2
|
Pham C, Vryer R, O’Hely M, Mansell T, Burgner D, Collier F, Symeonides C, Tang MLK, Vuillermin P, Gray L, Saffery R, Ponsonby AL. Shortened Infant Telomere Length Is Associated with Attention Deficit/Hyperactivity Disorder Symptoms in Children at Age Two Years: A Birth Cohort Study. Int J Mol Sci 2022; 23:ijms23094601. [PMID: 35562991 PMCID: PMC9104809 DOI: 10.3390/ijms23094601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Environmental factors can accelerate telomere length (TL) attrition. Shortened TL is linked to attention deficit/hyperactivity disorder (ADHD) symptoms in school-aged children. The onset of ADHD occurs as early as preschool-age, but the TL-ADHD association in younger children is unknown. We investigated associations between infant TL and ADHD symptoms in children and assessed environmental factors as potential confounders and/or mediators of this association. Relative TL was measured by quantitative polymerase chain reaction in cord and 12-month blood in the birth cohort study, the Barwon Infant Study. Early life environmental factors collected antenatally to two years were used to measure confounding. ADHD symptoms at age two years were evaluated by the Child Behavior Checklist Attention Problems (AP) and the Attention Deficit/Hyperactivity Problems (ADHP). Associations between early life environmental factors on TL or ADHD symptoms were assessed using multivariable regression models adjusted for relevant factors. Telomere length at 12 months (TL12), but not at birth, was inversely associated with AP (β = −0.56; 95% CI (−1.13, 0.006); p = 0.05) and ADHP (β = −0.66; 95% CI (−1.11, −0.21); p = 0.004). Infant secondhand smoke exposure at one month was independently associated with shorter TL12 and also higher ADHD symptoms. Further work is needed to elucidate the mechanisms that influence TL attrition and early neurodevelopment.
Collapse
Affiliation(s)
- Cindy Pham
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3052, Australia
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
| | - Regan Vryer
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin O’Hely
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Toby Mansell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David Burgner
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Fiona Collier
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Christos Symeonides
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mimi L. K. Tang
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Vuillermin
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Lawrence Gray
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Richard Saffery
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3052, Australia
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Correspondence:
| | | |
Collapse
|
3
|
McClean C, Davison GW. Circadian Clocks, Redox Homeostasis, and Exercise: Time to Connect the Dots? Antioxidants (Basel) 2022; 11:antiox11020256. [PMID: 35204138 PMCID: PMC8868136 DOI: 10.3390/antiox11020256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Compelling research has documented how the circadian system is essential for the maintenance of several key biological processes including homeostasis, cardiovascular control, and glucose metabolism. Circadian clock disruptions, or losses of rhythmicity, have been implicated in the development of several diseases, premature ageing, and are regarded as health risks. Redox reactions involving reactive oxygen and nitrogen species (RONS) regulate several physiological functions such as cell signalling and the immune response. However, oxidative stress is associated with the pathological effects of RONS, resulting in a loss of cell signalling and damaging modifications to important molecules such as DNA. Direct connections have been established between circadian rhythms and oxidative stress on the basis that disruptions to circadian rhythms can affect redox biology, and vice versa, in a bi-directional relationship. For instance, the expression and activity of several key antioxidant enzymes (SOD, GPx, and CAT) appear to follow circadian patterns. Consequently, the ability to unravel these interactions has opened an exciting area of redox biology. Exercise exerts numerous benefits to health and, as a potent environmental cue, has the capacity to adjust disrupted circadian systems. In fact, the response to a given exercise stimulus may also exhibit circadian variation. At the same time, the relationship between exercise, RONS, and oxidative stress has also been scrutinised, whereby it is clear that exercise-induced RONS can elicit both helpful and potentially harmful health effects that are dependent on the type, intensity, and duration of exercise. To date, it appears that the emerging interface between circadian rhythmicity and oxidative stress/redox metabolism has not been explored in relation to exercise. This review aims to summarise the evidence supporting the conceptual link between the circadian clock, oxidative stress/redox homeostasis, and exercise stimuli. We believe carefully designed investigations of this nexus are required, which could be harnessed to tackle theories concerned with, for example, the existence of an optimal time to exercise to accrue physiological benefits.
Collapse
|
4
|
Bühring J, Hecker M, Fitzner B, Zettl UK. Systematic Review of Studies on Telomere Length in Patients with Multiple Sclerosis. Aging Dis 2021; 12:1272-1286. [PMID: 34341708 PMCID: PMC8279528 DOI: 10.14336/ad.2021.0106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Telomeres are protective cap structures at the end of chromosomes that are essential for maintaining genomic stability. Accelerated telomere shortening is related to premature cellular senescence. Shortened telomere lengths (TL) have been implicated in the pathogenesis of various chronic immune-mediated and neurological diseases. We aimed to systematically review the current literature on the association of TL as a measure of biological age and multiple sclerosis (MS). A comprehensive literature search was conducted to identify original studies that presented data on TL in samples from persons with MS. Quantitative and qualitative information was extracted from the articles to summarize and compare the studies. A total of 51 articles were screened, and 7 of them were included in this review. In 6 studies, average TL were analyzed in peripheral blood cells, whereas in one study, bone marrow-derived cells were used. Four of the studies reported significantly shorter leukocyte TL in at least one MS subtype in comparison to healthy controls (p=0.003 in meta-analysis). Shorter telomeres in patients with MS were found to be associated, independently of age, with greater disability, lower brain volume, increased relapse rate and more rapid conversion from relapsing to progressive MS. However, it remains unclear how telomere attrition in MS may be linked to oxidative stress, inflammation and age-related disease processes. Despite few studies in this field, there is substantial evidence on the association of TL and MS. Variability in TL appears to reflect heterogeneity in clinical presentation and course. Further investigations in large and well-characterized cohorts are warranted. More detailed studies on TL of individual chromosomes in specific cell types may help to gain new insights into the pathomechanisms of MS.
Collapse
Affiliation(s)
| | - Michael Hecker
- Correspondence should be addressed to: Dr. Michael Hecker, Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany. .
| | - Brit Fitzner
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Uwe Klaus Zettl
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
5
|
Abstract
Objective: Previous research examining telomeres in individuals with neuropsychiatric disorders shows that greater illness, symptoms, or cognitive impairment are linked with shorter telomeres. However, the relationships of telomere length and neuropsychological processes or psychiatric symptoms are not understood in individuals with Attention Deficit/Hyperactivity Disorder (ADHD). Method: 390 young adults with and without ADHD completed a multi-informant diagnostic assessment and neuropsychological testing battery. Participant DNA was isolated from saliva samples, and telomere length was determined using qPCR. Results: Linear regression models demonstrated the only significant association to survive correction for multiple testing was for childhood hyperactivity-impulsivity symptoms and longer telomere length. Conclusion: Contrary to expectations, longer telomere length in young adults was associated only with childhood ADHD symptoms, particularly hyperactivity-impulsivity, in this sample. These findings are an important demonstration that the neuropsychological deficits and symptoms experienced by individuals diagnosed with ADHD during adulthood may not be negatively associated with telomere length.
Collapse
Affiliation(s)
- Allison M. Momany
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA
| | - Stephanie Lussier
- Department of Psychiatry, Carver College of Medicine, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - Molly A. Nikolas
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA
| | - Hanna Stevens
- Department of Psychiatry, Carver College of Medicine, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| |
Collapse
|
6
|
Zhang H, Yuan F, Qi Y, Liu B, Chen Q. Circulating Tumor Cells for Glioma. Front Oncol 2021; 11:607150. [PMID: 33777749 PMCID: PMC7987781 DOI: 10.3389/fonc.2021.607150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy has entered clinical applications for several cancers, including metastatic breast, prostate, and colorectal cancer for CTC enumeration and NSCLC for EGFR mutations in ctDNA, and has improved the individualized treatment of many cancers, but relatively little progress has been made in validating circulating biomarkers for brain malignancies. So far, data on circulating tumor cells about glioma are limited, the application of circulating tumor cells as biomarker for glioma patients has only just begun. This article reviews the research status and application prospects of circulating tumor cells in gliomas. Several detection methods and research results of circulating tumor cells about clinical research in gliomas are briefly discussed. The wide application prospect of circulating tumor cells in glioma deserves further exploration, and the research on more sensitive and convenient detection methods is necessary.
Collapse
Affiliation(s)
- Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Tryfidou DV, McClean C, Nikolaidis MG, Davison GW. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med 2020; 50:103-127. [PMID: 31529301 PMCID: PMC6942015 DOI: 10.1007/s40279-019-01181-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exercise is widely recognised for its health enhancing benefits. Despite this, an overproduction of reactive oxygen and nitrogen species (RONS), outstripping antioxidant defence mechanisms, can lead to a state of (chronic) oxidative stress. DNA is a vulnerable target of RONS attack and, if left unrepaired, DNA damage may cause genetic instability. OBJECTIVE This meta-analysis aimed to systematically investigate and assess the overall effect of studies reporting DNA damage following acute aerobic exercise. METHODS Web of Science, PubMed, MEDLINE, EMBASE, and Scopus were searched until April 2019. Outcomes included (1) multiple time-points (TPs) of measuring DNA damage post-exercise, (2) two different quantification methods (comet assay and 8-oxo-2'-deoxyguanosine; 8-OHdG), and (3) protocols of high intensity (≥ 75% of maximum rate of oxygen consumption; VO2-max) and long distance (≥ 42 km). RESULTS Literature search identified 4316 non-duplicate records of which 35 studies were included in the meta-analysis. The evidence was strong, showcasing an increase in DNA damage immediately following acute aerobic exercise with a large-effect size at TP 0 (0 h) (SMD = 0.875; 95% CI 0.5, 1.25; p < 0.05). When comparing between comet assay and 8-OHdG at TP 0, a significant difference was observed only when using the comet assay. Finally, when isolating protocols of long-distance and high-intensity exercise, increased DNA damage was only observed in the latter. (SMD = 0.48; 95% CI - 0.16, 1.03; p = 0.15 and SMD = 1.18; 95% CI 0.71, 1.65; p < 0.05 respectively). CONCLUSIONS A substantial increase in DNA damage occurs immediately following acute aerobic exercise. This increase remains significant between 2 h and 1 day, but not within 5-28 days post-exercise. Such an increase was not observed in protocols of a long-distance. The relationship between exercise and DNA damage may be explained through the hormesis theory, which is somewhat one-dimensional, and thus limited. The hormesis theory describes how exercise modulates any advantageous or harmful effects mediated through RONS, by increasing DNA oxidation between the two end-points of the curve: physical inactivity and overtraining. We propose a more intricate approach to explain this relationship: a multi-dimensional model, to develop a better understanding of the complexity of the relationship between DNA integrity and exercise.
Collapse
Affiliation(s)
- Despoina V Tryfidou
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK
| | - Conor McClean
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK.
| |
Collapse
|
8
|
Role of miR-155 in drug resistance of breast cancer. Tumour Biol 2015; 36:1395-401. [PMID: 25744731 DOI: 10.1007/s13277-015-3263-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expressions at posttranscriptional level. Growing evidence points to their significant role in the acquisition of drug resistance in cancers. Studies show that miRNAs are often aberrantly expressed in human cancer cells which are associated with tumorigenesis, metastasis, invasiveness, and drug resistance. Breast cancer is the leading cause of cancer-induced death in women. Over the last decades, increasing attention has been paid to the effects of miRNAs on the development of breast cancer drug resistance. Among them, miR-155 takes part in a sequence of bioprocesses that contribute to the development of such drug resistance, including repression of FOXO3a, enhancement of epithelial-to-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK) signaling, reduction of RhoA, and affecting the length of telomeres. In this review, we discuss the role of miR-155 in the acquisition of breast cancer drug resistance. This will provide a new way in antiresistance treatment of drug-resistant breast cancer.
Collapse
|