1
|
Collantoni E, Alberti F, Dahmen B, von Polier G, Konrad K, Herpertz-Dahlmann B, Favaro A, Seitz J. Intra-individual cortical networks in Anorexia Nervosa: Evidence from a longitudinal dataset. EUROPEAN EATING DISORDERS REVIEW 2024; 32:298-309. [PMID: 37876109 DOI: 10.1002/erv.3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE This work investigates cortical thickness (CT) and gyrification patterns in Anorexia Nervosa (AN) before and after short-term weight restoration using graph theory tools. METHODS 38 female adolescents with AN underwent structural magnetic resonance imaging scans at baseline and after - on average - 3.5 months following short-term weight restoration while 53 age-matched healthy controls (HCs) were scanned once. Graph measures were compared between groups and longitudinally within the AN group. Associations with clinical measures such as age of onset, duration of illness, BMI standard deviation score (BMI-SDS), and longitudinal weight changes were tested via stepwise regression. RESULTS Cortical thickness graphs of patients with acute AN displayed lower modularity and small-world index (SWI) than HCs. Modularity recovered after weight gain. Reduced global efficiency and SWI were observed in patients at baseline compared to HCs based on gyrification networks. Significant associations between local clustering of CT at admission and BMI-SDS, and clustering/global efficiency of gyrification and duration of illness emerged. CONCLUSIONS Our results indicate a shift towards less organised CT networks in patients with acute AN. After weight recovery, the disarrangement seems to be partially reduced. However, longer-term follow-ups are needed to determine whether cortical organizational patterns fully return to normal.
Collapse
Affiliation(s)
- Enrico Collantoni
- Department of Neurosciences, University of Padua, Padova, Italy
- Padua Neuroscience Center, University of Padua, Padova, Italy
| | | | - Brigitte Dahmen
- Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
| | - Georg von Polier
- Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
- Child and Adolescent Psychiatry, University Hospital, Frankfurt, Germany
| | - Kerstin Konrad
- Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
- Section Neuropsychology, Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
| | | | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy
- Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Jochen Seitz
- Child and Adolescent Psychiatry, University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
2
|
Wang W, Kang Y, Niu X, Zhang Z, Li S, Gao X, Zhang M, Cheng J, Zhang Y. Connectome-based predictive modeling of smoking severity using individualized structural covariance network in smokers. Front Neurosci 2023; 17:1227422. [PMID: 37547147 PMCID: PMC10400777 DOI: 10.3389/fnins.2023.1227422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Abnormal interactions among distributed brain systems are implicated in the mechanisms of nicotine addiction. However, the relationship between the structural covariance network, a measure of brain connectivity, and smoking severity remains unclear. To fill this gap, this study aimed to investigate the relationship between structural covariance network and smoking severity in smokers. Methods A total of 101 male smokers and 51 male non-smokers were recruited, and they underwent a T1-weighted anatomical image scan. First, an individualized structural covariance network was derived via a jackknife-bias estimation procedure for each participant. Then, a data-driven machine learning method called connectome-based predictive modeling (CPM) was conducted to infer smoking severity measured with Fagerström Test for Nicotine Dependence (FTND) scores using an individualized structural covariance network. The performance of CPM was evaluated using the leave-one-out cross-validation and a permutation testing. Results As a result, CPM identified the smoking severity-related structural covariance network, as indicated by a significant correlation between predicted and actual FTND scores (r = 0.23, permutation p = 0.020). Identified networks comprised of edges mainly located between the subcortical-cerebellum network and networks including the frontoparietal default model and motor and visual networks. Discussion These results identified smoking severity-related structural covariance networks and provided a new insight into the neural underpinnings of smoking severity.
Collapse
|
3
|
van den Heuvel OA, Boedhoe PS, Bertolin S, Bruin WB, Francks C, Ivanov I, Jahanshad N, Kong X, Kwon JS, O'Neill J, Paus T, Patel Y, Piras F, Schmaal L, Soriano‐Mas C, Spalletta G, van Wingen GA, Yun J, Vriend C, Simpson HB, van Rooij D, Hoexter MQ, Hoogman M, Buitelaar JK, Arnold P, Beucke JC, Benedetti F, Bollettini I, Bose A, Brennan BP, De Nadai AS, Fitzgerald K, Gruner P, Grünblatt E, Hirano Y, Huyser C, James A, Koch K, Kvale G, Lazaro L, Lochner C, Marsh R, Mataix‐Cols D, Morgado P, Nakamae T, Nakao T, Narayanaswamy JC, Nurmi E, Pittenger C, Reddy YJ, Sato JR, Soreni N, Stewart SE, Taylor SF, Tolin D, Thomopoulos SI, Veltman DJ, Venkatasubramanian G, Walitza S, Wang Z, Thompson PM, Stein DJ. An overview of the first 5 years of the ENIGMA obsessive-compulsive disorder working group: The power of worldwide collaboration. Hum Brain Mapp 2022; 43:23-36. [PMID: 32154629 PMCID: PMC8675414 DOI: 10.1002/hbm.24972] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 01/12/2023] Open
Abstract
Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA.
Collapse
Affiliation(s)
- Odile A. van den Heuvel
- Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Bergen Center for Brain PlasticityHaukeland University HospitalBergenNorway
| | - Premika S.W. Boedhoe
- Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sara Bertolin
- Department of PsychiatryBellvitge University Hospital, Bellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
| | - Willem B. Bruin
- Department of Psychiatry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Clyde Francks
- Department of Language & GeneticsMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Iliyan Ivanov
- Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Neda Jahanshad
- Keck USC School of MedicineImaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsMarina del ReyCalifornia
| | - Xiang‐Zhen Kong
- Department of Language & GeneticsMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Jun Soo Kwon
- Department of PsychiatrySeoul National University College of MedicineSeoulSouth Korea
- Department of Brain & Cognitive SciencesSeoul National University College of Natural SciencesSeoulSouth Korea
| | - Joseph O'Neill
- Division of Child & Adolescent PsychiatryUCLA Jane & Terry Semel Institute For NeuroscienceLos AngelesCalifornia
| | - Tomas Paus
- Holland Bloorview Kids Rehabilitation HospitalBloorview Research InstituteTorontoOntarioCanada
| | - Yash Patel
- Holland Bloorview Kids Rehabilitation HospitalBloorview Research InstituteTorontoOntarioCanada
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleAustralia
- Centre for Youth Mental Health, The University of MelbourneMelbourneAustralia
| | - Carles Soriano‐Mas
- Department of PsychiatryBellvitge University Hospital, Bellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexsas
| | - Guido A. van Wingen
- Department of Psychiatry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Je‐Yeon Yun
- Seoul National University HospitalSeoulRepublic of Korea
- Yeongeon Student Support Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Chris Vriend
- Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - H. Blair Simpson
- Center for OC and Related Disorders at the New York State Psychiatric Institute and Columbia University Irving Medical CenterNew YorkNew York
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Marcelo Q. Hoexter
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Martine Hoogman
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Paul Arnold
- Mathison Centre for Mental Health Research & Education and Department of PsychiatryCumming School of Medicine, University of CalgaryCalgaryAlbertaCanada
| | - Jan C. Beucke
- Humboldt‐Universität zu BerlinDepartment of PsychologyBerlinGermany
- Karolinska InstitutetDepartment of Clinical NeuroscienceStockholmSweden
| | - Francesco Benedetti
- Department of Psychiatry and Clinical PsychobiologyScientific Institute OspedaleMilanItaly
| | - Irene Bollettini
- Department of Psychiatry and Clinical PsychobiologyScientific Institute OspedaleMilanItaly
| | - Anushree Bose
- Obsessive‐Compulsive Disorder (OCD) Clinic Department of PsychiatryNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | | | | | - Kate Fitzgerald
- Department of PsychiatryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | | | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and PsychotherapyUniversity Hospital of Psychiatry, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Yoshiyuki Hirano
- Research Center for Child Mental DevelopmentChiba UniversityChibaJapan
| | - Chaim Huyser
- De Bascule, academic center child and adolescent psychiatryAmsterdamThe Netherlands
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Kathrin Koch
- Department of Neuroradiology, School of MedicineKlinikum Rechts der Isar, Technical University of MunichMunichGermany
| | - Gerd Kvale
- Bergen Center for Brain PlasticityHaukeland University HospitalBergenNorway
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, IDIBAPS, CIBERSAM, Department of MedicineFaculty of BarcelonaBarcelonaSpain
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityMatielandSouth Africa
| | - Rachel Marsh
- Center for OC and Related Disorders at the New York State Psychiatric Institute and Columbia University Irving Medical CenterNew YorkNew York
| | - David Mataix‐Cols
- Department of Psychiatry and Clinical PsychobiologyScientific Institute OspedaleMilanItaly
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBragaPortugal
- ICVS/3B's, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center–BragaBragaPortugal
| | - Takashi Nakamae
- Department of PsychiatryGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityKyushuJapan
| | - Janardhanan C. Narayanaswamy
- Obsessive‐Compulsive Disorder (OCD) Clinic Department of PsychiatryNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | - Erika Nurmi
- Department of Psychiatry and Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia
| | | | | | - João R. Sato
- Center of Mathematics, Computing and CognitionUniversidade Federal do ABCSanto AndréBrazil
| | - Noam Soreni
- Pediatric OCD Consultation Service, Anxiety Treatment and Research CenterMcMaster UniversityHamiltonOntarioCanada
| | - S. Evelyn Stewart
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Mental Health and Addictions Research InstituteVancouverBritish ColumbiaCanada
- BC Children's HospitalVancouverBritish ColumbiaCanada
| | - Stephan F. Taylor
- Department of PsychiatryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - David Tolin
- Anxiety Disorders Center, The Institute of LivingHartfordConnecticut
| | - Sophia I. Thomopoulos
- Keck USC School of MedicineImaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsMarina del ReyCalifornia
| | - Dick J. Veltman
- Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ganesan Venkatasubramanian
- Obsessive‐Compulsive Disorder (OCD) Clinic Department of PsychiatryNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | - Susanne Walitza
- Department of PsychiatryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong UniversityShanghaiChina
| | - Paul M. Thompson
- Keck USC School of MedicineImaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsMarina del ReyCalifornia
| | - Dan J. Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
4
|
Gao J, Yang X, Chen X, Liu R, Wang P, Meng F, Li Z, Zhou Y. Resting-state functional connectivity of the amygdala subregions in unmedicated patients with obsessive-compulsive disorder before and after cognitive behavioural therapy. J Psychiatry Neurosci 2021; 46:E628-E638. [PMID: 34785511 PMCID: PMC8598242 DOI: 10.1503/jpn.210084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cognitive behavioural therapy (CBT) is considered an effective first-line treatment for obsessive-compulsive disorder (OCD). However, the neural basis of CBT for OCD has not yet been elucidated. The role of the amygdala in OCD and its functional coupling with the cerebral cortex have received increasing attention, and may provide new understanding of the neural basis of CBT for OCD. METHODS We acquired baseline resting-state functional MRI (fMRI) scans from 45 unmedicated patients with OCD and 40 healthy controls; we then acquired another wave of resting-state fMRI scans from the patients with OCD after 12 weeks of CBT. We performed seed-based resting-state functional connectivity analyses of the amygdala subregions to examine changes in patients with OCD as a result of CBT. RESULTS Compared to healthy controls, patients with OCD showed significantly increased resting-state functional connectivity at baseline between the left basolateral amygdala and the right middle frontal gyrus, and between the superficial amygdala and the right cuneus. In patients with OCD who responded to CBT, we found decreased resting-state functional connectivity after CBT between the amygdala subregions and the visual association cortices and increased resting-state functional connectivity between the amygdala subregions and the right inferior parietal lobe. Furthermore, these changes in resting-state functional connectivity were positively associated with changes in scores on the compulsion or obsession subscales of the Yale-Brown Obsessive-Compulsive Scale. LIMITATIONS Because of the lack of a second scan for healthy controls after 12 weeks, our results may have been confounded by other variables. CONCLUSION Our findings yield insights into the pathophysiology of OCD; they also reveal the potential neural changes elicited by CBT, and thus have implications for guiding effective treatment strategies with CBT for OCD.
Collapse
|
5
|
Koch K, Rodriguez-Manrique D, Rus-Oswald OG, Gürsel DA, Berberich G, Kunz M, Zimmer C. Homogeneous grey matter patterns in patients with obsessive-compulsive disorder. NEUROIMAGE-CLINICAL 2021; 31:102727. [PMID: 34146774 PMCID: PMC8220095 DOI: 10.1016/j.nicl.2021.102727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Changes in grey matter volume have frequently been reported in patients with obsessive-compulsive disorder (OCD). Most studies performed whole brain or region-of-interest based analyses whereas grey matter volume based on structural covariance networks has barely been investigated up to now. Therefore, the present study investigated grey matter volume within structural covariance networks in a sample of 228 participants (n = 117 OCD patients, n = 111 healthy controls). METHODS First, an independent component analysis (ICA) was performed on all subjects' preprocessed T1 images to derive covariance-dependent morphometric networks. Then, grey matter volume from each of the ICA-derived morphometric networks was extracted and compared between the groups. In addition, we performed logistic regressions and receiver operating characteristic (ROC) analyses to investigate whether network-related grey matter volume could serve as a characteristic that allows to differentiate patients from healthy volunteers. Moreover, we assessed grey matter pattern organization by correlating grey matter volume in all networks across all participants. Finally, we explored a potential association between grey matter volume or whole-brain grey matter pattern organization and clinical characteristics in terms of symptom severity and duration of illness. RESULTS There were only subtle group differences in network-related grey matter volume. Network-related grey matter volume had moreover a very poor discrimination performance. We found, however, significant group differences with regard to grey matter pattern organization. When correlating grey matter volume in all networks across all participants, patients showed a significantly higher homogeneity across all networks and a significantly lower heterogeneity, as assessed by the coefficient of variation across all networks as well as in several single networks. There was no association with clinical characteristics. CONCLUSION The findings of the present study suggest that the pathological mechanisms of OCD reduce interindividual grey matter variability. We assume that common characteristics associated with the disorder may lead to a more uniform, disorder-specific morphometry.
Collapse
Affiliation(s)
- Kathrin Koch
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Groβhaderner Strasse 2, 82152 Munich, Germany.
| | - Daniela Rodriguez-Manrique
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Groβhaderner Strasse 2, 82152 Munich, Germany
| | | | - Deniz A Gürsel
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy (WINTR), Schützenstr. 100, 86949 Windach, Germany
| | - Miriam Kunz
- Department of Medical Psychology, University of Augsburg, 86156 Augsburg, Germany
| | - Claus Zimmer
- Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| |
Collapse
|
6
|
Chen S, Wang M, Dong H, Wang L, Jiang Y, Hou X, Zhuang Q, Dong GH. Internet gaming disorder impacts gray matter structural covariance organization in the default mode network. J Affect Disord 2021; 288:23-30. [PMID: 33839555 DOI: 10.1016/j.jad.2021.03.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Although previous studies have revealed that dysfunctional brain organization is associated with internet gamingdisorder (IGD), the neuroanatomical basis that underlies IGD remains elusive. In this work, we aimed to investigate gray matter (GM) volume alterations and structural covariance patterns in relation to IGD severity. METHODS Structural magnetic resonance imaging data were acquired from two hundred and thirty young adults encompassing a wide range of IGD severity. Voxel-based morphometry (VBM) analysis was applied to examine GM volume changes associated with IGD severity. Furthermore, the organization of whole-brain structural covariance network (SCN) was analyzed using the regions identified as seeds from VBM analysis. RESULTS Individuals with greater IGD severity had increased GM volumes in the midline components of the default mode network (DMN), namely, the right medial prefrontal cortex (mPFC) and precuneus. More importantly, the SCN results revealed impaired patterns of structural covariance between the DMN-related regions and areas associated with visuospatial attention and reward craving processing as the addiction severity of IGD worsened. LIMITATIONS Only young Chinese adults were enrolled in our study andthe extent to which findings generalize to samples in other age groups and diverse cultures is unclear. CONCLUSIONS These results showed volume expansion of the DMN components and its weakened structural association with visuospatial attention and motivational craving regions with increasing IGD severity. This study deepens our understanding of the underlying neuroanatomical correlates of IGD, which may help to explain why some individuals are more vulnerable to compulsive gaming usage than others.
Collapse
Affiliation(s)
- Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Haohao Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Yuchao Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Hou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qian Zhuang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Martínez-Esparza IC, Olivares-Olivares PJ, Rosa-Alcázar Á, Rosa-Alcázar AI, Storch EA. Executive Functioning and Clinical Variables in Patients with Obsessive-Compulsive Disorder. Brain Sci 2021; 11:brainsci11020267. [PMID: 33672581 PMCID: PMC7924057 DOI: 10.3390/brainsci11020267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Cognitive flexibility, response inhibition, and working memory are considered the main mechanisms responsible for executive control. This study examined differences in cognitive flexibility, inhibition, and working memory in patients with obsessive–compulsive disorder (OCD) relative to a control group. Method: A total of 62 obsessive-compulsive participants (OCD = 32; healthy control = 32) aged between 17 and 56 years old (M = 33.16, SD = 9.23) were administered the computerized Wisconsin Card Sorting Test, Stroop Color–Word Test, Go/No-Go Task, Digit Test, and Corsi Block Test. Clinician-rated and self-reported obsessive–compulsive symptom severity, and anxiety, depression, and obsessive beliefs were evaluated. Results: The control group performed better than the OCD group in tasks involving cognitive flexibility, inhibition, and visuospatial working memory. Anxiety and obsessive beliefs influenced the participants’ performance on inhibition and working memory tasks. Similarly, comorbidity also influenced inhibition and working memory. In addition, the use of pharmacotherapy and the degree of OCD symptom severity influenced verbal working memory. Conclusions: Cognitive flexibility, inhibition, and visuospatial working memory deficits may be endophenotypes of OCD but require further examination for specificity. OCD severity, comorbidity patterns, anxiety, and obsessive beliefs may influence performance.
Collapse
Affiliation(s)
| | - Pablo J. Olivares-Olivares
- Department of Personality, Assessment & Psychological Treatment, University of Murcia, 30100 Murcia, Spain; (I.C.M.-E.); (P.J.O.-O.)
| | - Ángel Rosa-Alcázar
- Department of Psychology, Catholic University of Murcia, 30107 Murcia, Spain;
| | - Ana I. Rosa-Alcázar
- Department of Personality, Assessment & Psychological Treatment, University of Murcia, 30100 Murcia, Spain; (I.C.M.-E.); (P.J.O.-O.)
- Correspondence: ; Tel.: +34-868-883-444; Fax: +34-868-884-111
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
8
|
Sacchi L, Rotondo E, Pozzoli S, Fiorentini A, Schinco G, Mandelli C, Coppola C, Fumagalli GG, Carandini T, Pietroboni AM, Galimberti D, Triulzi F, Marotta G, Scarpini E, Cesari M, Brambilla P, Arighi A. Diogenes syndrome in dementia: a case report. BJPsych Open 2021; 7:e43. [PMID: 33526159 PMCID: PMC8058863 DOI: 10.1192/bjo.2020.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diogenes syndrome is a neurobehavioural syndrome characterised by domestic squalor, hoarding and lack of insight. It is an uncommon but high-mortality condition, often associated with dementia. AIMS To describe the clinical features and treatment of Diogenes syndrome secondary to behavioural variant frontotemporal dementia (bvFTD). METHOD We describe a case of bvFTD in a 77-year-old man presenting with Diogenes syndrome. RESULTS The patient's medical and psychiatric histories were unremarkable, but in recent years he had begun packing his flat with 'art pieces'. Mental state examination revealed confabulation and more structured delusions. Neuropsychological evaluation outlined an impairment in selective attention and letter verbal fluency, but no semantic impairment, in the context of an overall preserved mental functioning. Brain magnetic resonance imaging and positron emission tomography (PET) with fluorodeoxyglucose showed mild bilateral temporo-insular atrophy and hypometabolism in the left-superior temporal gyrus respectively. An amyloid PET scan and genetic analysis covering the dementia spectrum were normal. A diagnosis of bvFTD was made. CONCLUSIONS The clinical framing of behavioural symptoms of dementia such as hoarding poses a diagnostic challenge. This case illustrates the importance of a deeper understanding of Diogenes syndrome, leading to timelier diagnosis and effective therapeutic strategies.
Collapse
Affiliation(s)
- Luca Sacchi
- Dino Ferrari Center, University of Milan, Italy
| | - Emanuela Rotondo
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Pozzoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Fiorentini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppina Schinco
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Clara Mandelli
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carlotta Coppola
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio G Fumagalli
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna M Pietroboni
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; and Dino Ferrari Center, University of Milan, Italy
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Marotta
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; and Dino Ferrari Center, University of Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, University of Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; and Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - Andrea Arighi
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Abstract
OCD has lagged behind other psychiatric illnesses in the identification of molecular treatment targets, due in part to a lack of significant findings in genome-wide association studies. However, while progress in this area is being made, OCD's symptoms of obsessions, compulsions, and anxiety can be deconstructed into distinct neural functions that can be dissected in animal models. Studies in rodents and non-human primates have highlighted the importance of cortico-basal ganglia-thalamic circuits in OCD pathophysiology, and emerging studies in human post-mortem brain tissue point to glutamatergic synapse abnormalities as a potential cellular substrate for observed dysfunctional behaviors. In addition, accumulated evidence points to a potential role for neuromodulators including serotonin and dopamine in both OCD pathology and treatment. Here, we review current efforts to use animal models for the identification of molecules, cell types, and circuits relevant to OCD pathophysiology. We start by describing features of OCD that can be modeled in animals, including circuit abnormalities and genetic findings. We then review different strategies that have been used to study OCD using animal model systems, including transgenic models, circuit manipulations, and dissection of OCD-relevant neural constructs. Finally, we discuss how these findings may ultimately help to develop new treatment strategies for OCD and other related disorders.
Collapse
Affiliation(s)
- Brittany L Chamberlain
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA. .,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Loosen AM, Hauser TU. Towards a computational psychiatry of juvenile obsessive-compulsive disorder. Neurosci Biobehav Rev 2020; 118:631-642. [PMID: 32942176 DOI: 10.1016/j.neubiorev.2020.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 01/22/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) most often emerges during adolescence, but we know little about the aberrant neural and cognitive developmental mechanisms that underlie its emergence during this critical developmental period. To move towards a computational psychiatry of juvenile OCD, we review studies on the computational, neuropsychological and neural alterations in juvenile OCD and link these findings to the adult OCD and cognitive neuroscience literature. We find consistent difficulties in tasks entailing complex decision making and set shifting, but limited evidence in other areas that are altered in adult OCD, such as habit and confidence formation. Based on these findings, we establish a neurocomputational framework that illustrates how cognition can go awry and lead to symptoms of juvenile OCD. We link these possible aberrant neural processes to neuroimaging findings in juvenile OCD and show that juvenile OCD is mainly characterised by disruptions of complex reasoning systems.
Collapse
Affiliation(s)
- Alisa M Loosen
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, United Kingdom.
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, United Kingdom.
| |
Collapse
|
11
|
Simpson HB, van den Heuvel OA, Miguel EC, Reddy YCJ, Stein DJ, Lewis-Fernández R, Shavitt RG, Lochner C, Pouwels PJW, Narayanawamy JC, Venkatasubramanian G, Hezel DM, Vriend C, Batistuzzo MC, Hoexter MQ, de Joode NT, Costa DL, de Mathis MA, Sheshachala K, Narayan M, van Balkom AJLM, Batelaan NM, Venkataram S, Cherian A, Marincowitz C, Pannekoek N, Stovezky YR, Mare K, Liu F, Otaduy MCG, Pastorello B, Rao R, Katechis M, Van Meter P, Wall M. Toward identifying reproducible brain signatures of obsessive-compulsive profiles: rationale and methods for a new global initiative. BMC Psychiatry 2020; 20:68. [PMID: 32059696 PMCID: PMC7023814 DOI: 10.1186/s12888-020-2439-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) has a lifetime prevalence of 2-3% and is a leading cause of global disability. Brain circuit abnormalities in individuals with OCD have been identified, but important knowledge gaps remain. The goal of the new global initiative described in this paper is to identify robust and reproducible brain signatures of measurable behaviors and clinical symptoms that are common in individuals with OCD. A global approach was chosen to accelerate discovery, to increase rigor and transparency, and to ensure generalizability of results. METHODS We will study 250 medication-free adults with OCD, 100 unaffected adult siblings of individuals with OCD, and 250 healthy control subjects at five expert research sites across five countries (Brazil, India, Netherlands, South Africa, and the U.S.). All participants will receive clinical evaluation, neurocognitive assessment, and magnetic resonance imaging (MRI). The imaging will examine multiple brain circuits hypothesized to underlie OCD behaviors, focusing on morphometry (T1-weighted MRI), structural connectivity (Diffusion Tensor Imaging), and functional connectivity (resting-state fMRI). In addition to analyzing each imaging modality separately, we will also use multi-modal fusion with machine learning statistical methods in an attempt to derive imaging signatures that distinguish individuals with OCD from unaffected siblings and healthy controls (Aim #1). Then we will examine how these imaging signatures link to behavioral performance on neurocognitive tasks that probe these same circuits as well as to clinical profiles (Aim #2). Finally, we will explore how specific environmental features (childhood trauma, socioeconomic status, and religiosity) moderate these brain-behavior associations. DISCUSSION Using harmonized methods for data collection and analysis, we will conduct the largest neurocognitive and multimodal-imaging study in medication-free subjects with OCD to date. By recruiting a large, ethno-culturally diverse sample, we will test whether there are robust biosignatures of core OCD features that transcend countries and cultures. If so, future studies can use these brain signatures to reveal trans-diagnostic disease dimensions, chart when these signatures arise during development, and identify treatments that target these circuit abnormalities directly. The long-term goal of this research is to change not only how we conceptualize OCD but also how we diagnose and treat it.
Collapse
Affiliation(s)
- Helen Blair Simpson
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Odile A. van den Heuvel
- grid.12380.380000 0004 1754 9227Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Anatomy and Neuroscience, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Euripedes C. Miguel
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Y. C. Janardhan Reddy
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Roberto Lewis-Fernández
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Roseli Gedanke Shavitt
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Christine Lochner
- grid.11956.3a0000 0001 2214 904XSAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Petra J. W. Pouwels
- grid.12380.380000 0004 1754 9227Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Janardhanan C. Narayanawamy
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Ganesan Venkatasubramanian
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Dianne M. Hezel
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Chris Vriend
- grid.12380.380000 0004 1754 9227Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Anatomy and Neuroscience, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Marcelo C. Batistuzzo
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Marcelo Q. Hoexter
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Niels T. de Joode
- grid.12380.380000 0004 1754 9227Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Anatomy and Neuroscience, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Daniel Lucas Costa
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Maria Alice de Mathis
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Karthik Sheshachala
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Madhuri Narayan
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Anton J. L. M. van Balkom
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health Research Institute, de Boelelaan 1117, Amsterdam, Netherlands ,grid.420193.d0000 0004 0546 0540GGZ inGeest, Specialised Mental Health Care, Amsterdam, The Netherlands
| | - Neeltje M. Batelaan
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health Research Institute, de Boelelaan 1117, Amsterdam, Netherlands ,grid.420193.d0000 0004 0546 0540GGZ inGeest, Specialised Mental Health Care, Amsterdam, The Netherlands
| | - Shivakumar Venkataram
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Anish Cherian
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Clara Marincowitz
- grid.11956.3a0000 0001 2214 904XSAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Nienke Pannekoek
- grid.11956.3a0000 0001 2214 904XSAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Yael R. Stovezky
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Karen Mare
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Feng Liu
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Maria Concepcion Garcia Otaduy
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Bruno Pastorello
- grid.11899.380000 0004 1937 0722Institute of Radiology, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Rashmi Rao
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Martha Katechis
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Page Van Meter
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Melanie Wall
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| |
Collapse
|
12
|
Yun JY, Boedhoe PSW, Vriend C, Jahanshad N, Abe Y, Ameis SH, Anticevic A, Arnold PD, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Bose A, Brem S, Calvo A, Cheng Y, Cho KIK, Ciullo V, Dallaspezia S, Denys D, Feusner JD, Fouche JP, Giménez M, Gruner P, Hibar DP, Hoexter MQ, Hu H, Huyser C, Ikari K, Kathmann N, Kaufmann C, Koch K, Lazaro L, Lochner C, Marques P, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minuzzi L, Morgado P, Moreira P, Nakamae T, Nakao T, Narayanaswamy JC, Nurmi EL, O'Neill J, Piacentini J, Piras F, Piras F, Reddy YCJ, Sato JR, Simpson HB, Soreni N, Soriano-Mas C, Spalletta G, Stevens MC, Szeszko PR, Tolin DF, Venkatasubramanian G, Walitza S, Wang Z, van Wingen GA, Xu J, Xu X, Zhao Q, Thompson PM, Stein DJ, van den Heuvel OA, Kwon JS. Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium. Brain 2020; 143:684-700. [PMID: 32040561 PMCID: PMC7009583 DOI: 10.1093/brain/awaa001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea
- Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Premika S W Boedhoe
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Yoshinari Abe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Stephanie H Ameis
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paul D Arnold
- Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcelo C Batistuzzo
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Jan C Beucke
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Irene Bollettini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Anushree Bose
- Obsessive-Compulsive Disorder (OCD) Clinic Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Anna Calvo
- Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kang Ik K Cho
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Dallaspezia
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Damiaan Denys
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jamie D Feusner
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jean-Paul Fouche
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Mònica Giménez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Patricia Gruner
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Marcelo Q Hoexter
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Hao Hu
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine, PR China
| | - Chaim Huyser
- De Bascule, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | - Keisuke Ikari
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, Japan
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kathrin Koch
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Germany
- TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, Germany
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomèdica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Christine Lochner
- SAMRC Unit on Anxiety and Stress Disorders, Department of Psychiatry, University of Stellenbosch, South Africa
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Rachel Marsh
- Columbia University Medical College, Columbia University, New York, NY, USA
- The New York State Psychiatric Institute, New York, NY, USA
| | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - José M Menchón
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomèdica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - Luciano Minuzzi
- McMaster University, Department of Psychiatry and Behavioural Neurosciences, Hamilton, Ontario, Canada
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal
| | - Pedro Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, Braga, Portugal
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Janardhanan C Narayanaswamy
- Obsessive-Compulsive Disorder (OCD) Clinic Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Erika L Nurmi
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Joseph O'Neill
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Division of Child and Adolescent Psychiatry, University of California, Los Angeles, CA, USA
| | - John Piacentini
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Division of Child and Adolescent Psychiatry, University of California, Los Angeles, CA, USA
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Y C Janardhan Reddy
- Obsessive-Compulsive Disorder (OCD) Clinic Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Joao R Sato
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo Andre, Brazil
| | - H Blair Simpson
- Columbia University Medical College, Columbia University, New York, NY, USA
- Center for OCD and Related Disorders, New York State Psychiatric Institute, New York, NY, USA
| | - Noam Soreni
- Pediatric OCD Consultation Service, Anxiety Treatment and Research Center, St. Joseph's HealthCare, Hamilton, Ontario, Canada
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomèdica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Michael C Stevens
- Yale University School of Medicine, New Haven, Connecticut, USA
- Clinical Neuroscience and Development Laboratory, Olin Neuropsychiatry Research Center, Hartford, Connecticut, USA
| | - Philip R Szeszko
- Icahn School of Medicine at Mount Sinai, New York, USA
- James J. Peters VA Medical Center, Bronx, New York, USA
| | - David F Tolin
- Yale University School of Medicine, New Haven, Connecticut, USA
- Institute of Living/Hartford Hospital, Hartford, Connecticut, USA
| | - Ganesan Venkatasubramanian
- Obsessive-Compulsive Disorder (OCD) Clinic Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Zhen Wang
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine, PR China
- Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Guido A van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jian Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - Qing Zhao
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine, PR China
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| |
Collapse
|
13
|
Kamps S, van den Heuvel OA, van der Werf YD, Berendse HW, Weintraub D, Vriend C. Smaller subcortical volume in Parkinson patients with rapid eye movement sleep behavior disorder. Brain Imaging Behav 2020; 13:1352-1360. [PMID: 30155787 PMCID: PMC6395547 DOI: 10.1007/s11682-018-9939-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson disease (PD) patients with rapid eye movement (REM) sleep behavior disorder (RBD) have worse motor symptoms and non-motor symptoms than patients without RBD. The aim of this study was to examine underlying differences in brain structure from a network perspective. Baseline data were obtained from Parkinson's Progression Markers Initiative (PPMI) participants. We divided PD patients and healthy controls (HC) into RBD positive and RBD negative using a cutoff score of ≥5 on the RBD screening questionnaire. HC with probable RBD were excluded. We first carried out a region-of-interest analysis of structural MRIs using voxel-based morphometry to study volumetric differences for the putamen, thalamus and hippocampus in a cross-sectional design. Additionally, an exploratory whole-brain analysis was performed. To study group differences from a network perspective, we then performed a 'seed-based' analysis of structural covariance, using the bilateral dorsal-caudal putamen, mediodorsal thalamus and anterior hippocampus as seed regions. The volume of the right putamen was smaller in PD patients with RBD. RBD symptom severity correlated negatively with volume of the right putamen, left hippocampus and left thalamus. We did not find any differences in structural covariance between PD patients with and without RBD. Presence of RBD and severity of RBD symptoms in PD are associated with smaller volumes of the putamen, thalamus and hippocampus.
Collapse
Affiliation(s)
- Sanne Kamps
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Anatomy and Neurosciences, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henk W Berendse
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Parkinson's Disease and Mental Illness Research, Education and Clinical Centers (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Chris Vriend
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Department of Anatomy and Neurosciences, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, P.O. Box 705, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Mitchell E, Tavares TP, Palaniyappan L, Finger EC. Hoarding and obsessive-compulsive behaviours in frontotemporal dementia: Clinical and neuroanatomic associations. Cortex 2019; 121:443-453. [PMID: 31715541 DOI: 10.1016/j.cortex.2019.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/25/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hoarding and obsessive-compulsive behaviours (OCB) are well documented symptoms in frontotemporal dementia (FTD). While contemporary models consider hoarding and obsessive-compulsive disorder distinct, the related behaviours have not been separately examined in patients with FTD, and the neuroanatomical correlates of hoarding in patients with FTD have not been previously examined (American Psychiatric Association, 2013; Grisham and Baldwin, 2015; Mataix-Cols et al., 2010). METHODS Patients with FTD who were evaluated between 2004 and 2018 at our centre were included. Cortical thickness and subcortical volumetric analyses were completed on available T1 high resolution anatomic scans using FreeSurfer. RESULTS Eighty-seven patients met inclusion criteria, and 49 had scans available for quantitative MRI volumetric analysis. New hoarding behaviours were present in 29% of patients and were more common in the semantic variant subtype of FTD, while 49% of individuals had new or increased OCB. Hoarding behaviours were associated with decreased thickness in a factor comprised of left temporal, insular and anterior cingulate cortices. The presence of OCB was predicted by reduced cortical thickness and volumes in a factor comprised of the anterior cingulate and subcortical volumes in the bilateral amygdala and hippocampus. OCB were associated with greater right temporal cortical thickness in comparison to patients with hoarding. DISCUSSION The association of the semantic variant with hoarding, together with the observed associations between left temporal atrophy and hoarding indicate that degeneration of the left temporal lobe has a role in the emergence of hoarding in FTD. As in current models of Hoarding disorder and Obsessive-Compulsive disorder, our results suggest that in patients with FTD, hoarding and OCB are clinically and anatomically partially dissociable phenomenon. The results may also help to further elucidate the cognitive processes and neural networks contributing to Hoarding disorder and Obsessive-Compulsive disorder in persons without dementia.
Collapse
Affiliation(s)
- Eric Mitchell
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, Canada
| | - Tamara P Tavares
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, Canada; Robarts Research Institute, Canada; Lawson Health Research Institute, Canada
| | - Elizabeth C Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, Canada; Robarts Research Institute, Canada; Lawson Health Research Institute, Canada; Parkwood Institute, St. Josephs Health Care, Canada.
| |
Collapse
|
15
|
Stein DJ, Costa DLC, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, van den Heuvel OA, Simpson HB. Obsessive-compulsive disorder. Nat Rev Dis Primers 2019; 5:52. [PMID: 31371720 PMCID: PMC7370844 DOI: 10.1038/s41572-019-0102-3] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a highly prevalent and chronic condition that is associated with substantial global disability. OCD is the key example of the 'obsessive-compulsive and related disorders', a group of conditions which are now classified together in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and the International Classification of Diseases, 11th Revision, and which are often underdiagnosed and undertreated. In addition, OCD is an important example of a neuropsychiatric disorder in which rigorous research on phenomenology, psychobiology, pharmacotherapy and psychotherapy has contributed to better recognition, assessment and outcomes. Although OCD is a relatively homogenous disorder with similar symptom dimensions globally, individualized assessment of symptoms, the degree of insight, and the extent of comorbidity is needed. Several neurobiological mechanisms underlying OCD have been identified, including specific brain circuits that underpin OCD. In addition, laboratory models have demonstrated how cellular and molecular dysfunction underpins repetitive stereotyped behaviours, and the genetic architecture of OCD is increasingly understood. Effective treatments for OCD include serotonin reuptake inhibitors and cognitive-behavioural therapy, and neurosurgery for those with intractable symptoms. Integration of global mental health and translational neuroscience approaches could further advance knowledge on OCD and improve clinical outcomes.
Collapse
Affiliation(s)
- Dan J Stein
- Department of Psychiatry, University of Cape Town and SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa.
| | - Daniel L C Costa
- OCD Research Program, Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Christine Lochner
- Department of Psychiatry, Stellenbosch University and SA MRC Unit on Risk & Resilience in Mental Disorders, Stellenbosch, South Africa
| | - Euripedes C Miguel
- OCD Research Program, Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Roseli G Shavitt
- OCD Research Program, Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - H Blair Simpson
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
16
|
Robbins TW, Vaghi MM, Banca P. Obsessive-Compulsive Disorder: Puzzles and Prospects. Neuron 2019; 102:27-47. [PMID: 30946823 DOI: 10.1016/j.neuron.2019.01.046] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 02/02/2023]
Abstract
Obsessive-compulsive disorder is a severe and disabling psychiatric disorder that presents several challenges for neuroscience. Recent advances in its genetic and developmental causation, as well as its neuropsychological basis, are reviewed. Hypotheses concerning an imbalance between goal-directed and habitual behavior together with neural correlates in cortico-striatal circuitry are evaluated and contrasted with metacognitive theories. Treatments for obsessive-compulsive disorder (OCD) tend to be of mixed efficacy but include psychological, pharmacological, and surgical approaches, the underlying mechanisms of which are still under debate. Overall, the prospects for new animal models and an integrated understanding of the pathophysiology of OCD are considered in the context of dimensional psychiatry.
Collapse
Affiliation(s)
- Trevor W Robbins
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Matilde M Vaghi
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Paula Banca
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
17
|
Kubota Y, Sato W, Kochiyama T, Uono S, Yoshimura S, Sawada R, Toichi M. Corticostriatal-limbic correlates of sub-clinical obsessive-compulsive traits. Psychiatry Res Neuroimaging 2019; 285:40-46. [PMID: 30731370 DOI: 10.1016/j.pscychresns.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 11/18/2022]
Abstract
Obsessive-compulsive (OC) traits such as intrusive worrisome ideas or excessive concerns for threats are frequent in general population (5%-13%). However, the structural neural correlates of the sub-clinical OC traits remain largely unknown. Based on the data of obsessive-compulsive disorder (OCD), we hypothesized that the subcortical and cortical structures, constituting the cortico-striatal-thalamo-cortical circuit (CSTC) and the limbic system, could be associated with OC traits. Here we conducted voxel-based morphometry (VBM) in order to investigate fine grained volume changes of these structures in 49 non-clinical subjects. Analysis of structural covariances of these structures was also conducted. We identified volume changes associated with OC traits in the left putamen and the left amygdala. The results of structural covariance analysis revealed increased covariances in relation to the heightened OC traits between the left putamen to bilateral medial prefrontal cortex and to the left cerebellum, and between the left globus pallidus to the bilateral anterior cingulate cortices. The present finding of volume changes of the corticostriatal-limbic structures may reflect neuroplasticity associated with OC traits. Since the abnormality of these structures were also observed in the clinical OCD, the subclinical subjects with OC traits shared "neuronal obsessive traits" that might precondition OCD at the network level.
Collapse
Affiliation(s)
- Yasutaka Kubota
- Health and Medical Services Center, Shiga University, 1-1-1, Baba, Hikone, Shiga 522-8522, Japan.
| | - Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takanori Kochiyama
- ATR Brain Activity Imaging Center, 2-2-2, Hikaridai, Seika-cho, Souraku-gun, Kyoto 619-0288, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Organization for Promotion of Neurodevelopmental Disorder Research, Kyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Organization for Promotion of Neurodevelopmental Disorder Research, Kyoto, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Organization for Promotion of Neurodevelopmental Disorder Research, Kyoto, Japan
| | - Motomi Toichi
- Organization for Promotion of Neurodevelopmental Disorder Research, Kyoto, Japan; Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Oosterwijk CS, Vriend C, Berendse HW, van der Werf YD, van den Heuvel OA. Anxiety in Parkinson's disease is associated with reduced structural covariance of the striatum. J Affect Disord 2018; 240:113-120. [PMID: 30059937 DOI: 10.1016/j.jad.2018.07.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/21/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Anxiety is highly prevalent in Parkinson's disease (PD) and has great negative impact on quality of life. Functional and structural neuroimaging studies have contributed to our understanding of the symptomatology of PD but still little is known about the pathophysiology of PD-related anxiety. METHODS We used seed-based structural covariance analysis to study the anatomical network correlates of anxiety in PD. Structural covariance analysis is based on the statistical correlation between regional brain volumes measured on T1-weighted magnetic resonance images. We investigated the association between anxiety symptoms, as measured by the Beck Anxiety Inventory (BAI), and seed-to-whole-brain structural covariance networks in 115 patients with idiopathic PD using five bilateral seeds: basolateral amygdala, centromedial-superficial amygdala, dorsal caudate nucleus, dorsal-caudal putamen, and nucleus accumbens. RESULTS Severity of anxiety correlated negatively with structural covariance between the left striatal sub-regions and the contralateral caudate nucleus. Moreover, severity of anxiety was associated with reduced structural covariance between the right dorsal caudate nucleus and ipsilateral ventrolateral prefrontal cortex and between the left nucleus accumbens and ipsilateral dorsolateral prefrontal cortex. Structural covariance of the amygdalar seeds did not correlate with anxiety. CONCLUSIONS We interpret these findings as a reduced interhemispheric cooperation between the left and right striatum and reduced prefrontal-striatal connectivity, possibly related to impaired 'top-down' regulation of emotions. These findings shed more light on the pathophysiology of PD-related anxiety LIMITATIONS: This study did not include PD patients with an anxiety disorder.
Collapse
Affiliation(s)
- Caroline S Oosterwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Layer-specific reduced neuronal density in the orbitofrontal cortex of older adults with obsessive–compulsive disorder. Brain Struct Funct 2018; 224:191-203. [DOI: 10.1007/s00429-018-1752-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
|
20
|
Li A, Mu J, Huang M, Zhang Z, Liu J, Zhang M. Altered amygdala-related structural covariance and resting-state functional connectivity in end-stage renal disease patients. Metab Brain Dis 2018; 33:1471-1481. [PMID: 29869149 DOI: 10.1007/s11011-018-0254-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023]
Abstract
Depression and cognitive control deficits were frequently reported in concurrent end-stage renal disease (ESRD) patients. Neuroimaging studies indicated depression could be a risk factor for cognitive control deficits, and amygdala-related circuitry may play a critical role in this abnormal interaction. To investigate the potential relationship between depressive symptoms and cognitive control reduction in ESRD patients, T1-weighted and resting fMRI images were obtained in 29 ESRD patients and 29 healthy controls. Voxel-based morphometry (VBM), structural covariance (SC) analysis based on grey matter volume (GMV), and functional connectivity (FC) analysis were adopted. All subjects performed the Beck Depression Inventory (BDI) assessment and Stroop test. The patients also underwent blood biochemistry tests (urea, creatinine, phosphate, Ca2+, hematocrit, cystatin, hemoglobin). Compared with controls, GMV reductions were found mainly in the anterior cingulate cortex (ACC) and bilateral amygdala, and decreased SC was found between the amygdala and ACC in ESRD patients. This indicated that structural changes in the amygdala may be related to the GMV alterations in the ACC. Additionally, decreased FC between the amygdala and ACC was revealed in ESRD patients. Negative correlation was found between the FC of the amygdala-ACC and reaction delay during the Stroop test, but this correlation disappeared after controlling BDI. Stepwise regression analysis showed that the low level of hemoglobin was contributed to the reduced FC of the amygdala-ACC in ESRD patients. Our results demonstrated the abnormal interaction between depressive mood and cognitive control deficits in ESRD patients.
Collapse
Affiliation(s)
- Anmao Li
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi-Province, People's Republic of China
- Xi'an Children's Hospital, Xi'an, 710061, People's Republic of China
| | - Junya Mu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, People's Republic of China
| | - Mingxia Huang
- Xi'an Children's Hospital, Xi'an, 710061, People's Republic of China
| | - Zengjun Zhang
- Xi'an Children's Hospital, Xi'an, 710061, People's Republic of China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710126, People's Republic of China.
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, People's Republic of China.
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi-Province, People's Republic of China.
| |
Collapse
|
21
|
Liu F, Tian H, Li J, Li S, Zhuo C. Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern. Brain Imaging Behav 2018; 13:493-502. [DOI: 10.1007/s11682-018-9880-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Song W, Cao Z, Lang C, Dai M, Xuan L, Lv K, Cui F, Jorgenson K, Xu M, Kong J. Disrupted functional connectivity of striatal sub-regions in Bell's palsy patients. NEUROIMAGE-CLINICAL 2017; 14:122-129. [PMID: 28180070 PMCID: PMC5279691 DOI: 10.1016/j.nicl.2017.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 01/08/2017] [Indexed: 11/02/2022]
Abstract
The striatum plays an important role in controlling motor function in humans, and its degeneration has the ability to cause severe motor disorders. More specifically, previous studies have demonstrated a disruption in the connectivity of the cortico-striatal loop in patients suffering from motor disorders caused by dopamine dysregulation, such as Parkinson's disease. However, little is known about striatal functional connectivity in patients with motor dysfunction not caused by dopamine dysregulation. In this study, we used early-state Bell's palsy (BP) patients (within 14 days of onset) to investigate how functional connectivity between the striatum and motor cortex is affected by peripheral nerve injury in which the dopamine system remains fully functional. We found a significant increase in the connectivity between the contralateral putamen, and the ipsilateral primary sensory (S1) and motor cortex (M1) in BP patients compared to healthy controls. We also found increased connectivity between the ventral striatum and supplementary motor area (SMA), and the dorsal caudate and medial prefrontal lobe in BP patients compared to healthy controls. Our results demonstrate that the entirety of the striatum is affected following acute peripheral nerve injury, and suggests that this disrupted striatal functional connectivity may reflect a compensatory mechanism for the sensory-motor mismatch caused by BP.
Collapse
Affiliation(s)
- Wenwen Song
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zhijian Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Minhui Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lihua Xuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kun Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangyuan Cui
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Maosheng Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jian Kong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Real E, Subirà M, Alonso P, Segalàs C, Labad J, Orfila C, López-Solà C, Martínez-Zalacaín I, Via E, Cardoner N, Jiménez-Murcia S, Soriano-Mas C, Menchón JM. Brain structural correlates of obsessive-compulsive disorder with and without preceding stressful life events. World J Biol Psychiatry 2016; 17:366-77. [PMID: 26784523 DOI: 10.3109/15622975.2016.1142606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objectives There is growing evidence supporting a role for stressful life events (SLEs) at obsessive-compulsive disorder (OCD) onset, but neurobiological correlates of such effect are not known. We evaluated regional grey matter (GM) changes associated with the presence/absence of SLEs at OCD onset. Methods One hundred and twenty-four OCD patients and 112 healthy controls were recruited. Patients were split into two groups according to the presence (n = 56) or absence (n = 68) of SLEs at disorder's onset. A structural magnetic resonance image was acquired for each participant and pre-processed with Statistical Parametric Mapping software (SPM8) to obtain a volume-modulated GM map. Between-group differences in sociodemographic, clinical and whole-brain regional GM volumes were assessed. Results SLEs were associated with female sex, later age at disorder's onset, more contamination/cleaning and less hoarding symptoms. In comparison with controls, patients without SLEs showed GM volume increases in bilateral dorsal putamen and the central tegmental tract of the brainstem. By contrast, patients with SLEs showed specific GM volume increases in the right anterior cerebellum. Conclusions Our findings support the idea that neuroanatomical alterations of OCD patients partially depend on the presence of SLEs at disorder's onset.
Collapse
Affiliation(s)
- E Real
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Carlos III Health Institute , Spain
| | - M Subirà
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Carlos III Health Institute , Spain ;,c Department of Clinical Sciences, School of Medicine , University of Barcelona , Barcelona , Spain
| | - P Alonso
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Carlos III Health Institute , Spain ;,c Department of Clinical Sciences, School of Medicine , University of Barcelona , Barcelona , Spain
| | - C Segalàs
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Carlos III Health Institute , Spain
| | - J Labad
- d Mental Health Department , Corporació Sanitària Parc Taulí , Sabadell , Spain ;,e Department of Psychiatry and Forensic Medicine , Universitat Autònoma De Barcelona , Barcelona , Spain
| | - C Orfila
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain
| | - C López-Solà
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Carlos III Health Institute , Spain ;,c Department of Clinical Sciences, School of Medicine , University of Barcelona , Barcelona , Spain
| | - I Martínez-Zalacaín
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain
| | - E Via
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,c Department of Clinical Sciences, School of Medicine , University of Barcelona , Barcelona , Spain
| | - N Cardoner
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,d Mental Health Department , Corporació Sanitària Parc Taulí , Sabadell , Spain ;,e Department of Psychiatry and Forensic Medicine , Universitat Autònoma De Barcelona , Barcelona , Spain
| | - S Jiménez-Murcia
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,f Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn) , Carlos III Health Institute , Madrid , Spain
| | - C Soriano-Mas
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Carlos III Health Institute , Spain ;,g Department of Psychobiology and Methodology in Health Sciences , Universitat Autònoma de Barcelona , Barcelona , Spain
| | - J M Menchón
- a Psychiatry Department , Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Spain ;,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Carlos III Health Institute , Spain ;,c Department of Clinical Sciences, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|