1
|
Ryan CP, Corcoran DL, Banskota N, Eckstein Indik C, Floratos A, Friedman R, Kobor MS, Kraus VB, Kraus WE, MacIsaac JL, Orenduff MC, Pieper CF, White JP, Ferrucci L, Horvath S, Huffman KM, Belsky DW. The CALERIE Genomic Data Resource. NATURE AGING 2024:10.1038/s43587-024-00775-0. [PMID: 39672986 DOI: 10.1038/s43587-024-00775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Caloric restriction (CR) slows biological aging and prolongs healthy lifespan in model organisms. Findings from the CALERIE randomized, controlled trial of long-term CR in healthy, nonobese humans broadly supports a similar pattern of effects in humans. To expand our understanding of the molecular pathways and biological processes underpinning CR effects in humans, we generated a series of genomic datasets from stored biospecimens collected from n = 218 participants during the trial. These data constitute a genomic data resource for a randomized controlled trial of an intervention targeting the biology of aging. Datasets include whole-genome single-nucleotide polymorphism genotypes, and three-timepoint-longitudinal DNA methylation, mRNA and small RNA datasets generated from blood, skeletal muscle and adipose tissue samples (total sample n = 2,327). The CALERIE Genomic Data Resource described in this article is available from the Aging Research Biobank. This multi-tissue, multi-omics, longitudinal data resource has great potential to advance translational geroscience. ClinicalTrials.gov registration: NCT00427193 .
Collapse
Affiliation(s)
- C P Ryan
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - D L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - N Banskota
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - C Eckstein Indik
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - A Floratos
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - R Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - M S Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Colombia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Colombia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Colombia, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Edwin S. H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Colombia, Canada
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - W E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - J L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Colombia, Canada
| | - M C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - C F Pieper
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - J P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - L Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - S Horvath
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - K M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - D W Belsky
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
2
|
Sun L, Luan J, Wang J, Li X, Zhang W, Ji X, Liu L, Wang R, Xu B. GEPREP: A comprehensive data atlas of RNA-seq-based gene expression profiles of exercise responses. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:100992. [PMID: 39341494 DOI: 10.1016/j.jshs.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Physical activity can regulate and affect gene expression in multiple tissues and cells. Recently, with the development of next-generation sequencing, a large number of RNA-sequencing (RNA-seq)-based gene expression profiles about physical activity have been shared in public resources; however, they are poorly curated and underutilized. To tackle this problem, we developed a data atlas of such data through comprehensive data collection, curation, and organization. METHODS The data atlas, termed gene expression profiles of RNA-seq-based exercise responses (GEPREP), was built on a comprehensive collection of high-quality RNA-seq data on exercise responses. The metadata of each sample were manually curated. Data were uniformly processed and batch effects corrected. All the information was well organized in an easy-to-use website for free search, visualization, and download. RESULTS GEPREP now includes 69 RNA-seq datasets of pre- and post-exercise, comprising 26 human datasets (1120 samples) and 43 mouse datasets (1006 samples). Specifically, there were 977 (87.2 %) human samples of skeletal muscle and 143 (12.8 %) human samples of blood. There were also samples across 9 mice tissues with skeletal muscle (359, 35.7 %) and brain (280, 27.8 %) accounting for the main fractions. Metadata-including subject, exercise interventions, sampling sites, and post-processing methods-are also included. The metadata and gene expression profiles are freely accessible at http://www.geprep.org.cn/. CONCLUSION GEPREP is a comprehensive data atlas of RNA-seq-based gene expression profiles responding to exercise. With its reliable annotations and user-friendly interfaces, it has the potential to deepen our understanding of exercise physiology.
Collapse
Affiliation(s)
- Lei Sun
- School of Information Engineering, Yangzhou University, Yangzhou 225127, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Jinwen Luan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jinbiao Wang
- School of Information Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wenqian Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Abdelfattah F, Schulz H, Wehland M, Corydon TJ, Sahana J, Kraus A, Krüger M, González-Torres LF, Cortés-Sánchez JL, Wise PM, Mushunuri A, Hemmersbach R, Liemersdorf C, Infanger M, Grimm D. Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:10014. [PMID: 39337501 PMCID: PMC11431953 DOI: 10.3390/ijms251810014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
The primary objective of omics in space with focus on the human organism is to characterize and quantify biological factors that alter structure, morphology, function, and dynamics of human cells exposed to microgravity. This review discusses exciting data regarding genomics, transcriptomics, epigenomics, metabolomics, and proteomics of human cells and individuals in space, as well as cells cultured under simulated microgravity. The NASA Twins Study significantly heightened interest in applying omics technologies and bioinformatics in space and terrestrial environments. Here, we present the available publications in this field with a focus on specialized cells and stem cells exposed to real and simulated microgravity conditions. We summarize current knowledge of the following topics: (i) omics studies on stem cells, (ii) omics studies on benign specialized different cell types of the human organism, (iii) discussing the advantages of this knowledge for space commercialization and exploration, and (iv) summarizing the emerging opportunities for translational regenerative medicine for space travelers and human patients on Earth.
Collapse
Affiliation(s)
- Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Luis Fernando González-Torres
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Ashwini Mushunuri
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Ruth Hemmersbach
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
4
|
Aschman T, Wyler E, Baum O, Hentschel A, Rust R, Legler F, Preusse C, Meyer-Arndt L, Büttnerova I, Förster A, Cengiz D, Alves LGT, Schneider J, Kedor C, Bellmann-Strobl J, Sanchin A, Goebel HH, Landthaler M, Corman V, Roos A, Heppner FL, Radbruch H, Paul F, Scheibenbogen C, Dengler NF, Stenzel W. Post-COVID exercise intolerance is associated with capillary alterations and immune dysregulations in skeletal muscles. Acta Neuropathol Commun 2023; 11:193. [PMID: 38066589 PMCID: PMC10704838 DOI: 10.1186/s40478-023-01662-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023] Open
Abstract
The SARS-CoV-2 pandemic not only resulted in millions of acute infections worldwide, but also in many cases of post-infectious syndromes, colloquially referred to as "long COVID". Due to the heterogeneous nature of symptoms and scarcity of available tissue samples, little is known about the underlying mechanisms. We present an in-depth analysis of skeletal muscle biopsies obtained from eleven patients suffering from enduring fatigue and post-exertional malaise after an infection with SARS-CoV-2. Compared to two independent historical control cohorts, patients with post-COVID exertion intolerance had fewer capillaries, thicker capillary basement membranes and increased numbers of CD169+ macrophages. SARS-CoV-2 RNA could not be detected in the muscle tissues. In addition, complement system related proteins were more abundant in the serum of patients with PCS, matching observations on the transcriptomic level in the muscle tissue. We hypothesize that the initial viral infection may have caused immune-mediated structural changes of the microvasculature, potentially explaining the exercise-dependent fatigue and muscle pain.
Collapse
Affiliation(s)
- Tom Aschman
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Oliver Baum
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V, Dortmund, Germany
| | - Rebekka Rust
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Franziska Legler
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ivana Büttnerova
- Department of Autoimmune Diagnostics, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Alexandra Förster
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Derya Cengiz
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Julia Schneider
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Aminaa Sanchin
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Neuropathology, Universitätsmedizin Mainz, Mainz, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Faculty of Medicine, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
- Department of Neurology Bergmannsheil, Heimer-Institut Für Muskelforschung am Bergmannsheil, Bochum, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nora F Dengler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Inns TB, Bass JJ, Hardy EJ, Wilkinson DJ, Stashuk DW, Atherton PJ, Phillips BE, Piasecki M. Motor unit dysregulation following 15 days of unilateral lower limb immobilisation. J Physiol 2022; 600:4753-4769. [PMID: 36088611 PMCID: PMC9827843 DOI: 10.1113/jp283425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023] Open
Abstract
Disuse atrophy, caused by situations of unloading such as limb immobilisation, causes a rapid yet diverging reduction in skeletal muscle function when compared to muscle mass. While mechanistic insight into the loss of mass is well studied, deterioration of muscle function with a focus towards the neural input to muscle remains underexplored. This study aimed to determine the role of motor unit adaptation in disuse-induced neuromuscular deficits. Ten young, healthy male volunteers underwent 15 days of unilateral lower limb immobilisation with intramuscular electromyography (iEMG) bilaterally recorded from the vastus lateralis (VL) during knee extensor contractions normalised to maximal voluntary contraction (MVC), pre and post disuse. Muscle cross-sectional area was determined by ultrasound. Individual MUs were sampled and analysed for changes in motor unit (MU) discharge and MU potential (MUP) characteristics. VL CSA was reduced by approximately 15% which was exceeded by a two-fold decrease of 31% in muscle strength in the immobilised limb, with no change in either parameter in the non-immobilised limb. Parameters of MUP size were reduced by 11% to 24% with immobilisation, while neuromuscular junction (NMJ) transmission instability remained unchanged, and MU firing rate decreased by 8% to 11% at several contraction levels. All adaptations were observed in the immobilised limb only. These findings highlight impaired neural input following immobilisation reflected by suppressed MU firing rate which may underpin the disproportionate reductions of strength relative to muscle size. KEY POINTS: Muscle mass and function decline rapidly in situations of disuse such as bed rest and limb immobilisation. The reduction in muscle function commonly exceeds that of muscle mass, which may be associated with the dysregulation of neural input to muscle. We have used intramuscular electromyography to sample individual motor unit and near fibre potentials from the vastus lateralis following 15 days of unilateral limb immobilisation. Following disuse, the disproportionate loss of muscle strength when compared to size coincided with suppressed motor unit firing rate. These motor unit adaptations were observed at multiple contraction levels and in the immobilised limb only. Our findings demonstrate neural dysregulation as a key component of functional loss following muscle disuse in humans.
Collapse
Affiliation(s)
- Thomas B. Inns
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Joseph J. Bass
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Edward J.O. Hardy
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
- Department of Surgery and AnaestheticsRoyal Derby HospitalDerbyUK
| | - Daniel J. Wilkinson
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Daniel W. Stashuk
- Department of Systems Design EngineeringUniversity of WaterlooOntarioCanada
| | - Philip J. Atherton
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Bethan E. Phillips
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Mathew Piasecki
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| |
Collapse
|
6
|
Lin W, Saner NJ, Weng X, Caruana NJ, Botella J, Kuang J, Lee MJC, Jamnick NA, Pitchford NW, Garnham A, Bartlett JD, Chen H, Bishop DJ. The Effect of Sleep Restriction, With or Without Exercise, on Skeletal Muscle Transcriptomic Profiles in Healthy Young Males. Front Endocrinol (Lausanne) 2022; 13:863224. [PMID: 35937838 PMCID: PMC9355502 DOI: 10.3389/fendo.2022.863224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Inadequate sleep is associated with many detrimental health effects, including increased risk of developing insulin resistance and type 2 diabetes. These effects have been associated with changes to the skeletal muscle transcriptome, although this has not been characterised in response to a period of sleep restriction. Exercise induces a beneficial transcriptional response within skeletal muscle that may counteract some of the negative effects associated with sleep restriction. We hypothesised that sleep restriction would down-regulate transcriptional pathways associated with glucose metabolism, but that performing exercise would mitigate these effects. METHODS 20 healthy young males were allocated to one of three experimental groups: a Normal Sleep (NS) group (8 h time in bed per night (TIB), for five nights (11 pm - 7 am)), a Sleep Restriction (SR) group (4 h TIB, for five nights (3 am - 7 am)), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB, for five nights (3 am - 7 am) and three high-intensity interval exercise (HIIE) sessions (performed at 10 am)). RNA sequencing was performed on muscle samples collected pre- and post-intervention. Our data was then compared to skeletal muscle transcriptomic data previously reported following sleep deprivation (24 h without sleep). RESULTS Gene set enrichment analysis (GSEA) indicated there was an increased enrichment of inflammatory and immune response related pathways in the SR group post-intervention. However, in the SR+EX group the direction of enrichment in these same pathways occurred in the opposite directions. Despite this, there were no significant changes at the individual gene level from pre- to post-intervention. A set of genes previously shown to be decreased with sleep deprivation was also decreased in the SR group, but increased in the SR+EX group. CONCLUSION The alterations to inflammatory and immune related pathways in skeletal muscle, following five nights of sleep restriction, provide insight regarding the transcriptional changes that underpin the detrimental effects associated with sleep loss. Performing three sessions of HIIE during sleep restriction attenuated some of these transcriptional changes. Overall, the transcriptional alterations observed with a moderate period of sleep restriction were less evident than previously reported changes following a period of sleep deprivation.
Collapse
Affiliation(s)
- Wentao Lin
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Nicholas J. Saner
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Nikeisha J. Caruana
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Javier Botella
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Matthew J-C. Lee
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Nicholas A. Jamnick
- Metabolic Research Unit, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nathan W. Pitchford
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Hao Chen
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
- *Correspondence: Hao Chen, ; David J. Bishop,
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- *Correspondence: Hao Chen, ; David J. Bishop,
| |
Collapse
|