1
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
2
|
Gut Microbiota and Coronary Artery Disease: Current Therapeutic Perspectives. Metabolites 2023; 13:metabo13020256. [PMID: 36837875 PMCID: PMC9963624 DOI: 10.3390/metabo13020256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The human gut microbiota is the community of microorganisms living in the human gut. This microbial ecosystem contains bacteria beneficial to their host and plays important roles in human physiology, participating in energy harvest from indigestible fiber, vitamin synthesis, and regulation of the immune system, among others. Accumulating evidence suggests a possible link between compositional and metabolic aberrations of the gut microbiota and coronary artery disease in humans. Manipulating the gut microbiota through targeted interventions is an emerging field of science, aiming at reducing the risk of disease. Among the interventions with the most promising results are probiotics, prebiotics, synbiotics, and trimethylamine N-oxide (TMAO) inhibitors. Contemporary studies of probiotics have shown an improvement of inflammation and endothelial cell function, paired with attenuated extracellular matrix remodeling and TMAO production. Lactobacilli, Bifidobacteria, and Bacteroides are some of the most well studied probiotics in experimental and clinical settings. Prebiotics may also decrease inflammation and lead to reductions in blood pressure, body weight, and hyperlipidemia. Synbiotics have been associated with an improvement in glucose homeostasis and lipid abnormalities. On the contrary, no evidence yet exists on the possible benefits of postbiotic use, while the use of antibiotics is not warranted, due to potentially deleterious effects. TMAO inhibitors such as 3,3-dimethyl-1-butanol, iodomethylcholine, and fluoromethylcholine, despite still being investigated experimentally, appear to possess anti-inflammatory, antioxidant, and anti-fibrotic properties. Finally, fecal transplantation carries conflicting evidence, mandating the need for further research. In the present review we summarize the links between the gut microbiota and coronary artery disease and elaborate on the varied therapeutic measures that are being explored in this context.
Collapse
|
3
|
Tai YH, Chang ML, Chu PH, Yeh CC, Cherng YG, Chen TL, Liao CC. Risk of Acute Myocardial Infarction in Patients with Gastroenteritis: A Nationwide Case-Control Study. J Clin Med 2022; 11:jcm11051341. [PMID: 35268431 PMCID: PMC8911228 DOI: 10.3390/jcm11051341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Gastroenteritis promotes the development of systemic inflammation and a hypercoagulable state. There are limited data regarding the association between gastroenteritis and acute myocardial infarction (AMI). We aimed to evaluate the risk of AMI after an episode of gastroenteritis. In this nested case-control study, we selected patients who were hospitalized for AMI (N = 103,584) as a case group during 2010-2017 and performed propensity score matching (case-control ratio 1:1) to select eligible controls from insurance research data in Taiwan. We applied multivariable logistic regressions to calculate adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for the risk of AMI associated with recent gastroenteritis within 14 days before AMI. We also compared the outcomes after AMI in patients with or without gastroenteritis. A total of 1381 patients (1.3%) with AMI had a prior episode of gastroenteritis compared to 829 (0.8%) among the controls. Gastroenteritis was significantly associated with a subsequent risk of AMI (adjusted OR: 1.68, 95% CI: 1.54-1.83), which was augmented in hospitalizations for gastroenteritis (adjusted OR: 2.50, 95% CI: 1.20-5.21). The outcomes after AMI were worse in patients with gastroenteritis than in those without gastroenteritis, including increased 30-day in-hospital mortality (adjusted OR: 1.28, 95% CI: 1.08-1.52), medical expenditure, and length of hospital stay. Gastroenteritis may act as a trigger for AMI and correlates with worse post-AMI outcomes. Strategies of aggressive hydration and/or increased antithrombotic therapies for this susceptible population should be further developed.
Collapse
Affiliation(s)
- Ying-Hsuan Tai
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (Y.-H.T.); (Y.-G.C.)
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Ming-Long Chang
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Chun-Chieh Yeh
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan;
- Department of Surgery, University of Illinois, Chicago, IL 60637, USA
| | - Yih-Giun Cherng
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (Y.-H.T.); (Y.-G.C.)
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Ta-Liang Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chien-Chang Liao
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: or
| |
Collapse
|
4
|
Sethi NJ, Safi S, Korang SK, Hróbjartsson A, Skoog M, Gluud C, Jakobsen JC. Antibiotics for secondary prevention of coronary heart disease. Cochrane Database Syst Rev 2021; 2:CD003610. [PMID: 33704780 PMCID: PMC8094925 DOI: 10.1002/14651858.cd003610.pub4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Coronary heart disease is the leading cause of mortality worldwide with approximately 7.4 million deaths each year. People with established coronary heart disease have a high risk of subsequent cardiovascular events including myocardial infarction, stroke, and cardiovascular death. Antibiotics might prevent such outcomes due to their antibacterial, antiinflammatory, and antioxidative effects. However, a randomised clinical trial and several observational studies have suggested that antibiotics may increase the risk of cardiovascular events and mortality. Furthermore, several non-Cochrane Reviews, that are now outdated, have assessed the effects of antibiotics for coronary heart disease and have shown conflicting results. No previous systematic review using Cochrane methodology has assessed the effects of antibiotics for coronary heart disease. OBJECTIVES We assessed the benefits and harms of antibiotics compared with placebo or no intervention for the secondary prevention of coronary heart disease. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, LILACS, SCI-EXPANDED, and BIOSIS in December 2019 in order to identify relevant trials. Additionally, we searched TRIP, Google Scholar, and nine trial registries in December 2019. We also contacted 11 pharmaceutical companies and searched the reference lists of included trials, previous systematic reviews, and other types of reviews. SELECTION CRITERIA Randomised clinical trials assessing the effects of antibiotics versus placebo or no intervention for secondary prevention of coronary heart disease in adult participants (≥18 years). Trials were included irrespective of setting, blinding, publication status, publication year, language, and reporting of our outcomes. DATA COLLECTION AND ANALYSIS Three review authors independently extracted data. Our primary outcomes were all-cause mortality, serious adverse event according to the International Conference on Harmonization - Good Clinical Practice (ICH-GCP), and quality of life. Our secondary outcomes were cardiovascular mortality, myocardial infarction, stroke, and sudden cardiac death. Our primary time point of interest was at maximum follow-up. Additionally, we extracted outcome data at 24±6 months follow-up. We assessed the risks of systematic errors using Cochrane 'Rosk of bias' tool. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) for dichotomous outcomes. We calculated absolute risk reduction (ARR) or increase (ARI) and number needed to treat for an additional beneficial outcome (NNTB) or for an additional harmful outcome (NNTH) if the outcome result showed a beneficial or harmful effect, respectively. The certainty of the body of evidence was assessed by GRADE. MAIN RESULTS We included 38 trials randomising a total of 26,638 participants (mean age 61.6 years), with 23/38 trials reporting data on 26,078 participants that could be meta-analysed. Three trials were at low risk of bias and the 35 remaining trials were at high risk of bias. Trials assessing the effects of macrolides (28 trials; 22,059 participants) and quinolones (two trials; 4162 participants) contributed with the vast majority of the data. Meta-analyses at maximum follow-up showed that antibiotics versus placebo or no intervention seemed to increase the risk of all-cause mortality (RR 1.06; 95% CI 0.99 to 1.13; P = 0.07; I2 = 0%; ARI 0.48%; NNTH 208; 25,774 participants; 20 trials; high certainty of evidence), stroke (RR 1.14; 95% CI 1.00 to 1.29; P = 0.04; I2 = 0%; ARI 0.73%; NNTH 138; 14,774 participants; 9 trials; high certainty of evidence), and probably also cardiovascular mortality (RR 1.11; 95% CI 0.98 to 1.25; P = 0.11; I2= 0%; 4674 participants; 2 trials; moderate certainty of evidence). Little to no difference was observed when assessing the risk of myocardial infarction (RR 0.95; 95% CI 0.88 to 1.03; P = 0.23; I2 = 0%; 25,523 participants; 17 trials; high certainty of evidence). No evidence of a difference was observed when assessing sudden cardiac death (RR 1.08; 95% CI 0.90 to 1.31; P = 0.41; I2 = 0%; 4520 participants; 2 trials; moderate certainty of evidence). Meta-analyses at 24±6 months follow-up showed that antibiotics versus placebo or no intervention increased the risk of all-cause mortality (RR 1.25; 95% CI 1.06 to 1.48; P = 0.007; I2 = 0%; ARI 1.26%; NNTH 79 (95% CI 335 to 42); 9517 participants; 6 trials; high certainty of evidence), cardiovascular mortality (RR 1.50; 95% CI 1.17 to 1.91; P = 0.001; I2 = 0%; ARI 1.12%; NNTH 89 (95% CI 261 to 49); 9044 participants; 5 trials; high certainty of evidence), and probably also sudden cardiac death (RR 1.77; 95% CI 1.28 to 2.44; P = 0.0005; I2 = 0%; ARI 1.9%; NNTH 53 (95% CI 145 to 28); 4520 participants; 2 trials; moderate certainty of evidence). No evidence of a difference was observed when assessing the risk of myocardial infarction (RR 0.95; 95% CI 0.82 to 1.11; P = 0.53; I2 = 43%; 9457 participants; 5 trials; moderate certainty of evidence) and stroke (RR 1.17; 95% CI 0.90 to 1.52; P = 0.24; I2 = 0%; 9457 participants; 5 trials; high certainty of evidence). Meta-analyses of trials at low risk of bias differed from the overall analyses when assessing cardiovascular mortality at maximum follow-up. For all other outcomes, meta-analyses of trials at low risk of bias did not differ from the overall analyses. None of the trials specifically assessed serious adverse event according to ICH-GCP. No data were found on quality of life. AUTHORS' CONCLUSIONS Our present review indicates that antibiotics (macrolides or quinolones) for secondary prevention of coronary heart disease seem harmful when assessing the risk of all-cause mortality, cardiovascular mortality, and stroke at maximum follow-up and all-cause mortality, cardiovascular mortality, and sudden cardiac death at 24±6 months follow-up. Current evidence does, therefore, not support the clinical use of macrolides and quinolones for the secondary prevention of coronary heart disease. Future trials on the safety of macrolides or quinolones for the secondary prevention in patients with coronary heart disease do not seem ethical. In general, randomised clinical trials assessing the effects of antibiotics, especially macrolides and quinolones, need longer follow-up so that late-occurring adverse events can also be assessed.
Collapse
Affiliation(s)
- Naqash J Sethi
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sanam Safi
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steven Kwasi Korang
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Asbjørn Hróbjartsson
- Centre for Evidence-Based Medicine Odense (CEBMO) and Cochrane Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Maria Skoog
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Clinical Study Support, Clinical Studies Sweden - Forum South, Lund, Sweden
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Sethi NJ, Safi S, Korang SK, Hróbjartsson A, Skoog M, Gluud C, Jakobsen JC. Antibiotics for secondary prevention of coronary heart disease. Hippokratia 2017. [DOI: 10.1002/14651858.cd003610.pub3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Naqash J Sethi
- Department 7812, Rigshospitalet, Copenhagen University Hospital; Copenhagen Trial Unit, Centre for Clinical Intervention Research; Blegdamsvej 9 Copenhagen Denmark 2100
| | - Sanam Safi
- Department 7812, Rigshospitalet, Copenhagen University Hospital; Copenhagen Trial Unit, Centre for Clinical Intervention Research; Blegdamsvej 9 Copenhagen Denmark 2100
| | - Steven Kwasi Korang
- Department 7812, Rigshospitalet, Copenhagen University Hospital; Copenhagen Trial Unit, Centre for Clinical Intervention Research; Blegdamsvej 9 Copenhagen Denmark 2100
| | - Asbjørn Hróbjartsson
- Odense University Hospital and University of Southern Denmark; Center for Evidence-Based Medicine; Sdr. Boulevard 29, Gate 50 (Videncenteret) Odense C Denmark 5000
| | - Maria Skoog
- Barsebäcksvägen 39 Löddeköpinge Sweden 24630
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; The Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Denmark DK-2100
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; The Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Denmark DK-2100
- Holbaek Hospital; Department of Cardiology; Holbaek Denmark 4300
| |
Collapse
|
6
|
Abstract
Infections have been linked to the development of cardiovascular disease and atherosclerosis. Findings from the past decade have identified microbial ecosystems residing in different habitats of the human body that contribute to metabolic and cardiovascular-related disorders. In this Review, we describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based on microbiota.
Collapse
Affiliation(s)
- Annika Lindskog Jonsson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Bruna Stråket 16, 41345 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Bruna Stråket 16, 41345 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| |
Collapse
|
7
|
Bachmaier K, Toya S, Malik AB. Therapeutic administration of the chemokine CXCL1/KC abrogates autoimmune inflammatory heart disease. PLoS One 2014; 9:e89647. [PMID: 24586934 PMCID: PMC3937330 DOI: 10.1371/journal.pone.0089647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
Myocarditis, often due to an aberrant immune response to infection, is a major cause of dilated cardiomyopathy. Microbial pattern recognition receptors, such as TLRs, orchestrate the cytokine and chemokine responses that augment or limit the severity of myocarditis. Using the mouse model of experimental autoimmune myocarditis (EAM), in which disease is induced by immunization with a heart-specific self peptide and the agonist to multiple TLRs, complete Freund's adjuvant, we found that increased serum concentrations of the chemokine CXCL1/KC correlated directly with decreased severity of myocarditis. To directly test whether CXCL1/KC caused the amelioration of myocarditis, we treated mice, after challenge with heart-specific self peptide, with exogenous recombinant CXCL1/KC. We found that the administration of recombinant mouse CXCL1/KC completely abrogated heart inflammatory infiltration and cardiomyocyte damage. Moreover, we show that TLR4 signaling is required to increase serum protein concentrations of CXCL1/KC in EAM, and we demonstrate that the administration of the TLR4 agonist LPS significantly decreased severity and prevalence of EAM and reduced the number of heart-specific self peptide reactive effector T cells. These findings reveal a novel function of CXCL1/KC in the context of organ-specific autoimmune disease that may prove useful for the treatment of inflammatory conditions that underlie human heart disease.
Collapse
Affiliation(s)
- Kurt Bachmaier
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Center for Lung and Vascular Biology, Chicago, Illinois, United States of America
- * E-mail:
| | - Sophie Toya
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Center for Lung and Vascular Biology, Chicago, Illinois, United States of America
| | - Asrar B. Malik
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Center for Lung and Vascular Biology, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Sockett P, Goebel SE, Varela NP, Guthrie A, Wilson J, Guilbault LA, Clark WF. Verotoxigenic Escherichia coli: costs of illness in Canada, including long-term health outcomes. J Food Prot 2014; 77:216-26. [PMID: 24490915 DOI: 10.4315/0362-028x.jfp-13-177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The main objective of this study was to provide cost estimates of human Escherichia coli O157 infection to facilitate future assessment of the benefits and costs of alternative preventive strategies to reduce illness. We investigated the costs of illness to Canadians from primary human infection by verotoxigenic E. coli O157 (also called Shiga toxin-producing E. coli O157) using data from the National Notifiable Diseases Registry. We used relative risk information from peer-reviewed publications to estimate the burden of illness and associated costs for eight long-term health outcomes. National estimates of the number of cases (mean and 5th and 95th percentiles), associated costs, and a rank correlation test to identify which outcomes were associated with the highest per capita costs were calculated. An estimated 22,344 cases of primary infections occur in Canada annually, costing $26.7 million. There are 37,867 additional on-going long-term health outcomes costing $377.2 million each year. Our analysis indicated that the annual cost for primary and long-term illness is $403.9 million. The analysis supports evaluation of alternative control and prevention measures and the development and implementation of policy and practices aimed at safe food production.
Collapse
Affiliation(s)
- P Sockett
- University of Guelph, 50 Stone Road, Guelph, Ontario, Canada N1G 2W1
| | - S E Goebel
- Bioniche Life Sciences, 231 Dundas Street E., Belleville, Ontario, Canada K8N 1E2.
| | - N P Varela
- University of Guelph, 50 Stone Road, Guelph, Ontario, Canada N1G 2W1
| | - A Guthrie
- Novometrix Research, Inc., Moffat, Ontario, Canada L0P 1J0
| | - J Wilson
- Novometrix Research, Inc., Moffat, Ontario, Canada L0P 1J0
| | - L A Guilbault
- BIOptima Consulting, Inc., Saint-Bruno, Québec, Canada J3V 6G8
| | - W F Clark
- London Health Sciences Centre, London, Ontario, Canada N6A 5W9
| |
Collapse
|
9
|
Chui L, Lee MC, Allen R, Bryks A, Haines L, Boras V. Comparison between ImmunoCard STAT!(®) and real-time PCR as screening tools for both O157:H7 and non-O157 Shiga toxin-producing Escherichia coli in Southern Alberta, Canada. Diagn Microbiol Infect Dis 2013; 77:8-13. [PMID: 23810166 DOI: 10.1016/j.diagmicrobio.2013.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 11/16/2022]
Abstract
An increasing number of non-O157 Shiga toxin-producing Escherichia coli (STEC) infections and outbreaks have been reported. In this study, we evaluated the performance of ImmunoCard STAT!(®) (Meridian Bioscience, Inc., Cincinnati, OH, USA) as a method to screen stool specimens for STEC (O157 and non-O157). An in-house real-time PCR method was used as the "gold standard". We also evaluated the prevalence and clinical characteristics of STEC infections in the Alberta South West Zone. From July to November 2011, 819 stool specimens submitted for routine stool culture were tested. With our in-house real-time PCR, 7 O157:H7 and 10 non-O157 STEC isolates were identified for a total of 17 STECs. In comparison, ImmunoCard STAT!(®) identified a total of 6, resulting in a sensitivity and specificity of 35% and 99%, respectively (P < 0.05). Because of the low sensitivity, ImmunoCard STAT!(®) cannot be recommended as a routine screening test for STEC from enriched stool specimens. The rate of STEC positivity as detected by PCR was 2.08%, of which 0.86% was O157:H7 and 1.22% non-O157 STEC. Five of the 7 cases of STEC O157 infection experienced bloody diarrhea, and 1 developed hemolytic uremic syndrome.
Collapse
Affiliation(s)
- Linda Chui
- Alberta Provincial Laboratory for Public Health, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|