1
|
Post HK, Blankespoor MG, Ierulli VK, Morey TD, Schroeppel JP, Mulcahey MK, Vopat BG, Vopat ML. Review of Intra-Articular Use of Antibiotics and Antiseptic Irrigation and Their Systematic Association with Chondrolysis. Kans J Med 2023; 16:272-276. [PMID: 37954883 PMCID: PMC10635690 DOI: 10.17161/kjm.vol16.20357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Intra-articular antibiotics have been proposed as a treatment for septic arthritis to allow for high local concentrations without subjecting a patient to the toxicity/side effects of systemic therapy. However, there is concern for chondrotoxicity with intra-articular use of these solutions in high concentrations. The purpose of this systematic review was to evaluate the intra-articular use of antibiotics and antiseptic solutions, and to determine their association with chondrolysis following in vitro or in vivo administration. Methods A systematic review was conducted following PRISMA guidelines through PubMed, Clinical Key, OVID, and Google Scholar. Studies in English were included if they evaluated for chondrotoxicity following antibiotic exposure. Results The initial search resulted in 228 studies, with 36 studies meeting criteria. These 36 studies included manuscripts that studied 24 different agents. Overall, 7 of the 24 (29%) agents were non-chondrotoxic: minocycline, tetracycline, chloramphenicol, teicoplanin, pefloxacin, linezolid, polymyxin-bacitracin. Eight (33%) agents had inconsistent results: doxycycline, ceftriaxone, gentamicin, vancomycin, ciprofloxacin, ofloxacin, chlorhexidine, and povidone iodine. Chondrotoxicity was evident with 9 (38%) agents, all of which were also dose-dependent chondrotoxic based on reported estimated half maximal inhibitory concentrations (est. IC50): amikacin (est. IC50 = 0.31-2.74 mg/mL), neomycin (0.82), cefazolin (1.67-3.95), ceftazidime (3.16-3.59), ampicillin-sulbactam (8.64 - >25), penicillin (11.61), amoxicillin (14.01), imipenem (>25), and tobramycin (>25). Additionally, chondroprotective effects of doxycycline and minocycline were reported. Conclusions This systematic review identified agents that may be used in the treatment of septic arthritis. Nine agents should be avoided due to their dose-dependent chondrotoxic effects. Further studies are needed to clarify the safety of these medications for human intra-articular use.
Collapse
Affiliation(s)
- Hunter K Post
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas School of Medicine, Kansas City, KS
| | - Michael G Blankespoor
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas School of Medicine, Kansas City, KS
| | - Victoria K Ierulli
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Tucker D Morey
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas School of Medicine, Kansas City, KS
| | - J Paul Schroeppel
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas School of Medicine, Kansas City, KS
| | - Mary K Mulcahey
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, Maywood, IL
| | - Bryan G Vopat
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas School of Medicine, Kansas City, KS
| | - Matthew L Vopat
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
2
|
Guimaraes AB, Correia AT, da Silva RS, Dos Santos ES, de Souza Xavier Costa N, Dolhnikoff M, Maizato M, Cestari IA, Pego-Fernandes PM, Guerreiro Cardoso PF. Evaluation of Structural Viability of Porcine Tracheal Scaffolds after 3 and 6 Months of Storage under Three Different Protocols. Bioengineering (Basel) 2023; 10:bioengineering10050584. [PMID: 37237655 DOI: 10.3390/bioengineering10050584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Tracheal replacement with a bioengineered tracheal substitute has been developed for long-segment tracheal diseases. The decellularized tracheal scaffold is an alternative for cell seeding. It is not defined if the storage scaffold produces changes in the scaffold's biomechanical properties. We tested three protocols for porcine tracheal scaffold preservation immersed in PBS and alcohol 70%, in the fridge and under cryopreservation. Ninety-six porcine tracheas (12 in natura, 84 decellularized) were divided into three groups (PBS, alcohol, and cryopreservation). Twelve tracheas were analyzed after three and six months. The assessment included residual DNA, cytotoxicity, collagen contents, and mechanical properties. Decellularization increased the maximum load and stress in the longitudinal axis and decreased the maximum load in the transverse axis. The decellularization of the porcine trachea produced structurally viable scaffolds, with a preserved collagen matrix suitable for further bioengineering. Despite the cyclic washings, the scaffolds remained cytotoxic. The comparison of the storage protocols (PBS at 4 °C, alcohol at 4 °C, and slow cooling cryopreservation with cryoprotectants) showed no significant differences in the amount of collagen and in the biomechanical properties of the scaffolds. Storage in PBS solution at 4 °C for six months did not change the scaffold mechanics.
Collapse
Affiliation(s)
- Alberto Bruning Guimaraes
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Aristides Tadeu Correia
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Ronaldo Soares da Silva
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Elizabete Silva Dos Santos
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Natalia de Souza Xavier Costa
- Laboratorio de Poluicao Atmosferica Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Marisa Dolhnikoff
- Laboratorio de Poluicao Atmosferica Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Marina Maizato
- Bioengenharia, Instituto do Coração do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Idagene Aparecida Cestari
- Bioengenharia, Instituto do Coração do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Paulo Manuel Pego-Fernandes
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| | - Paulo Francisco Guerreiro Cardoso
- Organ and Tissue Laboratory, LIM 61, Division of Thoracic Surgery, Instituto do Coracao do Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 05403-904, Brazil
| |
Collapse
|
3
|
Chan C, Liu L, Dharmadhikari S, Shontz KM, Tan ZH, Bergman M, Shaffer T, Tram NK, Breuer CK, Stacy MR, Chiang T. A Multimodal Approach to Quantify Chondrocyte Viability for Airway Tissue Engineering. Laryngoscope 2023; 133:512-520. [PMID: 35612419 PMCID: PMC9691794 DOI: 10.1002/lary.30206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Partially decellularized tracheal scaffolds have emerged as a potential solution for long-segment tracheal defects. These grafts have exhibited regenerative capacity and the preservation of native mechanical properties resulting from the elimination of all highly immunogenic cell types while sparing weakly immunogenic cartilage. With partial decellularization, new considerations must be made about the viability of preserved chondrocytes. In this study, we propose a multimodal approach for quantifying chondrocyte viability for airway tissue engineering. METHODS Tracheal segments (5 mm) were harvested from C57BL/6 mice, and immediately stored in phosphate-buffered saline at -20°C (PBS-20) or biobanked via cryopreservation. Stored and control (fresh) tracheal grafts were implanted as syngeneic tracheal grafts (STG) for 3 months. STG was scanned with micro-computed tomography (μCT) in vivo. STG subjected to different conditions (fresh, PBS-20, or biobanked) were characterized with live/dead assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and von Kossa staining. RESULTS Live/dead assay detected higher chondrocyte viability in biobanked conditions compared to PBS-20. TUNEL staining indicated that storage conditions did not alter the proportion of apoptotic cells. Biobanking exhibited a lower calcification area than PBS-20 in 3-month post-implanted grafts. Higher radiographic density (Hounsfield units) measured by μCT correlated with more calcification within the tracheal cartilage. CONCLUSIONS We propose a strategy to assess chondrocyte viability that integrates with vivo imaging and histologic techniques, leveraging their respective strengths and weaknesses. These techniques will support the rational design of partially decellularized tracheal scaffolds. LEVEL OF EVIDENCE N/A Laryngoscope, 133:512-520, 2023.
Collapse
Affiliation(s)
- Coreena Chan
- College of Medicine, The Ohio State University, Columbus, Ohio, U.S.A
| | - Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Sayali Dharmadhikari
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Zheng Hong Tan
- College of Medicine, The Ohio State University, Columbus, Ohio, U.S.A
| | - Maxwell Bergman
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, U.S.A
| | - Terri Shaffer
- Small Animal Imaging Facility, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Nguyen K Tram
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Mitchel R Stacy
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Tendy Chiang
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| |
Collapse
|
4
|
Wu X, Fan X, Crawford R, Xiao Y, Prasadam I. The Metabolic Landscape in Osteoarthritis. Aging Dis 2022; 13:1166-1182. [PMID: 35855332 PMCID: PMC9286923 DOI: 10.14336/ad.2021.1228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- The Prince Charles Hospital, Orthopedic Department, Brisbane, Queensland, Australia.
| | - Yin Xiao
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Correspondence should be addressed to: Dr. Indira Prasadam, Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
5
|
Yue L, Vuong B, Yao H, Owens BD. Doxycycline preserves chondrocyte viability and function in human and calf articular cartilage ex vivo. Physiol Rep 2021; 8:e14571. [PMID: 32918797 PMCID: PMC7507091 DOI: 10.14814/phy2.14571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
Prolonging chondrocyte survival is essential to ensure fresh osteochondral (OC) grafts for treatment of articular cartilage lesions. Doxycycline has been shown to enhance cartilage growth, disrupt terminal differentiation of chondrocytes, and inhibit cartilage matrix degradation. It is unknown whether doxycycline prolongs chondrocyte survival in OC grafts. We hypothesized that doxycycline protects against chondrocyte death and maintains function of articular cartilage. To test this hypothesis, we employed human and calf articular cartilages, and incubated chondrocytes isolated from cartilage or cartilage plugs with doxycycline (0, 1 or 10 μg/ml) at either 37°C or 4°C. Chondrocyte viability, apoptosis, glycosaminoglycan (GAG), collagen, and mechanical test in cartilage plugs were measured. We found that reduced chondrocyte viability, increased chondrocyte apoptosis, reduced GAG contents, and impaired equilibrium modulus in cartilage plugs were observed in a time-dependent manner at both 37°C and 4°C. Chondrocyte viability was further reduced when the plugs were cultured at 4°C as compared to 37°C. Doxycycline prolonged viability and reduced apoptosis of chondrocytes during culture of cartilage plugs. Functionally, doxycycline protected against reduced production of GAG and collagen II as well as impaired mechanical properties in cartilage plugs during culture. Mechanistically, doxycycline increased mitochondrial respiration in cultured chondrocytes. In conclusion, preservation at 37°C is beneficial for maintaining chondrocyte viability in cartilage plugs compared to 4°C. Incubation of doxycycline protects against chondrocyte apoptosis, reduced extracellular matrix, and impaired mechanical properties in cartilage plugs. The findings provide a potential approach using doxycycline at 37°C to preserve chondrocyte viability in fresh OC grafts for treatment of articular cartilage lesions.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Brian Vuong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Brett D Owens
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.,University Orthopedics, East Providence, RI, USA
| |
Collapse
|
6
|
Liu L, Dharmadhikari S, Shontz KM, Tan ZH, Spector BM, Stephens B, Bergman M, Manning A, Zhao K, Reynolds SD, Breuer CK, Chiang T. Regeneration of partially decellularized tracheal scaffolds in a mouse model of orthotopic tracheal replacement. J Tissue Eng 2021; 12:20417314211017417. [PMID: 34164107 PMCID: PMC8188978 DOI: 10.1177/20417314211017417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Decellularized tracheal scaffolds offer a potential solution for the repair of long-segment tracheal defects. However, complete decellularization of trachea is complicated by tracheal collapse. We created a partially decellularized tracheal scaffold (DTS) and characterized regeneration in a mouse model of tracheal transplantation. All cell populations except chondrocytes were eliminated from DTS. DTS maintained graft integrity as well as its predominant extracellular matrix (ECM) proteins. We then assessed the performance of DTS in vivo. Grafts formed a functional epithelium by study endpoint (28 days). While initial chondrocyte viability was low, this was found to improve in vivo. We then used atomic force microscopy to quantify micromechanical properties of DTS, demonstrating that orthotopic implantation and graft regeneration lead to the restoration of native tracheal rigidity. We conclude that DTS preserves the cartilage ECM, supports neo-epithelialization, endothelialization and chondrocyte viability, and can serve as a potential solution for long-segment tracheal defects.
Collapse
Affiliation(s)
- Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sayali Dharmadhikari
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Zheng Hong Tan
- Collage of Medicine, The Ohio State University, Columbus, OH, USA
| | - Barak M Spector
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Brooke Stephens
- Collage of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maxwell Bergman
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Amy Manning
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kai Zhao
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|