1
|
Yu D, Shen J, Li L, Long Q, Xie S, Zhou M, Tian Q, Cai Y. Investigating the biological significance of the TCM principle "promoting urination to regulate bowel movements" through the influence of the intestinal microbiota and their metabolites on the renal-intestinal axis. Front Cell Infect Microbiol 2025; 14:1523708. [PMID: 39867340 PMCID: PMC11757259 DOI: 10.3389/fcimb.2024.1523708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Treatment methods in traditional Chinese medicine (TCM) are foundational to their theoretical, methodological, formulaic, and pharmacological systems, significantly contributing to syndrome differentiation and therapy. The principle of "promoting urination to regulate bowel movements" is a common therapeutic approach in TCM. The core concept is "promoting the dispersion and drainage of water dampness, regulating urination to relieve diarrhea," yet its scientific underpinning remains unclear. Modern medical treatment for watery diarrhea primarily focuses on electrolyte replenishment, as diuretics may lead to dehydration and other side effects. Some reports suggest that this TCM approach lacks scientific validity. Microecology, an area associated with the origins of TCM, is closely related to the development, diagnosis, and treatment of diarrhea. The renal-intestinal axis offers a molecular biological basis for examining associated pathological mechanisms, advancing therapeutic targets such as "treating the intestine to address kidney issues" and highlighting the interactions within the "renal-intestinal microbiota-liquid metabolism" framework, thus providing an endogenous mechanism to support "treating the intestine through the kidney." An increasing number of studies have shown that the intestinal microbiota and its metabolites, as unique mediators, are involved in the physiological and pathological changes of the body. Therefore, this study explores the relationship between fluid metabolism and diarrhea from the perspective of the intestinal microbiota and its metabolites, aiming to elucidate the biological mechanisms underlying the "promoting urination to regulate bowel movements" therapeutic approach and to clarify the scientific basis for treating diarrhea via the renal-intestinal axis. This research provides new insights for the study of TCM microbiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Molaei A, Molaei E, Hayes AW, Karimi G. Mas receptor: a potential strategy in the management of ischemic cardiovascular diseases. Cell Cycle 2023; 22:1654-1674. [PMID: 37365840 PMCID: PMC10361149 DOI: 10.1080/15384101.2023.2228089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
MasR is a critical element in the RAS accessory pathway that protects the heart against myocardial infarction, ischemia-reperfusion injury, and pathological remodeling by counteracting the effects of AT1R. This receptor is mainly stimulated by Ang 1-7, which is a bioactive metabolite of the angiotensin produced by ACE2. MasR activation attenuates ischemia-related myocardial damage by facilitating vasorelaxation, improving cell metabolism, reducing inflammation and oxidative stress, inhibiting thrombosis, and stabilizing atherosclerotic plaque. It also prevents pathological cardiac remodeling by suppressing hypertrophy- and fibrosis-inducing signals. In addition, the potential of MasR in lowering blood pressure, improving blood glucose and lipid profiles, and weight loss has made it effective in modulating risk factors for coronary artery disease including hypertension, diabetes, dyslipidemia, and obesity. Considering these properties, the administration of MasR agonists offers a promising approach to the prevention and treatment of ischemic heart disease.Abbreviations: Acetylcholine (Ach); AMP-activated protein kinase (AMPK); Angiotensin (Ang); Angiotensin receptor (ATR); Angiotensin receptor blocker (ARB); Angiotensin-converting enzyme (ACE); Angiotensin-converting enzyme inhibitor (ACEI); Anti-PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16); bradykinin (BK); Calcineurin (CaN); cAMP-response element binding protein (CREB); Catalase (CAT); C-C Motif Chemokine Ligand 2 (CCL2); Chloride channel 3 (CIC3); c-Jun N-terminal kinases (JNK); Cluster of differentiation 36 (CD36); Cocaine- and amphetamine-regulated transcript (CART); Connective tissue growth factor (CTGF); Coronary artery disease (CAD); Creatine phosphokinase (CPK); C-X-C motif chemokine ligand 10 (CXCL10); Cystic fibrosis transmembrane conductance regulator (CFTR); Endothelial nitric oxide synthase (eNOS); Extracellular signal-regulated kinase 1/2 (ERK 1/2); Fatty acid transport protein (FATP); Fibroblast growth factor 21 (FGF21); Forkhead box protein O1 (FoxO1); Glucokinase (Gk); Glucose transporter (GLUT); Glycogen synthase kinase 3β (GSK3β); High density lipoprotein (HDL); High sensitive C-reactive protein (hs-CRP); Inositol trisphosphate (IP3); Interleukin (IL); Ischemic heart disease (IHD); Janus kinase (JAK); Kruppel-like factor 4 (KLF4); Lactate dehydrogenase (LDH); Left ventricular end-diastolic pressure (LVEDP); Left ventricular end-systolic pressure (LVESP); Lipoprotein lipase (LPL); L-NG-Nitro arginine methyl ester (L-NAME); Low density lipoprotein (LDL); Mammalian target of rapamycin (mTOR); Mas-related G protein-coupled receptors (Mrgpr); Matrix metalloproteinase (MMP); MAPK phosphatase-1 (MKP-1); Mitogen-activated protein kinase (MAPK); Monocyte chemoattractant protein-1 (MCP-1); NADPH oxidase (NOX); Neuropeptide FF (NPFF); Neutral endopeptidase (NEP); Nitric oxide (NO); Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB); Nuclear-factor of activated T-cells (NFAT); Pancreatic and duodenal homeobox 1 (Pdx1); Peroxisome proliferator- activated receptor γ (PPARγ); Phosphoinositide 3-kinases (PI3k); Phospholipase C (PLC); Prepro-orexin (PPO); Prolyl-endopeptidase (PEP); Prostacyclin (PGI2); Protein kinase B (Akt); Reactive oxygen species (ROS); Renin-angiotensin system (RAS); Rho-associated protein kinase (ROCK); Serum amyloid A (SAA); Signal transducer and activator of transcription (STAT); Sirtuin 1 (Sirt1); Slit guidance ligand 3 (Slit3); Smooth muscle 22α (SM22α); Sterol regulatory element-binding protein 1 (SREBP-1c); Stromal-derived factor-1a (SDF); Superoxide dismutase (SOD); Thiobarbituric acid reactive substances (TBARS); Tissue factor (TF); Toll-like receptor 4 (TLR4); Transforming growth factor β1 (TGF-β1); Tumor necrosis factor α (TNF-α); Uncoupling protein 1 (UCP1); Ventrolateral medulla (VLM).
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Emad Molaei
- PharmD, Assistant of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Wallace Hayes
- University of South Florida College of Public Health, Tampa, Florida, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Heilmann RM, Csukovich G, Burgener IA, Dengler F. Time to eRAASe chronic inflammation: current advances and future perspectives on renin-angiotensin-aldosterone-system and chronic intestinal inflammation in dogs and humans. Front Vet Sci 2023; 10:1180125. [PMID: 37456955 PMCID: PMC10340121 DOI: 10.3389/fvets.2023.1180125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic idiopathic intestinal inflammation is an increasing worldwide problem that affects companion animals, especially dogs, and human patients. Although these disease entities have been intensely investigated recently, many questions remain, and alternative therapeutic options are needed. Diarrhea caused by dysregulation of intestinal electrolyte transport and subsequent fluid and electrolyte losses often leads to secondary consequences for the patient. Currently, it is not exactly clear which mechanisms are involved in the dysregulation of intestinal fluid absorption, but differences in intestinal electrolyte shifts between human and canine patients suggest species-specific regulatory or counterregulatory mechanisms. Several intestinal electrolyte transporters are differentially expressed in human patients with inflammatory bowel disease (IBD), whereas there are virtually no studies on electrolyte transporters and their endocrine regulation in canine chronic inflammatory enteropathy. An important mechanism involved in regulating fluid and electrolyte homeostasis is the renin-angiotensin-aldosterone-system (RAAS), which may affect intestinal Na+ transport. While RAAS has previously been considered a systemic regulator of blood pressure, additional complex roles of RAAS in inflammatory processes have been unraveled. These alternative RAAS pathways may pose attractive therapeutic targets to address diarrhea and, thus, electrolyte shifts in human IBD and canine chronic inflammatory enteropathy. This article comparatively summarizes the current knowledge about electrolyte transport in human IBD and canine chronic inflammatory enteropathy and the role of RAAS and offers perspectives for novel therapeutic avenues.
Collapse
Affiliation(s)
- Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Georg Csukovich
- Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan A. Burgener
- Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
5
|
Simko F, Baka T, Stanko P, Repova K, Krajcirovicova K, Aziriova S, Domenig O, Zorad S, Adamcova M, Paulis L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines 2022; 10:1844. [PMID: 36009391 PMCID: PMC9405404 DOI: 10.3390/biomedicines10081844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction. However, no changes in serum RAAS were observed in SHRs compared with the controls. Elevated SBP in SHRs was decreased by sacubitril/valsartan but not by ivabradine, and only sacubitril/valsartan attenuated LV hypertrophy. Both sacubitril/valsartan and ivabradine reduced LV collagen content and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7, and aldosterone, while ivabradine did not affect the RAAS. We conclude that the SHR is a normal-to-low serum RAAS model of experimental hypertension. While the protection of the hypertensive heart in SHRs by sacubitril/valsartan may be related to an Ang II blockade and the protective Ang 1-7, the benefits of ivabradine were not associated with RAAS modulation.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
| | | | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (T.B.); (P.S.); (K.R.); (K.K.); (S.A.); (L.P.)
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| |
Collapse
|
6
|
Zhang Y, Shang Z, Liu A. Angiotensin-(3-7) alleviates isoprenaline-induced cardiac remodeling via attenuating cAMP-PKA and PI3K/Akt signaling pathways. Amino Acids 2021; 53:1533-1543. [PMID: 34494132 DOI: 10.1007/s00726-021-03074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system is involved in the regulation of various heart diseases. The present study aimed to determine the effects of angiotensin (Ang)-(3-7) on cardiac remodeling and its downstream signaling pathways in neonatal rat cardiomyocytes (NRCMs) and neonatal rat cardiac fibroblasts (NRCFs). The administration of Ang-(3-7) alleviated isoprenaline (ISO)-induced cardiac hypertrophy and fibrosis of mice. ISO treatment increased the levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (β-MHC) in NRCMs, and reduced the levels of collagen I, collagen III, fibronectin, and alpha-smooth muscle actin (α-SMA) in NRCFs. These changes were inhibited by Ang-(3-7) administration. The levels of protein kinase A (PKA), phosphorylated phosphatidylinositol-3-kinase (p-PI3K), and phosphorylated protein kinase B (p-Akt) were increased in NRCMs and NRCFs treated with ISO. The increase of PKA, but not p-PI3K or p-Akt was attenuated by Ang-(3-7) treatment in NRCMs. The increases of p-PI3K and p-Akt, but not PKA were reversed by Ang-(3-7) treatment in NRCFs. Treatment with cAMP or PKA overexpression reversed the attenuating effects of Ang-(3-7) on ISO-induced hypertrophy of NRCMs. The administration of PI3K inhibitor or Akt inhibitor alleviated ISO-induced fibrosis of NRCFs. These results indicated that Ang-(3-7) could alleviate cardiac remodeling. The administration of Ang-(3-7) attenuated hypertrophy of NRCMs via inhibiting the cAMP/PKA signaling pathway, and alleviated fibrosis of NRCFs via inhibiting PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yonglin Zhang
- Department of Cardiology, Binhai County People's Hospital, 188 Fudong Middle Road, Yancheng, 224500, Jiangsu, China
| | - Zhenglu Shang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Aijun Liu
- Department of Cardiology, Binhai County People's Hospital, 188 Fudong Middle Road, Yancheng, 224500, Jiangsu, China.
| |
Collapse
|