1
|
Pang S, Yan J. Research and progress on the mechanism of lower urinary tract neuromodulation: a literature review. PeerJ 2024; 12:e17870. [PMID: 39148679 PMCID: PMC11326431 DOI: 10.7717/peerj.17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The storage and periodic voiding of urine in the lower urinary tract are regulated by a complex neural control system that includes the brain, spinal cord, and peripheral autonomic ganglia. Investigating the neuromodulation mechanisms of the lower urinary tract helps to deepen our understanding of urine storage and voiding processes, reveal the mechanisms underlying lower urinary tract dysfunction, and provide new strategies and insights for the treatment and management of related diseases. However, the current understanding of the neuromodulation mechanisms of the lower urinary tract is still limited, and further research methods are needed to elucidate its mechanisms and potential pathological mechanisms. This article provides an overview of the research progress in the functional study of the lower urinary tract system, as well as the key neural regulatory mechanisms during the micturition process. In addition, the commonly used research methods for studying the regulatory mechanisms of the lower urinary tract and the methods for evaluating lower urinary tract function in rodents are discussed. Finally, the latest advances and prospects of artificial intelligence in the research of neuromodulation mechanisms of the lower urinary tract are discussed. This includes the potential roles of machine learning in the diagnosis of lower urinary tract diseases and intelligent-assisted surgical systems, as well as the application of data mining and pattern recognition techniques in advancing lower urinary tract research. Our aim is to provide researchers with novel strategies and insights for the treatment and management of lower urinary tract dysfunction by conducting in-depth research and gaining a comprehensive understanding of the latest advancements in the neural regulation mechanisms of the lower urinary tract.
Collapse
Affiliation(s)
- Shutong Pang
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Junan Yan
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Liu TT, Pascal LE, Bauer SR, Miles HN, Panksepp JB, Lloyd GL, Li L, DeFranco DB, Ricke WA. Age-Dependent Effects of Voluntary Wheel Running Exercise on Voiding Behavior and Potential Age-Related Molecular Mechanisms in Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae007. [PMID: 38198648 PMCID: PMC11079951 DOI: 10.1093/gerona/glae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Older men frequently develop lower urinary tract symptoms attributed to benign prostatic hyperplasia (LUTS/BPH). Risk factors for LUTS/BPH include sedentary lifestyle, anxiety/depression, obesity, and frailty, which all increase with age. Although physical exercise may reduce the progression and/or severity of LUTS/BPH, the age-related mechanisms responsible remain unknown. METHODS Voiding symptoms, body mass, and frailty were assessed after 4-weeks of voluntary wheel running in 2-month (n = 10) and 24-month (n = 8) old C57Bl/6J male mice. In addition, various social and individual behaviors were examined in these cohorts. Finally, cellular and molecular markers of inflammation and mitochondrial protein expression were assessed in prostate tissue and systemically. RESULTS Despite running less (aged vs young X¯ = 12.3 vs 30.6 km/week; p = .04), aged mice had reduced voiding symptoms (X¯ = 67.3 vs 23.7; p < .0001) after 1 week of exercise, which was sustained through week 4 (X¯ = 67.3 vs 21.5; p < .0001). Exercise did not affect voiding symptoms in young mice. Exercise also increased mobility and decreased anxiety in both young and aged mice (p < .05). Exercise decreased expression of a key mitochondrial protein (PINK1; p < .05) and inflammation within the prostate (CD68; p < .05 and plasminogen activator inhibitor-1; p < .05) and in the serum (p < .05). However, a frailty index (X¯ = 0.17 vs 0.15; p = .46) and grip strength (X¯ = 1.10 vs 1.19; p = .24) were unchanged after 4 weeks of exercise in aged mice. CONCLUSIONS Voluntary aerobic exercise improves voiding behavior and mobility, and decreases prostatic mitochondrial protein expression and inflammation in aged mice. This promising model could be used to evaluate molecular mechanisms of aerobic exercise as a novel lifestyle intervention for older men with LUTS/BPH.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Laura E Pascal
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott R Bauer
- Department of Medicine, Urology, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Hannah N Miles
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
- School of Pharmacy, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Jules B Panksepp
- Waisman Center, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Granville L Lloyd
- Division of Urology, Department of Surgery, Rocky Mountain Regional VA Medical Center, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William A Ricke
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Oliveira AL, Medeiros ML, Ghezzi AC, Dos Santos GA, Mello GC, Mónica FZ, Antunes E. Evidence that methylglyoxal and receptor for advanced glycation end products are implicated in bladder dysfunction of obese diabetic ob/ ob mice. Am J Physiol Renal Physiol 2023; 325:F436-F447. [PMID: 37560771 DOI: 10.1152/ajprenal.00089.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Glycolytic overload in diabetes causes large accumulation of the highly reactive dicarbonyl compound methylglyoxal (MGO) and overproduction of advanced glycation end products (AGEs), which interact with their receptors (RAGE), leading to diabetes-associated macrovascular complications. The bladder is an organ that stays most in contact with dicarbonyl species, but little is known about the importance of the MGO-AGEs-RAGE pathway to diabetes-associated bladder dysfunction. Here, we aimed to investigate the role of the MGO-AGEs-RAGE pathway in bladder dysfunction of diabetic male and female ob/ob mice compared with wild-type (WT) lean mice. Diabetic ob/ob mice were treated with the AGE breaker alagebrium (ALT-711, 1 mg/kg) for 8 wk in drinking water. Compared with WT animals, male and female ob/ob mice showed marked hyperglycemia and insulin resistance, whereas fluid intake remained unaltered. Levels of total AGEs, MGO-derived hydroimidazolone 1, and RAGE in bladder tissues, as well as fluorescent AGEs in serum, were significantly elevated in ob/ob mice of either sex. Collagen content was also markedly elevated in the bladders of ob/ob mice. Void spot assays in filter paper in conscious mice revealed significant increases in total void volume and volume per void in ob/ob mice with no alterations of spot number. Treatment with ALT-711 significantly reduced the levels of MGO, AGEs, RAGE, and collagen content in ob/ob mice. In addition, ALT-711 treatment normalized the volume per void and increased the number of spots in ob/ob mice. Activation of AGEs-RAGE pathways by MGO in the bladder wall may contribute to the pathogenesis of diabetes-associated bladder dysfunction.NEW & NOTEWORTHY The involvement of methylglyoxal (MGO) and advanced glycation end products (AGEs) in bladder dysfunction of diabetic ob/ob mice treated with the AGE breaker ALT-711 was investigated here. Diabetic mice exhibited high levels of MGO, AGEs, receptor for AGEs (RAGE), and collagen in serum and/or bladder tissues along with increased volume per void, all of which were reduced by ALT-711. Activation of the MGO-AGEs-RAGE pathway in the bladder wall contributes to the pathogenesis of diabetes-associated bladder dysfunction.
Collapse
Affiliation(s)
- Akila L Oliveira
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Matheus L Medeiros
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Ana Carolina Ghezzi
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gabriel Alonso Dos Santos
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Glaucia Coelho Mello
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Fabíola Z Mónica
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
4
|
Pascal LE, Igarashi T, Mizoguchi S, Chen W, Rigatti LH, Madigan CG, Dhir R, Bushman W, DeFranco DB, Yoshimura N, Wang Z. E-cadherin deficiency promotes prostate macrophage inflammation and bladder overactivity in aged male mice. Aging (Albany NY) 2022; 14:2945-2965. [PMID: 35361739 PMCID: PMC9037276 DOI: 10.18632/aging.203994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Decreased E-cadherin immunostaining is frequently observed in benign prostatic hyperplasia (BPH) and was recently correlated with increased inflammation in aging prostate. Homozygous E-cadherin deletion in the murine prostate results in prostate inflammation and bladder overactivity at 6 months of age. However, this model is limited in that while E-cadherin is significantly reduced in BPH, it is not completely lost; BPH is also strongly associated with advanced age and is infrequent in young men. Here, we examined the functional consequences of aging in male mice with prostate luminal epithelial cell-specific E-cadherin heterozygosity. In control mice, aging alone resulted in an increase in prostate inflammation and changes in bladder voiding function indicative of bladder underactivity. At 24 months of age, mice with prostate-specific Cre-mediated heterozygous deletion of E-cadherin induced at 7 weeks of age developed additional prostatic defects, particularly increased macrophage inflammation and stromal proliferation, and bladder overactivity compared to age-matched control mice, which are similar to BPH/LUTS in that the phenotype is slow-progressing and age-dependent. These findings suggest that decreased E-cadherin may promote macrophage inflammation and fibrosis in the prostate and subsequent bladder overactivity in aging men, promoting the development and progression of BPH/LUTS.
Collapse
Affiliation(s)
- Laura E. Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Lora H. Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Caroline G. Madigan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Wade Bushman
- Department of Urology, University of Wisconsin, Madison, WI 53705, USA
| | - Donald B. DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| |
Collapse
|
5
|
Dalghi MG. A "NEW" way to look at an "old" test: Transforming the void spot assay (VSA) into a diagnostic tool. Physiol Rep 2021; 9:e14985. [PMID: 34337907 PMCID: PMC8326885 DOI: 10.14814/phy2.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Marianela G. Dalghi
- Renal‐Electrolyte DivisionDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|