1
|
Nascimento GC, Vivanco-Estela AN, Ferrié L, Figadere B, Raisman-Vozari R, Michel PP, Del Bel E. Anti-nociceptive effects of non-antibiotic derivatives of demeclocycline and doxycycline against formalin-induced pain stimulation. Eur J Pharmacol 2024; 984:177054. [PMID: 39393668 DOI: 10.1016/j.ejphar.2024.177054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
In previous studies, some tetracycline (TC) antibiotics showed potential as analgesic. We investigated here the analgesic activity of new non-antibiotic TC derivatives using the formalin-induced nociceptive pain model in adult C57BL/6 mice. Specifically, we tested the effects of i.p. injections of DDMC (5, 10, 20 mg kg-1) and DDOX (10, 20, 40 mg kg-1), which are non-antibiotic derivatives of demeclocycline and doxycycline, respectively. Repeated treatments with DDMC remarkably reduced nociceptive pain in both phases of the test, at 10 mg kg-1 its efficacy was comparable to that of 10 mg kg-1 of morphine. DDOX was also effective in this paradigm but intrinsically less potent than DDMC, exerting analgesic effects between 20 and 40 mg kg-1. Interestingly, a single injection of DDMC (10 mg kg-1) was sufficient to produce a robust anti-nociceptive effect similar to that of morphine. A single injection of DDOX (40 mg kg-1) also produced anti-nociceptive effects but only in the second phase of the test. Noticeably, male mice exhibited a better analgesic response to DDMC (10 mg kg-1) than females. A single injection of DDMC (10 mg kg-1) and morphine but not of DDOX (40 mg kg-1), powerfully inhibited formalin-induced spinal cord c-Fos expression whereas both TC derivatives restrained the activation of Iba-1-immunoreactive cells, indicating a potential indirect effect on inflamed microglial cells. In summary, the non-antibiotic TCs, DDMC and DDOX, demonstrated notable analgesic efficacy against formalin-induced pain, suggesting their potential as alternatives for analgesic treatment.
Collapse
Affiliation(s)
| | | | - Laurent Ferrié
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| | - Bruno Figadere
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Yang J, Xie YF, Smith R, Ratté S, Prescott SA. Discordance between preclinical and clinical testing of NaV1.7-selective inhibitors for pain. Pain 2024:00006396-990000000-00751. [PMID: 39446737 DOI: 10.1097/j.pain.0000000000003425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The voltage-gated sodium channel NaV1.7 plays an important role in pain processing according to genetic data. Those data made NaV1.7 a popular drug target, especially since its relatively selective expression in nociceptors promised pain relief without the adverse effects associated with broader sodium channel blockade. Despite encouraging preclinical data in rodents, NaV1.7-selective inhibitors have not yet proven effective in clinical trials. Discrepancies between preclinical and clinical results should raise alarms. We reviewed preclinical and clinical reports on the analgesic efficacy of NaV1.7-selective inhibitors and found critical differences in several factors. Putting aside species differences, most preclinical studies tested young male rodents with limited genetic variability, inconsistent with the clinical population. Inflammatory pain was the most common preclinical chronic pain model whereas nearly all clinical trials focused on neuropathic pain despite some evidence suggesting NaV1.7 channels are not essential for neuropathic pain. Preclinical studies almost exclusively measured evoked pain whereas most clinical trials assessed average pain intensity without distinguishing between evoked and spontaneous pain. Nearly all preclinical studies gave a single dose of drug unlike the repeat dosing used clinically, thus precluding preclinical data from demonstrating whether tolerance or other slow processes occur. In summary, preclinical testing of NaV1.7-selective inhibitors aligned poorly with clinical testing. Beyond issues that have already garnered widespread attention in the pain literature, our results highlight the treatment regimen and choice of pain model as areas for improvement.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell Smith
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Gateva P, Hristov M, Ivanova N, Vasileva D, Ivanova A, Sabit Z, Bogdanov T, Apostolova S, Tzoneva R. Antinociceptive Behavior, Glutamine/Glutamate, and Neopterin in Early-Stage Streptozotocin-Induced Diabetic Neuropathy in Liraglutide-Treated Mice under a Standard or Enriched Environment. Int J Mol Sci 2024; 25:10786. [PMID: 39409118 PMCID: PMC11477071 DOI: 10.3390/ijms251910786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of long-lasting type 1 and type 2 diabetes, with no curative treatment available. Here, we tested the effect of the incretin mimetic liraglutide in DN in mice with early-stage type 1 diabetes bred in a standard laboratory or enriched environment. With a single i.p. injection of streptozotocin 150 mg/kg, we induced murine diabetes. Liraglutide (0.4 mg/kg once daily, i.p. for ten days since the eighth post-streptozotocin day) failed to decrease the glycemia in the diabetic mice; however, it alleviated their antinociceptive behavior, as tested with formalin. The second phase of the formalin test had significantly lower results in liraglutide-treated mice reared in the enriched environment vs. liraglutide-treated mice under standard conditions [2.00 (0.00-11.00) vs. 29.00 (2.25-41.50) s, p = 0.016]. Liraglutide treatment, however, decreased the threshold of reactivity in the von Fray test. A significantly higher neopterin level was demonstrated in the diabetic control group compared to treatment-naïve controls and the liraglutide-treated diabetic mice (p < 0.001). The glutamine/glutamate ratio in both liraglutide-treated groups, either reared under standard conditions (p = 0.003) or an enriched environment (p = 0.002), was significantly higher than in the diabetic controls. This study demonstrates an early liraglutide effect on pain sensation in two streptozotocin-induced diabetes mouse models by reducing some inflammatory and oxidative stress parameters.
Collapse
Affiliation(s)
- Pavlina Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Natasha Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Debora Vasileva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Alexandrina Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Zafer Sabit
- Department of Pathophysiology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Todor Bogdanov
- Department of Medical Physics and Biophysics, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Sonia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.A.); (R.T.)
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.A.); (R.T.)
| |
Collapse
|
4
|
Cui X, Wei W, Zhang Z, Liu K, Zhao T, Zhang J, Zheng A, Xi H, He X, Wang S, Zhu B, Gao X. Caffeine Impaired Acupuncture Analgesia in Inflammatory Pain by Blocking Adenosine A1 Receptor. THE JOURNAL OF PAIN 2024; 25:1024-1038. [PMID: 37918469 DOI: 10.1016/j.jpain.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Caffeine consumption inhibits acupuncture analgesic effects by blocking adenosine signaling. However, existing evidence remains controversial. Hence, this study aimed to examine the adenosine A1 receptor (A1R) role in moderate-dose caffeine-induced abolishing effect on acupuncture analgesia using A1R knockout mice (A1R-/-). We assessed the role of A1R in physiological sensory perception and its interaction with caffeine by measuring mechanical and thermal pain thresholds and administering A1R and adenosine 2A receptor antagonists in wild-type (WT) and A1R-/- mice. Formalin- and complete Freund's adjuvant (CFA)-induced inflammatory pain models were recruited to explore moderate-dose caffeine effect on pain perception and acupuncture analgesia in WT and A1R-/- mice. Moreover, a C-fiber reflex electromyogram in the biceps femoris was conducted to validate the role of A1R in the caffeine-induced blockade of acupuncture analgesia. We found that A1R was dispensable for physiological sensory perception and formalin- and CFA-induced hypersensitivity. However, genetic deletion of A1R impaired the antinociceptive effect of acupuncture in A1R-/- mice under physiological or inflammatory pain conditions. Acute moderate-dose caffeine administration induced mechanical and thermal hyperalgesia under physiological conditions but not in formalin- and CFA-induced inflammatory pain. Moreover, caffeine significantly inhibited electroacupuncture (EA) analgesia in physiological and inflammatory pain in WT mice, comparable to that of A1R antagonists. Conversely, A1R deletion impaired the EA analgesic effect and decreased the caffeine-induced inhibitory effect on EA analgesia in physiological conditions and inflammatory pain. Moderate-dose caffeine administration diminished the EA-induced antinociceptive effect by blocking A1R. Overall, our study suggested that caffeine consumption should be avoided during acupuncture treatment. PERSPECTIVE: Moderate-dose caffeine injection attenuated EA-induced antinociceptive effect in formalin- and CFA-induced inflammatory pain mice models by blocking A1R. This highlights the importance of monitoring caffeine intake during acupuncture treatment.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wan Wei
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Zhao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; Department of Acupuncture, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Jialin Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; Department of Acupuncture, Yuncheng Hospital of Traditional Chinese Medicine, Yuncheng, Shanxi Province, China
| | - Ani Zheng
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; Department of Acupuncture, Rehabilitation, Massage and Pain, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xun He
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuya Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Brewer CL, Kauer JA. Low-Frequency Stimulation of Trpv1-Lineage Peripheral Afferents Potentiates the Excitability of Spino-Periaqueductal Gray Projection Neurons. J Neurosci 2024; 44:e1184232023. [PMID: 38050062 PMCID: PMC10860615 DOI: 10.1523/jneurosci.1184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
High-threshold dorsal root ganglion (HT DRG) neurons fire at low frequencies during inflammatory injury, and low-frequency stimulation (LFS) of HT DRG neurons selectively potentiates excitatory synapses onto spinal neurons projecting to the periaqueductal gray (spino-PAG). Here, in male and female mice, we have identified an underlying peripheral sensory population driving this plasticity and its effects on the output of spino-PAG neurons. We provide the first evidence that Trpv1-lineage sensory neurons predominantly induce burst firing, a unique mode of neuronal activity, in lamina I spino-PAG projection neurons. We modeled inflammatory injury by optogenetically stimulating Trpv1+ primary afferents at 2 Hz for 2 min (LFS), as peripheral inflammation induces 1-2 Hz firing in high-threshold C fibers. LFS of Trpv1+ afferents enhanced the synaptically evoked and intrinsic excitability of spino-PAG projection neurons, eliciting a stable increase in the number of action potentials (APs) within a Trpv1+ fiber-induced burst, while decreasing the intrinsic AP threshold and increasing the membrane resistance. Further experiments revealed that this plasticity required Trpv1+ afferent input, postsynaptic G protein-coupled signaling, and NMDA receptor activation. Intriguingly, an inflammatory injury and heat exposure in vivo also increased APs per burst, in vitro These results suggest that inflammatory injury-mediated plasticity is driven though Trpv1+ DRG neurons and amplifies the spino-PAG pathway. Spinal inputs to the PAG could play an integral role in its modulation of heat sensation during peripheral inflammation, warranting further exploration of the organization and function of these neural pathways.
Collapse
Affiliation(s)
- Chelsie L Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
6
|
Saleque N, Vastani N, Gentry C, Andersson DA, Israel MR, Bevan S. Topical Oxaliplatin Produces Gain- and Loss-of-Function in Multiple Classes of Sensory Afferents. THE JOURNAL OF PAIN 2024; 25:88-100. [PMID: 37524219 PMCID: PMC10877073 DOI: 10.1016/j.jpain.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
The platinum chemotherapeutic oxaliplatin produces dose-limiting pain, dysesthesia, and cold hypersensitivity in most patients immediately after infusion. An improved understanding of the mechanisms underlying these symptoms is urgently required to facilitate the development of symptomatic or preventative therapies. In this study, we have used skin-saphenous nerve recordings in vitro and behavioral experiments in mice to characterize the direct effects of oxaliplatin on different types of sensory afferent fibers. Our results confirmed that mice injected with oxaliplatin rapidly develop mechanical and cold hypersensitivities. We further noted profound changes to A fiber activity after the application of oxaliplatin to the receptive fields in the skin. Most oxaliplatin-treated Aδ- and rapidly adapting Aβ-units lost mechanical sensitivity, but units that retained responsiveness additionally displayed a novel, aberrant cold sensitivity. Slowly adapting Aβ-units did not display mechanical tachyphylaxis, and a subset of these fibers was sensitized to mechanical and cold stimulation after oxaliplatin treatment. C fiber afferents were less affected by acute applications of oxaliplatin, but a subset gained cold sensitivity. Taken together, our findings suggest that direct effects on peripheral A fibers play a dominant role in the development of acute oxaliplatin-induced cold hypersensitivity, numbness, and dysesthesia. PERSPECTIVE: The chemotherapeutic drug oxaliplatin rapidly gives rise to dose-limiting cold pain and dysesthesia. Here, we have used behavioral and electrophysiological studies of mice to characterize the responsible neurons. We show that oxaliplatin directly confers aberrant cold responsiveness to subsets of A-fibers while silencing other fibers of the same type.
Collapse
Affiliation(s)
- Nurjahan Saleque
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Nisha Vastani
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Clive Gentry
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - David A Andersson
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Mathilde R Israel
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Stuart Bevan
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| |
Collapse
|
7
|
Wang X, Liu J, Wang Z, Guo C, Lan H, Feng S, Liu H, Gao X, Zhang D, Zhu L, Jin H, Wang J. Unraveling the parameters and biological mechanisms of CO 2 laser therapy for acute pain relief. Front Neurol 2023; 14:1271655. [PMID: 37928139 PMCID: PMC10624176 DOI: 10.3389/fneur.2023.1271655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Acute pain-related pathology is a significant challenge in clinical practice, and the limitations of traditional pain-relief drugs have made it necessary to explore alternative approaches. Photobiomodulation (PBM) therapy using CO2 laser has emerged as a promising option. In this study, we aimed to identify the optimal parameters of CO2 laser irradiation for acute pain relief through in vivo and in vitro experiments. First, we validated the laser intensity used in this study through bone marrow mesenchymal stem cells (BMSCs) experiments to ensure it will not adversely affect stem cell viability and morphology. Then we conducted a detailed evaluation of the duty cycle and frequency of CO2 laser by the hot plate and formalin test. Results showed a duty cycle of 3% and a frequency of 25 kHz produced the best outcomes. Additionally, we investigated the potential mechanisms underlying the effects of CO2 laser by immunohistochemical staining, and found evidence to suggest that the opioid receptor may be involved in its analgesic effect. In conclusion, this study provides insights into the optimal parameters and underlying mechanisms of CO2 laser therapy for effective pain relief, thereby paving the way for future clinical applications.
Collapse
Affiliation(s)
- Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jiaqi Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chunming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Hongjia Lan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Shibin Feng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Xun Gao
- School of Physics, Changchun University of Science and Technology, Changchun, China
| | - Dongming Zhang
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, China
| | - Lintao Zhu
- Changchun Ideal Medical Technology Co., Ltd., Changchun, China
| | - Hui Jin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
8
|
Brackx W, de Cássia Collaço R, Theys M, Cruyssen JV, Bosmans F. Understanding the physiological role of Na V1.9: Challenges and opportunities for pain modulation. Pharmacol Ther 2023; 245:108416. [PMID: 37061202 DOI: 10.1016/j.pharmthera.2023.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.
Collapse
Affiliation(s)
- Wayra Brackx
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Margaux Theys
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Vander Cruyssen
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
9
|
Yajima M, Takahashi Y, Sugimura YK, Kato F. Pregabalin attenuates long-lasting post-inflammatory nociplastic mechanical sensitization in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100131. [PMID: 37215502 PMCID: PMC10195975 DOI: 10.1016/j.ynpai.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Nociplastic pain, the most recently proposed mechanistic descriptor of chronic pain, is the pain resulting from an altered nociceptive system and network without clear evidence of nociceptor activation, injury or disease in the somatosensory system. As the pain-associated symptoms in many patients suffering from undiagnosed pain would result from the nociplastic mechanisms, it is an urgent issue to develop pharmaceutical therapies that would mitigate the aberrant nociception in nociplastic pain. We have recently reported that a single injection of formalin to the upper lip shows sustained sensitization lasting for more than 12 days at the bilateral hindpaws, where there is no injury or neuropathy in rats. Using the equivalent model in mice, we show that pregabalin (PGB), a drug used for treating neuropathic pain, significantly attenuates this formalin-induced widespread sensitization at the bilateral hindpaws, even on the 6 day after the initial single orofacial injection of formalin. On the 10th day after formalin injection, the hindlimb sensitization before PGB injection was no more significant in mice receiving daily PGB injections, unlike those receiving daily vehicle injections. This result suggests that PGB would act on the central pain mechanisms that undergo nociplastic changes triggered by initial inflammation and mitigate widespread sensitization resulting from the established changes.
Collapse
Affiliation(s)
- Manami Yajima
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yukari Takahashi
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Yae K. Sugimura
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Pain control in tonic immobility (TI) and other immobility models. PROGRESS IN BRAIN RESEARCH 2022; 271:253-303. [DOI: 10.1016/bs.pbr.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|