1
|
Esparza A, Jimenez N, Borrego EA, Browne S, Natividad-Diaz SL. Review: Human stem cell-based 3D in vitro angiogenesis models for preclinical drug screening applications. Mol Biol Rep 2024; 51:260. [PMID: 38302762 PMCID: PMC10834608 DOI: 10.1007/s11033-023-09048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Vascular diseases are the underlying pathology in many life-threatening illnesses. Human cellular and molecular mechanisms involved in angiogenesis are complex and difficult to study in current 2D in vitro and in vivo animal models. Engineered 3D in vitro models that incorporate human pluripotent stem cell (hPSC) derived endothelial cells (ECs) and supportive biomaterials within a dynamic microfluidic platform provide a less expensive, more controlled, and reproducible platform to better study angiogenic processes in response to external chemical or physical stimulus. Current studies to develop 3D in vitro angiogenesis models aim to establish single-source systems by incorporating hPSC-ECs into biomimetic extracellular matrices (ECM) and microfluidic devices to create a patient-specific, physiologically relevant platform that facilitates preclinical study of endothelial cell-ECM interactions, vascular disease pathology, and drug treatment pharmacokinetics. This review provides a detailed description of the current methods used for the directed differentiation of human stem cells to endothelial cells and their use in engineered 3D in vitro angiogenesis models that have been developed within the last 10 years.
Collapse
Affiliation(s)
- Aibhlin Esparza
- Department of Metallurgical, Materials, and Biomedical Engineering (MMBME), The University of Texas at El Paso (UTEP), El Paso, TX, USA
- 3D Printed Microphysiological Systems Laboratory, The University of Texas at El Paso, El Paso, TX, USA
| | - Nicole Jimenez
- Department of Metallurgical, Materials, and Biomedical Engineering (MMBME), The University of Texas at El Paso (UTEP), El Paso, TX, USA
- 3D Printed Microphysiological Systems Laboratory, The University of Texas at El Paso, El Paso, TX, USA
| | - Edgar A Borrego
- Department of Metallurgical, Materials, and Biomedical Engineering (MMBME), The University of Texas at El Paso (UTEP), El Paso, TX, USA
- 3D Printed Microphysiological Systems Laboratory, The University of Texas at El Paso, El Paso, TX, USA
| | - Shane Browne
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, Royal College of Surgeons, Dublin, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Sylvia L Natividad-Diaz
- Department of Metallurgical, Materials, and Biomedical Engineering (MMBME), The University of Texas at El Paso (UTEP), El Paso, TX, USA.
- 3D Printed Microphysiological Systems Laboratory, The University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
2
|
Shirure VS, Yechikov S, Shergill BS, Dehghani T, Block AV, Sodhi H, Panitch A, George SC. Mitigating neutrophil trafficking and cardiotoxicity with DS-IkL in a microphysiological system of a cytokine storm. LAB ON A CHIP 2023; 23:3050-3061. [PMID: 37278194 PMCID: PMC10330849 DOI: 10.1039/d2lc01070d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A feature of severe COVID-19 is the onset of an acute and intense systemic inflammatory response referred to as the "cytokine storm". The cytokine storm is characterized by high serum levels of inflammatory cytokines and the subsequent transport of inflammatory cells to damaging levels in vital organs (e.g., myocarditis). Immune trafficking and its effect on underlying tissues (e.g., myocardium) are challenging to observe at a high spatial and temporal resolution in mouse models. In this study, we created a vascularized organ-on-a-chip system to mimic cytokine storm-like conditions and tested the effectiveness of a novel multivalent selectin-targeting carbohydrate conjugate (composed of DS - dermatan sulfate and IkL - a selectin-binding peptide, termed DS-IkL) in blocking infiltration of polymorphonuclear leukocytes (PMN). Our data shows that cytokine storm-like conditions induce endothelial cells to produce additional inflammatory cytokines and facilitate infiltration of PMNs into tissue. Treatment of tissues with DS-IkL (60 μM) reduced PMN accumulation in the tissue by >50%. We then created cytokine storm-like conditions in a vascularized cardiac tissue-chip and found that PMN infiltration increases the spontaneous beating rate of the cardiac tissue, and this effect is eliminated by treatment with DS-IkL (60 μM). In summary, we demonstrate the utility of an organ-on-a-chip platform to mimic COVID-19 related cytokine storm and that blocking leukocyte infiltration with DS-IkL could be a viable strategy to mitigate associated cardiac complications.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Sergey Yechikov
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Bhupinder S Shergill
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Tima Dehghani
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Anton V Block
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Harkanwalpreet Sodhi
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| |
Collapse
|