1
|
Young EV, Djokic MA, Heinrich EC, Marin T, Anza-Ramirez C, Orr JE, Gilbertson D, DeYoung PN, Vizcardo-Galindo G, Figueroa-Mujica R, Villafuerte FC, Malhotra A, Simonson TS. The Effects of Nocturnal Hypoxemia on Cognitive Performance in Andean Highlanders. High Alt Med Biol 2024. [PMID: 39658027 DOI: 10.1089/ham.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Background: Many Andean highlanders exposed to chronic hypoxemia are susceptible to excessive erythrocytosis (EE) and chronic mountain sickness (CMS). Nocturnal hypoxemia is more marked than diurnal hypoxemia and includes sustained and intermittent components. The potential for cognitive impairments related to nocturnal hypoxemia in this population has not been extensively studied, but improved understanding may provide opportunities for the prevention of long-term effects of EE and CMS. Methods: To examine this relationship, 48 participants residing permanently at 4,340 m completed an overnight sleep study and a battery of cognitive function tests that examined a broad range of cognitive domains. Results: Greater nocturnal hypoxemia was associated with longer reaction times on Balloon Analogue Risk Task (BART) (p < 0.01) and Emotion Recognition Test (ERT) (p < 0.01). Longer completion times of Trail Making Task were also associated with increased nocturnal hypoxemia (p = 0.03). Increased hematocrit was similarly associated with longer reaction times on the ERT (p = 0.01) and the BART (p = 0.01). Conclusion: Overall, our results showed that increased nocturnal hypoxemia and higher hematocrit were associated with impairments in cognitive performance in individuals residing permanently at high altitude.
Collapse
Affiliation(s)
- Elizabeth V Young
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Matea A Djokic
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Erica C Heinrich
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Traci Marin
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Cecilia Anza-Ramirez
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeremy E Orr
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Dillon Gilbertson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Pamela N DeYoung
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rómulo Figueroa-Mujica
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| | - Tatum S Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
2
|
Patrician A, Anholm JD, Ainslie PN. A narrative review of periodic breathing during sleep at high altitude: From acclimatizing lowlanders to adapted highlanders. J Physiol 2024; 602:5435-5448. [PMID: 38534039 DOI: 10.1113/jp285427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
Periodic breathing during sleep at high altitude is almost universal among sojourners. Here, in the context of acclimatization and adaptation, we provide a contemporary review on periodic breathing at high altitude, and explore whether this is an adaptive or maladaptive process. The mechanism(s), prevalence and role of periodic breathing in acclimatized lowlanders at high altitude are contrasted with the available data from adapted indigenous populations (e.g. Andean and Tibetan highlanders). It is concluded that (1) periodic breathing persists with acclimatization in lowlanders and the severity is proportional to sleeping altitude; (2) periodic breathing does not seem to coalesce with poor sleep quality such that, with acclimatization, there appears to be a lengthening of cycle length and minimal impact on the average sleeping oxygen saturation; and (3) high altitude adapted highlanders appear to demonstrate a blunting of periodic breathing, compared to lowlanders, comprising a feature that withstands the negative influences of chronic mountain sickness. These observations indicate that periodic breathing persists with high altitude acclimatization with no obvious negative consequences; however, periodic breathing is attenuated with high altitude adaptation and therefore potentially reflects an adaptive trait to this environment.
Collapse
Affiliation(s)
- Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| |
Collapse
|
3
|
Self AA, Mesarwi OA. Intermittent Versus Sustained Hypoxemia from Sleep-disordered Breathing: Outcomes in Patients with Chronic Lung Disease and High Altitude. Sleep Med Clin 2024; 19:327-337. [PMID: 38692756 DOI: 10.1016/j.jsmc.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In a variety of physiologic and pathologic states, people may experience both chronic sustained hypoxemia and intermittent hypoxemia ("combined" or "overlap" hypoxemia). In general, hypoxemia in such instances predicts a variety of maladaptive outcomes, including excess cardiovascular disease or mortality. However, hypoxemia may be one of the myriad phenotypic effects in such states, making it difficult to ascertain whether adverse outcomes are primarily driven by hypoxemia, and if so, whether these effects are due to intermittent versus sustained hypoxemia.
Collapse
Affiliation(s)
- Alyssa A Self
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, 9500 Gilman Drive Mail Code 0623A, La Jolla, CA 92093, USA
| | - Omar A Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, 9500 Gilman Drive Mail Code 0623A, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Kiuchi M, Uno T, Hasegawa T, Koyama K, Horiuchi M. Influence of short-term hypoxic exposure on spatial learning and memory function and brain-derived neurotrophic factor in rats-A practical implication to human's lost way. Front Behav Neurosci 2024; 18:1330596. [PMID: 38380151 PMCID: PMC10876868 DOI: 10.3389/fnbeh.2024.1330596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
The present study aimed to investigate the effects of a short period of normobaric hypoxic exposure on spatial learning and memory, and brain-derived neurotrophic factor (BDNF) levels in the rat hippocampus. Hypoxic conditions were set at 12.5% O2. We compared all variables between normoxic trials (Norm), after 24 h (Hypo-24 h), and after 72 h of hypoxic exposure (Hypo-72 h). Spatial learning and memory were evaluated by using a water-finding task in an open field. Time to find water drinking fountains was significantly extended in Hypo 24 h (36.2 ± 21.9 s) compared to those in Norm (17.9 ± 12.8 s; P < 0.05), whereas no statistical differences between Norm and Hypo-72 h (22.7 ± 12.3 s). Moreover, hippocampal BDNF level in Hypo-24 h was significantly lower compared to Norm (189.4 ± 28.4 vs. 224.9 ± 47.7 ng/g wet tissue, P < 0.05), whereas no statistically differences in those between Norm and Hypo-72 h (228.1 ± 39.8 ng/g wet tissue). No significant differences in the changes in corticosterone and adrenocorticotropic hormone levels were observed across the three conditions. When data from Hypo-24 h and Hypo-72 h of hypoxia were pooled, there was a marginal negative relationship between the time to find drinking fountains and BDNF (P < 0.1), and was a significant negative relationship between the locomotor activities and BDNF (P < 0.05). These results suggest that acute hypoxic exposure (24 h) may impair spatial learning and memory; however, it recovered after 72 h of hypoxic exposure. These changes in spatial learning and memory may be associated with changes in the hippocampal BDNF levels in rats.
Collapse
Affiliation(s)
- Masataka Kiuchi
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Tadashi Uno
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Tatsuya Hasegawa
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Katsuhiro Koyama
- Faculty of Sport Science, Yamanashi Gakuin University, Kofu, Yamanashi, Japan
| | - Masahiro Horiuchi
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Kanoya, Kagoshima, Japan
| |
Collapse
|
5
|
Fan H, Meng Y, Zhu L, Fan M, Wang D, Zhao Y. A review of methods for assessment of cognitive function in high-altitude hypoxic environments. Brain Behav 2024; 14:e3418. [PMID: 38409925 PMCID: PMC10897364 DOI: 10.1002/brb3.3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/28/2024] Open
Abstract
Hypoxic environments like those present at high altitudes may negatively affect brain function. Varying levels of hypoxia, whether acute or chronic, are previously shown to impair cognitive function in humans. Assessment and prevention of such cognitive impairment require detection of cognitive changes and impairment using specific cognitive function assessment tools. This paper summarizes the findings of previous research, outlines the methods for cognitive function assessment used at a high altitude, elaborates the need to develop standardized and systematic cognitive function assessment tools for high-altitude hypoxia environments.
Collapse
Affiliation(s)
- Haojie Fan
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Ying Meng
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Lingling Zhu
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Ming Fan
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
- School of Information Sciences & EngineeringLanzhou UniversityLanzhouChina
| | - Du‐Ming Wang
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yong‐Qi Zhao
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| |
Collapse
|
6
|
Rojas-Córdova S, Torres-Fraga MG, Rodríguez-Reyes YG, Guerrero-Zúñiga S, Vázquez-García JC, Carrillo-Alduenda JL. Altitude and Breathing during Sleep in Healthy Persons and Sleep Disordered Patients: A Systematic Review. Sleep Sci 2023; 16:117-126. [PMID: 37151770 PMCID: PMC10157825 DOI: 10.1055/s-0043-1767745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/28/2022] [Indexed: 05/09/2023] Open
Abstract
Objetive The aim of this systematic review is to analyze the recent scientific evidence of the clinical effects of altitude on breathing during sleep in healthy persons and sleep disordered patients. Material and Methods A search was carried out in PubMed and Scopus looking for articles published between January 1, 2010 and December 31, 2021, in English and Spanish, with the following search terms: "sleep disorders breathing and altitude". Investigations in adults and carried out at an altitude of 2000 meters above mean sea level (MAMSL) or higher were included. The correlation between altitude, apnea hypopnea index (AHI) and mean SpO2 during sleep was calculated. Results 18 articles of the 112 identified were included. A good correlation was found between altitude and AHI (Rs = 0.66 P = 0.001), at the expense of an increase in the central apnea index. Altitude is inversely proportional to oxygenation during sleep (Rs = -0.93 P = 0.001), and an increase in the desaturation index was observed (3% and 4%). On the treatment of respiratory disorders of sleeping at altitude, oxygen is better than servoventilation to correct oxygenation during sleep in healthy subjects and acetazolamide controlled respiratory events and oxygenation during sleep in patients with obstructive sleep apnea under treatment with CPAP. Conclusions Altitude increases AHI and decreases oxygenation during sleep; oxygen and acetazolamide could be an effective treatment for sleep-disordered breathing at altitude above 2000 MAMSL.
Collapse
Affiliation(s)
| | | | | | - Selene Guerrero-Zúñiga
- National Institute of Respiratory Diseases, Sleep Medicine Unit, Mexico City, Mexico City, Mexico
| | | | - José Luis Carrillo-Alduenda
- National Institute of Respiratory Diseases, Sleep Medicine Unit, Mexico City, Mexico City, Mexico
- Address for correspondence José Luis Carrillo-Alduenda
| |
Collapse
|
7
|
Cognition and Neuropsychological Changes at Altitude-A Systematic Review of Literature. Brain Sci 2022; 12:brainsci12121736. [PMID: 36552195 PMCID: PMC9775937 DOI: 10.3390/brainsci12121736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
High-altitude (HA) exposure affects cognitive functions, but studies have found inconsistent results. The aim of this systematic review was to evaluate the effects of HA exposure on cognitive functions in healthy subjects. A structural overview of the applied neuropsychological tests was provided with a classification of superordinate cognitive domains. A literature search was performed using PubMed up to October 2021 according to PRISMA guidelines. Eligibility criteria included a healthy human cohort exposed to altitude in the field (at minimum 2440 m [8000 ft]) or in a hypoxic environment in a laboratory, and an assessment of cognitive domains. The literature search identified 52 studies (29 of these were field studies; altitude range: 2440 m-8848 m [8000-29,029 ft]). Researchers applied 112 different neuropsychological tests. Attentional capacity, concentration, and executive functions were the most frequently studied. In the laboratory, the ratio of altitude-induced impairments (64.7%) was twice as high compared to results showing no change or improved results (35.3%), but altitudes studied were similar in the chamber compared to field studies. In the field, the opposite results were found (66.4 % no change or improvements, 33.6% impairments). Since better acclimatization can be assumed in the field studies, the findings support the hypothesis that sufficient acclimatization has beneficial effects on cognitive functions at HA. However, it also becomes apparent that research in this area would benefit most if a consensus could be reached on a standardized framework of freely available neurocognitive tests.
Collapse
|
8
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Roberts EG, Raphelson JR, Orr JE, LaBuzetta JN, Malhotra A. The Pathogenesis of Central and Complex Sleep Apnea. Curr Neurol Neurosci Rep 2022; 22:405-412. [PMID: 35588042 PMCID: PMC9239939 DOI: 10.1007/s11910-022-01199-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE The purpose of this article is to review the recent literature on central apnea. Sleep disordered breathing (SDB) is characterized by apneas (cessation in breathing), and hypopneas (reductions in breathing), that occur during sleep. Central sleep apnea (CSA) is sleep disordered breathing in which there is an absence or diminution of respiratory effort during breathing disturbances while asleep. In obstructive sleep apnea (OSA), on the other hand, there is an absence of flow despite ongoing ventilatory effort. RECENT FINDINGS Central sleep apnea is a heterogeneous disease with multiple clinical manifestations. OSA is by far the more common condition; however, CSA is highly prevalent among certain patient groups. Complex sleep apnea (CompSA) is defined as the occurrence/emergence of CSA upon treatment of OSA. Similarly, there is considerable overlap between CSA and OSA in pathogenesis as well as impacts. Thus, understanding sleep disordered breathing is important for many practicing clinicians.
Collapse
Affiliation(s)
- Erin Grattan Roberts
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92037, USA.
| | - Janna R Raphelson
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92037, USA
| | - Jeremy E Orr
- Division of Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Jamie Nicole LaBuzetta
- Division of Neurocritical Care, Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Atul Malhotra
- Division of Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
10
|
Van Cutsem J, Pattyn N, Mairesse O, Delwiche B, Fernandez Tellez H, Van Puyvelde M, Lacroix E, McDonnell AC, Eiken O, Mekjavic IB. Adult Female Sleep During Hypoxic Bed Rest. Front Neurosci 2022; 16:852741. [PMID: 35620666 PMCID: PMC9127600 DOI: 10.3389/fnins.2022.852741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Hypobaric hypoxic habitats are currently being touted as a potential solution to minimise decompression procedures in preparation for extra vehicular activities during future space missions. Since astronauts will live in hypoxic environments for the duration of such missions, the present study sought to elucidate the separate and combined effects of inactivity [simulated with the experimental bed rest (BR) model] and hypoxia on sleep characteristics in women. Methods Twelve women (Age = 27 ± 3 year) took part in three 10-day interventions, in a repeated measures cross-over counterbalanced design: (1) normobaric normoxic BR (NBR), (2) normobaric hypoxic BR (HBR; simulated altitude of 4,000 m), and (3) normobaric hypoxic ambulatory (HAMB; 4,000 m) confinement, during which sleep was assessed on night 1 and night 10 with polysomnography. In addition, one baseline sleep assessment was performed. This baseline assessment, although lacking a confinement aspect, was included statistically as a fourth comparison (i.e., pseudo normobaric normoxic ambulatory; pNAMB) in the present study. Results Hypoxia decreased sleep efficiency (p = 0.019), increased N1% sleep (p = 0.030), decreased N3 sleep duration (p = 0.003), and increased apnea hypopnea index (p < 0.001). BR impaired sleep maintenance, efficiency, and architecture [e.g., N2% sleep increased (p = 0.033)]. Specifically, for N3% sleep, the effects of partial pressure of oxygen and activity interacted. Hypoxia decreased N3% sleep both when active (pNAMB vs HAMB; p < 0.001) and inactive (NBR vs HBR; p = 0.021), however, this decrease was attenuated in the inactive state (–3.8%) compared to the active state (–10.2%). Conclusion A 10-day exposure to hypoxia and BR negatively impacted sleep on multiple levels as in macrostructure, microstructure and respiratory functioning. Interestingly, hypoxia appeared to have less adverse effects on sleep macrostructure while the participants were inactive (bed ridden) compared to when ambulatory. Data were missing to some extent (i.e., 20.8%). Therefore, multiple imputation was used, and our results should be considered as exploratory.
Collapse
Affiliation(s)
- Jeroen Van Cutsem
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Jeroen Van Cutsem, , orcid.org/0000-0001-6122-7629
| | - Nathalie Pattyn
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Mairesse
- Sleep Laboratory and Unit for Chronobiology U78, Brugmann University Hospital, Vrije Universiteit Brussel, Brussels, Belgium
- Brain, Body and Cognition, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bérénice Delwiche
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Department of Psychology, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Martine Van Puyvelde
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Experimental and Applied Psychology, Department of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Clinical & Lifespan Psychology, Department of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emilie Lacroix
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
| | - Adam C. McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology centre, Royal Institute of Technology, Stockholm, Sweden
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Wang H, Li X, Li J, Gao Y, Li W, Zhao X, Wen R, Han J, Chen K, Liu L. Sleep, short-term memory, and mood states of volunteers with increasing altitude. Front Psychiatry 2022; 13:952399. [PMID: 36311491 PMCID: PMC9600328 DOI: 10.3389/fpsyt.2022.952399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE This study sought to identify the changes and potential association between sleep characteristics and short-term memory, and mood states among volunteers at different altitudes and times. METHOD A total of 26 healthy volunteers were recruited from the PLA General Hospital, and we conducted a longitudinal prospective survey for over 1 year from November 2019 to April 2021. First, we collected demographic data, sleep parameters by overnight polysomnography (PSG), short-term memory by digit span test, and mood states by completing a questionnaire with a brief profile of mood states among participants in the plain (53 m). Then, we continuously followed them up to collect data in the 3rd month at an altitude of 1,650 m (on the 3rd month of the 1-year survey period), the 3rd month at an altitude of 4,000 m (on the 6th month of the 1-year survey period), and the 9th month at an altitude of 4,000 m (on the 12th month of the 1-year survey period). Multiple linear regression analysis was used to construct models between sleep parameters and short-term memory, and mood states. RESULTS The prevalence of sleep apnea syndrome (SAS) significantly increased with rising elevation (P < 0.01). The apnea-hypopnea index (AHI), the mean apnea time (MAT), the longest apnea time (LAT), and the duration of time with SaO2 < 90% (TSA90) were increased (P < 0.05), and the mean pulse oxygen saturation (MSpO2), the lowest pulse oxygen saturation (LSpO2), and heart rate were significantly decreased with increasing altitude (P < 0.05). Digit span scores were decreased with increasing altitude (P < 0.001). A negative mood was more severe and a positive mood increasingly faded with rising elevation (P < 0.001). Additionally, linear correlation analysis showed that higher AHI, LAT, and MAT were strongly associated with a greater decline in short-term memory (in the 3rd and 9th month at an altitude of 4,000 m, respectively: r s = -0.897, -0.901; r s = -0.691, -0.749; r s = -0.732, -0.794, P < 0.001), and also were strongly associated with more severe negative mood (in the 3rd month at altitudes of 1,650 m and 4,000 m, respectively: r s = 0.655, 0.715, 0.724; r s = 0.771, 0.638, 0.737, P < 0.000625). Multiple linear regression pointed out that AHI was a significant predictor of negative mood among people at different altitudes (in the 3rd month at an altitude of 1,650 m: TMD = 33.161 + 6.495*AHI; in the 3rd month at an altitude of 4,000 m: TMD = 74.247 + 1.589*AHI, P < 0.05). CONCLUSION SAS developed easily in high altitudes, most often in CSA (central sleep apnea, CSA). The sleep, short-term memory, and negative mood were significantly more damaged with elevation in volunteers. Sleep parameters were closely associated with short-term memory and mood states in volunteers at high altitudes; the higher the sleep parameters (AHI, LAT, and MAT) scores, the more significant the mood disorders and the more obvious impairment of short-term memory. AHI was a critical predictor of the negative mood of volunteers at different altitudes. This study provides evidence that could help with the prevention and control of sleep disorder, cognitive disorder, and negative mood among populations with high altitudes.
Collapse
Affiliation(s)
| | - Xueyan Li
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianhua Li
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yinghui Gao
- PKU-UPenn Sleep Center, Peking University International Hospital, Beijing, China
| | - Weihua Li
- Gansu Armed Police Corps Hospital, Lanzhou, China
| | - Xinke Zhao
- Sleep Center, The Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ruoqing Wen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiming Han
- Medical College, Yan'an University, Yan'an, China
| | - Kaibing Chen
- Sleep Center, The Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|