1
|
Cho SKS, Darby JRT, Saini BS, Holman SL, Lock MC, Perumal SR, Williams GK, Macgowan CK, Seed M, Morrison JL. Late-gestation maternal undernutrition induces circulatory redistribution while preserving uteroplacental function independent of fetal glycaemic state. J Physiol 2024; 602:7065-7083. [PMID: 39549304 DOI: 10.1113/jp287171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024] Open
Abstract
Programming effects of maternal undernutrition on fetal metabolic and cardiovascular systems are well elucidated, yet a detailed characterization of maternal haemodynamics is not available. This study used comprehensive cardiovascular magnetic resonance (CMR) imaging to quantify maternal haemodynamics after 29 days (111-140 days) of late-gestation undernutrition (LGUN) in pregnant sheep. Control ewes received 100% of metabolizable energy requirements (MERs, n = 15), whereas LGUN ewes were globally nutrient restricted to 50% MER (n = 18), with a subset of fetuses undergoing continuous glucose infusion (LGUN + G, n = 6/18). Ewes underwent CMR (138-140 days' gestation), and placental tissue was collected the next day. Ewes in both LGUN groups had reduced body weight and mean blood glucose concentration across gestation. Ventricular dimensions were lower in both LGUN groups. Uterine artery blood flow (QUtA) was elevated in the LGUN group compared with controls, whereas peripheral blood flow was reduced and further diminished in LGUN + G. Maternal weight change correlated with all haemodynamic parameters across all groups. Uteroplacental oxygen and glucose delivery were increased in LGUN compared to control ewes, whereas uteroplacental oxygen consumption was preserved. LGUN did not impact placental or fetal weight, and markers of brain-sparing physiology were absent. Placental expression of insulin-like growth factors (IGF-1 and IGF-2) and their receptors, glucose, fatty acid (FA) or amino acid transporters and markers of angiogenesis was not impacted. FA transporter expression was positively correlated with QUtA, and FA binding protein correlated negatively with maternal weight change. Maternal cardiovascular adaptations in response to LGUN manifest as preservation of placental growth and function, thereby preserving fetal growth. KEY POINTS: Maternal undernutrition during pregnancy alters fetal metabolic and cardiovascular physiology, but little is known about alterations in maternal haemodynamics. Late-gestation undernutrition (LGUN) and LGUN + G redirected maternal blood flow from the periphery to the uteroplacental unit, concomitantly increasing the delivery of glucose and oxygen to the uteroplacental unit. Substrate transporter expression and uteroplacental oxygen consumption were preserved in LGUN and LGUN + G, suggesting prioritization of the placenta. This study is the first to report detailed maternal haemodynamics in the setting of maternal undernutrition, where placental growth and function were maintained, ultimately preserving fetal oxygen metabolism and growth.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara Rajan Perumal
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, South Australia, Australia
| | - Georgia K Williams
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Kühle H, Cho SKS, Barber N, Goolaub DS, Darby JRT, Morrison JL, Haller C, Sun L, Seed M. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023; 10:1206138. [PMID: 37288263 PMCID: PMC10242056 DOI: 10.3389/fcvm.2023.1206138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.
Collapse
Affiliation(s)
- Henriette Kühle
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Cardiac and Thoracic Surgery, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steven K. S. Cho
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Nathaniel Barber
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Datta Singh Goolaub
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Charest-Pekeski AJ, Cho SKS, Aujla T, Sun L, Floh AA, McVey MJ, Sheta A, Estrada M, Crawford-Lean L, Foreman C, Mroczek D, Belik J, Saini BS, Lim JM, Moir OJ, Lee FT, Quinn M, Darby JRT, Seed M, Morrison JL, Haller C. Impact of the Addition of a Centrifugal Pump in a Preterm Miniature Pig Model of the Artificial Placenta. Front Physiol 2022; 13:925772. [PMID: 35941934 PMCID: PMC9356302 DOI: 10.3389/fphys.2022.925772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
The recent demonstration of normal development of preterm sheep in an artificial extrauterine environment has renewed interest in artificial placenta (AP) systems as a potential treatment strategy for extremely preterm human infants. However, the feasibility of translating this technology to the human preterm infant remains unknown. Here we report the support of 13 preterm fetal pigs delivered at 102 ± 4 days (d) gestation, weighing 616 ± 139 g with a circuit consisting of an oxygenator and a centrifugal pump, comparing these results with our previously reported pumpless circuit (n = 12; 98 ± 4 days; 743 ± 350 g). The umbilical vessels were cannulated, and fetuses were supported for 46.4 ± 46.8 h using the pumped AP versus 11 ± 13 h on the pumpless AP circuit. Upon initiation of AP support on the pumped system, we observed supraphysiologic circuit flows, tachycardia, and hypertension, while animals maintained on a pumpless AP circuit exhibited subphysiologic flows. On the pumped AP circuit, there was a progressive decline in umbilical vein (UV) flow and oxygen delivery. We conclude that the addition of a centrifugal pump to the AP circuit improves survival of preterm pigs by augmenting UV flow through the reduction of right ventricular afterload. However, we continued to observe the development of heart failure within a matter of days.
Collapse
Affiliation(s)
- Alex J. Charest-Pekeski
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Steven K. S. Cho
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tanroop Aujla
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alejandro A. Floh
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mark J. McVey
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Ayman Sheta
- Department of Pediatrics, Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marvin Estrada
- Lab Animal Services, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynn Crawford-Lean
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Celeste Foreman
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Dariusz Mroczek
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jaques Belik
- Department of Pediatrics, Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brahmdeep S. Saini
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessie Mei Lim
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia J. Moir
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fu-Tsuen Lee
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Megan Quinn
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janna L. Morrison
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Christoph Haller
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- *Correspondence: Christoph Haller,
| |
Collapse
|