efficient at dampening cerebral blood flow (CBF) variations when mean arterial pressure (MAP) transiently increases, compared to when it decreases. Despite divergent MAP and CBF responses to acute endurance and resistance training, the long-term impact of habitual exercise modality on the directionality of dynamic cerebral autoregulation (dCA) is currently unknown. Thirty-six young healthy participants [sedentary (n = 12), endurance-trained (n = 12) and resistance-trained (n = 12)] undertook a 5-min repeated squat-stand protocol at two forced MAP oscillation frequencies (0.05 Hz and 0.10 Hz). Middle cerebral artery mean blood velocity (MCAv) and MAP were continuously monitored. We calculated absolute (ΔMCAvT /ΔMAPT ) and relative (%MCAvT /%MAPT ) changes in MCAv and MAP with respect to the transition time intervals of both variables to compute a time-adjusted ratio in each MAP direction, averaged over the 5-min repeated squat-stand protocols. At 0.10 Hz repeated squat-stands, ΔMCAvT /ΔMAPT and %MCAvT /%MAPT were lower when MAP increased compared with when MAP decreased for sedentary (ΔMCAvT /ΔMAPT : p = 0.032; %MCAvT /%MAPT : p = 0.040) and endurance-trained individuals (ΔMCAvT /ΔMAPT : p = 0.012; %MCAvT /%MAPT : p = 0.007), but not in the resistance-trained (ΔMCAvT /ΔMAPT : p = 0.512; %MCAvT /%MAPT : p = 0.666). At 0.05 Hz repeated squat-stands, time-adjusted ratios were similar for all groups (all p>0.605). These findings suggest exercise training modality does influence the directionality of the cerebral pressure-flow relationship and support the presence of a hysteresis-like pattern during 0.10 Hz repeated squat-stands in sedentary and endurance-trained participants, but not in resistance-trained individuals. In future studies, assessment of elite endurance and resistance training habits may further elucidate modality-dependent discrepancies on directional dCA measurements. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Wellington, New Zealand
| | - Stephanie Korad
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Wellington, New Zealand
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
28
|
An acute bout of controlled subconcussive impacts can alter dynamic cerebral autoregulation indices: a preliminary investigation. Eur J Appl Physiol 2022; 122:1059-1070. [PMID: 35171333 DOI: 10.1007/s00421-022-04908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES There is growing concern repetitive head contacts sustained by soccer players may lead to long-term health ramifications. Therefore, this preliminary investigation examined the impact an acute soccer heading bout has on dynamic cerebral autoregulation (dCA) metrics. METHODS In this preliminary investigation, 40 successful soccer headers were performed in 20 min by 7 male elite soccer players (24.1 ± 1.5 years). Soccer balls were launched at 77.5 ± 3.7 km/h from JUGS soccer machine, located 35 m away from participants. Linear and rotational head accelerations impacts were measured using an accelerometer (xPatch). The SCAT3 indexed concussion symptom score and severity before and after: soccer headers, sham (body contact only), and control conditions. Squat-stand maneuvers were performed at 0.05 Hz and 0.10 Hz to quantity dCA through measures of coherence, phase, and gain. RESULTS Cumulative linear and rotational accelerations during soccer headers were 1574 ± 97.9 g and 313,761 ± 23,966 rads/s2, respectively. SCAT3 symptom severity was elevated after the soccer heading bout (pre 3.7 ± 3.6, post 9.4 ± 7.6: p = 0.030) and five of the seven participants reported an increase in concussion-like symptoms (pre: 2.6 ± 3.0, post: 6.7 ± 6.2; p = 0.078). Phase at 0.10 Hz was elevated following soccer heading (p = 0.008). No other dCA metric differed following the three conditions. CONCLUSION These preliminary results indicate an acute bout of soccer heading resulted in alterations to dCA metrics. Therefore, future research with larger sample sizes is warranted to fully comprehend short- and long-term physiological changes related to soccer heading.
Collapse
|
29
|
Labrecque L, Burma JS, Roy MA, Smirl JD, Brassard P. Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. J Appl Physiol (1985) 2021; 132:154-166. [PMID: 34855525 DOI: 10.1152/japplphysiol.00653.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral pressure-flow relationship has directional sensitivity, meaning the augmentation in cerebral blood flow is attenuated when mean arterial pressure (MAP) increases vs MAP decreases. We employed repeated squat-stands (RSS) to quantify it using a novel metric. However, its within-day reproducibility and the impacts of diurnal variation and biological sex are unknown. Study aims were to evaluate this metric for: 1) within-day reproducibility and diurnal variation in middle (MCA; ∆MCAvT/∆MAPT) and posterior cerebral arteries (PCA; ∆PCAvT/∆MAPT); 2) sex differences. ∆MCAvT/∆MAPT and ∆PCAvT/∆MAPT were calculated at seven time-points (08:00-17:00) in 18 participants (8 women; 24 ± 3 yrs) using the minimum-to-maximum MCAv or PCAv and MAP for each RSS at 0.05 Hz and 0.10 Hz. Relative metric values were also calculated (%MCAvT/%MAPT, %PCAvT/%MAPT). Intraclass correlation coefficient (ICC) evaluated reproducibility, which was good (0.75-0.90) to excellent (>0.90). Time-of-day impacted ∆MCAvT/∆MAPT (0.05 Hz: p = 0.002; 0.10 Hz: p = 0.001), %MCAvT/%MAPT (0.05 Hz: p = 0.035; 0.10 Hz: p = 0.009), and ∆PCAvT/∆MAPT (0.05 Hz: p = 0.024), albeit with small/negligible effect sizes. MAP direction impacted both arteries' metric at 0.10 Hz (all p < 0.024). Sex differences in the MCA only (p = 0.003) vanished when reported in relative terms. These findings demonstrate this metric is reproducible throughout the day in the MCA and PCA and is not impacted by biological sex.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
30
|
Burma JS, Kennedy CM, Penner LC, Miutz LN, Galea OA, Ainslie PN, Smirl JD. Long-term heart transplant recipients: heart rate-related effects on augmented transfer function coherence during repeated squat-stand maneuvers in males. Am J Physiol Regul Integr Comp Physiol 2021; 321:R925-R937. [PMID: 34730005 DOI: 10.1152/ajpregu.00177.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous research has highlighted that squat-stand maneuvers (SSMs) augment coherence values within the cerebral pressure-flow relationship to ∼0.99. However, it is not fully elucidated if mean arterial pressure (MAP) leads to this physiological entrainment independently, or if heart rate (HR) and/or the partial pressure of carbon dioxide (Pco2) also have contributing influences. A 2:1 control-to-case model was used in the present investigation [participant number (n) = 40; n = 16 age-matched (AM); n = 16 donor control (DM); n = 8 heart transplant recipients (HTRs)]. The latter group was used to mechanistically isolate the extent to which HR influences the cerebral pressure-flow relationship. Participants completed 5 min of squat-stand maneuvers at 0.05 Hz (10 s) and 0.10 Hz (5 s). Linear transfer function analysis (TFA) examined the relationship between different physiological inputs (i.e., MAP, HR, and Pco2) and output [cerebral blood velocity (CBV)] during SSM; and cardiac baroreceptor sensitivity (BRS). Compared with DM, cardiac BRS was reduced in AM (P < 0.001), which was further reduced in HTR (P < 0.045). In addition, during the SSM, HR was elevated in HTR compared with both control groups (P < 0.001), but all groups had near-maximal coherence metrics ≥0.98 at 0.05 Hz and ≥0.99 at 0.10 Hz (P ≥ 0.399). In contrast, the mean HR-CBV/Pco2-CBV relationships ranged from 0.38 (HTR) to 0.81 (DM). Despite near abolishment of BRS and blunted HR following heart transplantation, long-term HTR exhibited near-maximal coherence within the MAP-CBV relationship, comparable with AM and DM. Therefore, these results show that the augmented coherence with SSM is driven by blood pressure, whereas elevations in TFA coherence as a result of HR contribution are likely correlational in nature.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Linden C Penner
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Olivia A Galea
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
31
|
Burma JS, Wassmuth RM, Kennedy CM, Miutz LN, Newel KT, Carere J, Smirl JD. Does task complexity impact the neurovascular coupling response similarly between males and females? Physiol Rep 2021; 9:e15020. [PMID: 34514743 PMCID: PMC8436054 DOI: 10.14814/phy2.15020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND While previous studies have demonstrated a complex visual scene search elicits a robust neurovascular coupling (NVC) response, it is unknown how the duration of visual stimuli presentation influences NVC metrics. This study examined how stimuli duration, in addition to biological sex and self-reported engagement impact NVC responses. METHODS Participants (n = 20, female = 10) completed four visual paradigms. Three involved simple visual shapes presented at 0.5-, 2-, and 4-s intervals in randomized orders. The fourth paradigm was a complex visual scene search ("Where's Waldo?"). Participants completed eight cycles of 20-s eyes-closed followed by 40-s eyes-open. Transcranial Doppler ultrasound indexed posterior and middle cerebral artery velocities (PCA and MCA). Participants self-reported their engagement following each task (1 [minimal] to 10 [maximal]). RESULTS The "Where's Waldo?" task evoked greater PCA percent increase (all p < 0.001) and area under the curve during the first 30-s of the task (all p < 0.001) compared to simple shapes. Females displayed greater absolute baseline and peak PCA and MCA velocities across all tasks (all p < 0.002). Subjective engagement displayed moderate correlation levels with PCA percent increase (Spearman ρ = 0.58) and area under the curve (Spearman ρ = 0.60) metrics in males, whereas these were weak for females (Spearman ρ = 0.43 and ρ = 0.38, respectively). CONCLUSIONS The complex visual paradigm "Where's Waldo?" greatly augmented the signal-to-noise ratio within the PCA aspects of the NVC response compared to simple shapes. While both sexes had similar NVC responses, task engagement was more related to NVC metrics in males compared to females. Therefore, future NVC investigations should consider task engagement when designing studies.
Collapse
|
32
|
Burma JS, Lapointe AP, Soroush A, Oni IK, Smirl JD, Dunn JF. The validity and reliability of an open source biosensing board to quantify heart rate variability. Heliyon 2021; 7:e07148. [PMID: 34124405 PMCID: PMC8173091 DOI: 10.1016/j.heliyon.2021.e07148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/17/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Heart rate variability (HRV) is a popular tool to quantify autonomic function. However, this typically requires an expensive 3-12 lead electrocardiogram (ECG) and BioAmp system. This investigation sought to determine the validity and reliability of an OpenBCI cyton biosensing board (open source) for accurately quantifying HRV. New method A cyton board with a 3-lead ECG was employed to acquire heart rate waveform data, which was processed to obtain HRV within both time- and frequency-domains. The concurrent validity was compared to a simultaneous recording from an industry-standard 3-lead ECG (ADInstruments) (n = 15). The reliability of the cyton board was compared between three days within a 7-day timespan (n = 10). Upright quiet-stance short-term HRV metrics were quantified in time- and frequency-domains. Results The two devices displayed excellent limits of agreements (all log mean differences ±0.4) and very high between-device variable associations (all r 2 > 0.98). Between the three time points in the same subjects, no differences were noted within time- (all p > 0.71) or frequency-domains (all p > 0.88) across testing points. Finally, all HRV metrics exhibited excellent levels of reliability through high Cronbach's Alpha (all ≥0.916) and intraclass correlation coefficients (all ≥0.930); and small standard error of the measurement (all ≤0.7) and typical error of the measurement (all ≤0.1) metrics. Comparison with existing methods The cyton board with 3-lead ECG was compared with an industry-standard ADInstruments ECG during HRV assessments. There were no significant differences between devices with respect to time- and frequency-domains. The cyton board displayed high-levels of between-day reliability and provided values harmonious to previous ECG literature highlighting the applicability for longitudinal studies. Conclusion With proper background knowledge regarding ECG principles and a small degree of set-up complexity, an open source cyton board can be created and employed to perform multimodal HRV assessments at a fraction of the cost (~4%) of an industry-standard ECG setup.
Collapse
Affiliation(s)
- Joel S. Burma
- Cerebrovascular Concussion Laboratory, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Andrew P. Lapointe
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ateyeh Soroush
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ibukunoluwa K. Oni
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Laboratory, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Jeff F. Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Corresponding author.
| |
Collapse
|
33
|
Burma JS, Miutz LN, Newel KT, Labrecque L, Drapeau A, Brassard P, Copeland P, Macaulay A, Smirl JD. What recording duration is required to provide physiologically valid and reliable dynamic cerebral autoregulation transfer functional analysis estimates? Physiol Meas 2021; 42. [PMID: 33761474 DOI: 10.1088/1361-6579/abf1af] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Objective. Currently, a recording of 300 s is recommended to obtain accurate dynamic cerebral autoregulation estimates using transfer function analysis (TFA). Therefore, this investigation sought to explore the concurrent validity and the within- and between-day reliability of TFA estimates derived from shorter recording durations from squat-stand maneuvers.Approach. Retrospective analyses were performed on 70 young, recreationally active or endurance-trained participants (17 females; age: 26 ± 5 years, [range: 20-39 years]; body mass index: 24 ± 3 kg m-2). Participants performed 300 s of squat-stands at frequencies of 0.05 and 0.10 Hz, where shorter recordings of 60, 120, 180, and 240 s were extracted. Continuous transcranial Doppler ultrasound recordings were taken within the middle and posterior cerebral arteries. Coherence, phase, gain, and normalized gain metrics were derived. Bland-Altman plots with 95% limits of agreement (LOA), repeated measures ANOVA's, two-tailed paired t-tests, coefficient of variation, Cronbach's alpha, intraclass correlation coefficients, and linear regressions were conducted.Main results. When examining the concurrent validity across different recording durations, group differences were noted within coherence (F(4155) > 11.6,p < 0.001) but not phase (F(4155) < 0.27,p > 0.611), gain (F(4155) < 0.61,p > 0.440), or normalized gain (F(4155) < 0.85,p > 0.359) parameters. The Bland-Altman 95% LOA measuring the concurrent validity, trended to narrow as recording duration increased (60 s: < ±0.4, 120 s: < ±0.3, 180 s < ±0.3, 240 s: < ±0.1). The validity of the 180 and 240 s recordings further increased when physiological covariates were included within regression models.Significance. Future studies examining autoregulation should seek to have participants perform 300 s of squat-stand maneuvers. However, valid and reliable TFA estimates can be drawn from 240 s or 180 s recordings if physiological covariates are controlled.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Kailey T Newel
- Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Paige Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
34
|
Labrecque L, Drapeau A, Rahimaly K, Imhoff S, Brassard P. Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women. J Appl Physiol (1985) 2021; 130:1724-1735. [PMID: 33955257 DOI: 10.1152/japplphysiol.00963.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The integrated responses regulating cerebral blood flow are understudied in women, particularly in relation to potential regional differences. In this study, we compared dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity to carbon dioxide (CVRco2) in the middle (MCA) and posterior cerebral arteries (PCA) in 11 young endurance-trained women (age, 25 ± 4 yr; maximal oxygen uptake, 48.1 ± 4.1 mL·kg-1·min-1). dCA was characterized using a multimodal approach including a sit-to-stand and a transfer function analysis (TFA) of forced blood pressure oscillations (repeated squat-stands executed at 0.05 Hz and 0.10 Hz). The hyperoxic rebreathing test was utilized to characterize CVRco2. Upon standing, the percent reduction in blood velocity per percent reduction in mean arterial pressure during initial orthostatic stress (0-15 s after sit-to-stand), the onset of the regulatory response, and the rate of regulation did not differ between MCA and PCA (all P > 0.05). There was an ANOVA effect of anatomical location for TFA gain (P < 0.001) and a frequency effect for TFA phase (P < 0.001). However, normalized gain was not different between arteries (P = 0.18). Absolute CVRco2 was not different between MCA and PCA (1.55 ± 0.81 vs. 1.30 ± 0.49 cm·s-1/Torr, P = 0.26). Relative CVRco2 was 39% lower in the MCA (2.16 ± 1.02 vs. 3.00 ± 1.09%/Torr, P < 0.01). These findings indicate that the cerebral pressure-flow relationship appears to be similar between the MCA and the PCA in young endurance-trained women. The absence of regional differences in absolute CVRco2 could be women specific, although a direct comparison with a group of men will be necessary to address that issue.NEW & NOTEWORTHY Herein, we describe responses from two major mechanisms regulating cerebral blood flow with a special attention on regional differences in young endurance-trained women. The novel findings are that dynamic cerebral autoregulation and absolute cerebrovascular reactivity to carbon dioxide appear similar between the middle and posterior cerebral arteries of these young women.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| | - Kevan Rahimaly
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| | - Sarah Imhoff
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| |
Collapse
|
35
|
Burma JS, Graver S, Miutz LN, Macaulay A, Copeland PV, Smirl JD. The validity and reliability of ultra-short-term heart rate variability parameters and the influence of physiological covariates. J Appl Physiol (1985) 2021; 130:1848-1867. [PMID: 33856258 DOI: 10.1152/japplphysiol.00955.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ultra-short-term (UST) heart rate variability (HRV) metrics have increasingly been proposed as surrogates for short-term HRV metrics. However, the concurrent validity, within-day reliability, and between-day reliability of UST HRV have yet to be comprehensively documented. Thirty-six adults (18 males, age: 26 ± 5 yr, BMI: 24 ± 3 kg/m2) were recruited. Measures of HRV were quantified in a quiet-stance upright orthostatic position via three-lead electrocardiogram (ADInstruments, FE232 BioAmp). All short-term data recordings were 300 s in length and five UST time points (i.e., 30 s, 60 s, 120 s, 180 s, and 240 s) were extracted from the original 300-s recording. Bland-Altman plots with 95% limits of agreement, repeated measures ANOVA and two-tailed paired t tests demarcated differences between UST and short-term recordings. Linear regressions, coefficient of variation, intraclass correlation coefficients, and other tests examined the validity and reliability in both time- and frequency domains. No group differences were noted between all short-term and UST measures, for either time- (all P > 0.202) or frequency-domain metrics (all P > 0.086). A longer recording duration was associated with augmented validity and reliability, which was less impacted by confounding influences from physiological variables (e.g., respiration rate, carbon dioxide end-tidals, and blood pressure). Conclusively, heart rate, time-domain, and relative frequency-domain HRV metrics were acceptable with recordings greater or equal to 60 s, 240 s, and 300 s, respectively. Future studies employing UST HRV metrics should thoroughly understand the methodological requirements to obtain accurate results. Moreover, a conservative approach should be utilized regarding the minimum acceptable recording duration, which ensures valid/reliable HRV estimates are obtained.NEW & NOTEWORTHY A one size fits all methodological approach to quantify HRV metrics appears to be inappropriate, where study design considerations need to be conducted upon a variable-by-variable basis. The present results found 60 s (heart rate), 240 s (time-domain parameters), and 300 s (relative frequency-domain parameters) were required to obtain accurate and reproducible metrics. The lower validity/reliability of the ultra-short-term metrics was attributable to measurement error and/or confounding from extraneous physiological influences (i.e., respiratory and hemodynamic variables).
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sarah Graver
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paige V Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
36
|
Burma JS, Copeland PV, Macaulay A, Smirl JD. The impact of high- and moderate-intensity exercise on near-point of convergence metrics. Brain Inj 2021; 35:248-254. [PMID: 33455457 DOI: 10.1080/02699052.2021.1871953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Near point of convergence (NPC) assesses the vergence ability of the visuo-oculomotor system; however, little is known regarding: the extent and duration exercise impacts NPC and the between- and within-day reliability of NPC metrics.Methods: An accommodative ruler with a miniature Snellen chart was placed upon the philtrum (upper lip). Participants (n=9) focused upon a 'V' sized 20/20, while the chart was moved at ~1-2 cm/s toward and away from the eyes (twice in each direction). Testing commenced at 8:00am with NPC measures being collected at baseline before three randomized conditions with serial follow-ups occurring at six post-condition timepoints (0-8 hours following). The conditions consisted of 25-minutes high-intensity intervals (10, one-minute intervals at ~85-90% heart-rate reserve), 45-minutes of moderate-intensity exercise (at ~50-60% heart-rate reserve), and a control condition (30-minutes quiet rest).Results: NPC was not impacted across any of the three conditions (all p > .59). Additionally, NPC measures between baseline conditions and across the control condition displayed very high levels of within-day and between-day reliability (coefficient of variation <3.8%).Conclusions: Future NPC measures using an accommodative ruler can be taken immediately following exercise and may be pertinent as a complementary tool in the future sideline screening of concussion.
Collapse
Affiliation(s)
- Joel S Burma
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Paige V Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan D Smirl
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Burma JS, Macaulay A, Copeland PV, Khatra O, Bouliane KJ, Smirl JD. Temporal evolution of neurovascular coupling recovery following moderate- and high-intensity exercise. Physiol Rep 2021; 9:e14695. [PMID: 33463899 PMCID: PMC7814491 DOI: 10.14814/phy2.14695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Studies examining neurovascular coupling (NVC) require participants to refrain from exercise for 12-24 hours. However, there is a paucity of empirical evidence for this restriction. The objectives for this study were to delineate the time-course recovery of NVC metrics following exercise and establish the NVC within- and between-day reliability. METHODS Nine participants completed a complex visual search paradigm to assess NVC via transcranial Doppler ultrasound of the posterior cerebral artery blood velocity (PCA). Measurements were performed prior to and throughout the 8-hour recovery period following three randomized conditions: 45 minutes of moderate-intensity exercise (at 50% heart-rate reserve), 30 minutes high-intensity intervals (10, 1-minute intervals at 85% heart-rate reserve), and control (30 minutes quiet rest). In each condition, baseline measures were collected at 8:00am with serial follow-ups at hours zero, one, two, four, six, and eight. RESULTS Area-under-the-curve and time-to-peak PCA velocity during the visual search were attenuated at hour zero following high-intensity intervals (all p < 0.05); however, these NVC metrics recovered at hour one (all p > 0.13). Conversely, baseline PCA velocity, peak PCA velocity, and the relative percent increase were not different following high-intensity intervals compared to baseline (all p > 0.26). No NVC metrics differed from baseline following both moderate exercise and control conditions (all p > 0.24). The majority of the NVC parameters demonstrated high levels of reliability (intraclass correlation coefficient: >0.90). CONCLUSION Future NVC assessments can take place a minimum of one hour following exercise. Moreover, all metrics did not change across the control condition, therefore future studies using this methodology can reliably quantify NVC between 8:00am and 7:00 pm.
Collapse
Affiliation(s)
- Joel S. Burma
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryABCanada
| | - Alannah Macaulay
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
- School of Health Sciences, Nuclear MedicineBritish Columbia Institute of TechnologyBurnabyBCCanada
| | - Paige V. Copeland
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
| | - Omeet Khatra
- Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Kevin J. Bouliane
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
| | - Jonathan D. Smirl
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryABCanada
| |
Collapse
|
38
|
Akerman AP, Meade RD, Notley SR, Rutherford MM, Kenny GP. Myths and methodologies: Reliability of non-invasive estimates of cardiac autonomic modulation during whole-body passive heating. Exp Physiol 2020; 106:593-614. [PMID: 33197089 DOI: 10.1113/ep089069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Observed individual variability in cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV) is extensive, especially during exposure to stressors such as heat. A large part of the observed variation may be related to the reliability (consistency) of the measurement. We therefore examined the test-retest reliability of cBRS and HRV measurements on three separate occasions in 14 young men (age: 24 (SD 5) years), at rest and during whole-body heating (water-perfused suit) to raise and clamp oesophageal temperature 0.6°C, 1.2°C and 1.8°C above baseline. Beat-to-beat measurements of RR interval and systolic blood pressure (BP) were obtained for deriving HRV (from RR), and cBRS calculated via (i) the spontaneous method, α coefficients and transfer function analysis at each level of heat strain, and (ii) during forced oscillations via squat-stand manoeuvres (0.1 Hz) before and after heating. Absolute values and changes in all cBRS estimates were variable but generally consistent with reductions in parasympathetic activity. cBRS estimates demonstrated poor absolute reliability (coefficient of variation ≥25%), but relative reliability (intraclass correlation coefficient; ICC) of some frequency estimates was acceptable (ICC ≥0.70) during low-heat strain (ICC: 0.56-0.74). After heating, forced oscillations in BP demonstrated more favourable responses than spontaneous oscillations (better reliability, lower minimum detectable change). Absolute reliability of HRV estimates were poor, but relative reliability estimates were often acceptable (≥0.70). Our findings illustrate how measurement consistency of cardiac autonomic modulation estimates are altered during heat stress, and we demonstrate the possible implications on research design and data interpretation.
Collapse
Affiliation(s)
- Ashley P Akerman
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Maura M Rutherford
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|