1
|
Anand A, Castiglia E, Zamora ML. The Association Between Personal Air Pollution Exposures and Fractional Exhaled Nitric Oxide (FeNO): A Systematic Review. Curr Environ Health Rep 2024; 11:210-224. [PMID: 38386269 PMCID: PMC11180488 DOI: 10.1007/s40572-024-00430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW Airway inflammation is a common biological response to many types of environmental exposures and can lead to increased nitric oxide (NO) concentrations in exhaled breath. In recent years, several studies have evaluated airway inflammation using fractional exhaled nitric oxide (FeNO) as a biomarker of exposures to a range of air pollutants. This systematic review aims to summarize the studies that collected personal-level air pollution data to assess the air pollution-induced FeNO responses and to determine if utilizing personal-level data resulted in an improved characterization of the relationship between air pollution exposures and FeNO compared to using only ambient air pollution exposure data. RECENT FINDINGS Thirty-six eligible studies were identified. Overall, the studies included in this review establish that an increase in personal exposure to particulate and gaseous air pollutants can significantly increase FeNO. Nine out of the 12 studies reported statistically significant FeNO increases with increasing personal PM2.5 exposures, and up to 11.5% increase in FeNO per IQR increase in exposure has also been reported between FeNO and exposure to gas-phase pollutants, such as ozone, NO2, and benzene. Furthermore, factors such as chronic respiratory diseases, allergies, and medication use were found to be effect modifiers for air pollution-induced FeNO responses. About half of the studies that compared the effect estimates using both personal and ambient air pollution exposure methods reported that only personal exposure yielded significant associations with FeNO response. The evidence from the reviewed studies confirms that FeNO is a sensitive biomarker for air pollutant-induced airway inflammation. Personal air pollution exposure assessment is recommended to accurately assess the air pollution-induced FeNO responses. Furthermore, comprehensive adjustments for the potential confounding factors including the personal exposures of the co-pollutants, respiratory disease status, allergy status, and usage of medications for asthma and allergies are recommended while assessing the air pollution-induced FeNO responses.
Collapse
Affiliation(s)
- Abhay Anand
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA
| | - Elliana Castiglia
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA
| | - Misti Levy Zamora
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA.
| |
Collapse
|
2
|
Jung KH, Goodwin KE, Ross JM, Cai J, Chillrud SN, Perzanowski M, Perera FP, Miller RL, Lovinsky-Desir S. Characteristics of peak exposure to black carbon pollution in school, commute and home environments among school children in an urban community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120991. [PMID: 36596374 PMCID: PMC9900622 DOI: 10.1016/j.envpol.2022.120991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Although real-time personal exposure monitoring devices have the ability to capture a wealth of data regarding fluctuations in pollutant levels, only a few studies have defined 'peaks' in black carbon (BC) exposure utilizing high-resolution data. Furthermore, studies to assess and characterize various features of peak exposure are very limited especially among children. A better understanding of characteristics of BC peak exposure would improve our understanding of health risks associated with BC. By capturing personal BC exposure at 5-min intervals using a real-time monitor during 24-hr monitoring periods among children in New York City (NYC), we defined 'peak characteristics' in 4 different ways across three major microenvironments (school vs. commute vs. home): 1) mean concentrations of BC across the 3 microenvironments, 2) 'peak duration' or time spent above the peak threshold (i.e., ≥1.5 μg/m3), 3) 'peak intensity' or the rate of exposure, defined as time spent above the threshold within each microenvironment divided by the total time spent in the microenvironment and 4) a novel metric of 'peak variability', defined as frequency of peaks (i.e., data points with +50% and -50% changes compared to the preceding and the subsequent data points), divided by the total time spent in the microenvironment. While peak duration was greatest at home, the intensity of peak exposure was greatest during commute hours, despite the short time spent in commute (p < 0.05). Peak variability was highest during commute, yet lowest in home environments (p < 0.05), particularly during non-sleeping hours. Children residing in a high-density urban setting spent on average, 5.4 hr per day above our peak threshold (≥1.5 μg/m3) in their everyday environments. Policies that limit children's exposure during high traffic periods and improved efforts to increase the number of vehicles using clean air technology could reduce the intensity of peaks and peak variability in children's BC exposure.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons , 3959 Broadway CHC 7-750, New York, NY 10032, United States
| | - Kathleen E Goodwin
- Columbia University, Vagelos College of Physicians and Sugeons, 630 W. 168th Stree, New York, NY 10032, United States
| | - James M Ross
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9W Palisades, New York, 10964, United States
| | - Jing Cai
- School of Public Health, Fudan University, 130 Dong'An Road, Shanghai, 200032, China
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9W Palisades, New York, 10964, United States
| | - Matthew Perzanowski
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, 722 W. 168 St., New York, NY, 10032, United States
| | - Frederica P Perera
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, 722 W. 168 St., New York, NY, 10032, United States
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, United States
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons , 3959 Broadway CHC 7-750, New York, NY 10032, United States.
| |
Collapse
|
3
|
Jung KH, Goodwin KE, Perzanowski MS, Chillrud SN, Perera FP, Miller RL, Lovinsky-Desir S. Personal Exposure to Black Carbon at School and Levels of Fractional Exhaled Nitric Oxide in New York City. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97005. [PMID: 34495741 PMCID: PMC8425518 DOI: 10.1289/ehp8985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Schools are often located near traffic sources, leading to high levels of exposure to traffic-related air pollutants, including black carbon (BC). Thus, the school environment could play in a significant role in the adverse respiratory health of children. OBJECTIVES Our objective was to determine associations between personal BC levels at school and airway inflammation [i.e., fractional exhaled nitric oxide (FeNO)] in school-age children. We hypothesized that higher school BC (SBC) would be associated with higher FeNO. METHODS Children 9-14 years of age in New York City (NYC) (n=114) wore BC monitors for two 24-h periods over a 6-d sampling period, repeated 6 months later. SBC was defined as the average personal BC concentrations measured during NYC school hours (i.e., 0830-1430 hours). FeNO was measured following each 24-h BC monitoring period. Multivariable linear regression in generalized estimating equation models were used to examine associations between SBC and FeNO. Results are presented as percentage difference (PD) in FeNO. RESULTS Personal BC at school was associated with higher FeNO (PD=7.47% higher FeNO per 1-μg/m3 BC (95% CI: 1.31, 13.9), p=0.02]. Compared with BC exposure during school, a smaller PD in FeNO was observed in association with BC exposure while commuting to and from school [PD=6.82% (95% CI: 0.70, 13.3), p=0.03]. Personal BC in non-school environments and residential BC were not associated with FeNO (p>0.05). A significant association between personal BC at school and FeNO was observed among children with seroatopy who did not have asthma [PD=21.5% (95% CI: 4.81, 40.9), p=0.01]. DISCUSSION Schools may be important sources of BC exposure that contribute to airway inflammation in school-age children. Our results provide rationale for interventions that target improved air quality in urban schools and classrooms. https://doi.org/10.1289/EHP8985.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Kathleen E. Goodwin
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Matthew S. Perzanowski
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, New York, New York, USA
| | - Frederica P. Perera
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Rachel L. Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Chen XC, Cao JJ, Ward TJ, Tian LW, Ning Z, Gali NK, Aquilina NJ, Yim SHL, Qu L, Ho KF. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM 2.5) in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140501. [PMID: 32622166 DOI: 10.1016/j.scitotenv.2020.140501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies have demonstrated significant associations between traffic-related air pollution and adverse health outcomes. Personal exposure to fine particles (PM2.5) in transport microenvironments and their toxicological properties remain to be investigated. Commuter exposures were investigated in public transport systems (including the buses and Mass Transit Railway (MTR)) along two sampling routes in Hong Kong. Real-time sampling for PM2.5 and black carbon (BC), along with integrated PM2.5 sampling, were performed during the warm and cold season of 2016-2017, respectively. Commuter exposure to BC during 3-hour commuting time exhibited a wider range, from 3.4 to 4.6 μg/m3 on the bus and 5.5 to 8.7 μg/m3 in MTR cabin (p < .05). PM2.5 mass and major chemical constituents (including organic carbon (OC), elemental carbon (EC), and metals) were analyzed. Cytotoxicity, including cellular reactive oxygen species (ROS) production, was determined in addition to acellular ROS generation. PM2.5 treatment promoted the ROS generation in a concentration-dependent manner. Consistent diurnal variations were observed for commuter exposure to BC and PM2.5 components, along with cellular and acellular ROS generation, which marked with two peaks during the morning (08:00-11:00) and evening rush hours (17:30-20:30). Commuter exposures in the MTR system were characterized by higher levels of PM2.5 and elemental components (e.g., Ca, Cr, Fe, Zn, Ba) compared to riding the bus, along with higher cellular and acellular ROS production (p < .01). These metals were attributed to different sources: rail tracks, wheels, brakes, and crustal origin. Weak to moderate associations were shown for the analyzed transition metals with PM2.5-induced cell viability and cellular ROS. Multiple linear regression analysis revealed that Ni, Zn, Mn, Fe, Ti, and Co attributed to cytotoxicity and ROS generation. These findings underscore the importance of commuter exposures and their toxic effects, urging effective mitigating strategies to protect human health.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Hong Kong, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Tony J Ward
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Lin-Wei Tian
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Zhi Ning
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Nirmal Kumar Gali
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Noel J Aquilina
- Department of Geosciences, University of Malta, Msida, MSD 2080, Malta
| | - Steve Hung-Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Cheng Sha Wan, Kowloon, Hong Kong, China
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Krall JR, Adibah N, Babin LM, Lee YC, Motti VG, McCombs M, McWilliams A, Thornburg J, Pollack AZ. Estimating exposure to traffic-related PM 2.5 for women commuters using vehicle and personal monitoring. ENVIRONMENTAL RESEARCH 2020; 187:109644. [PMID: 32422483 DOI: 10.1016/j.envres.2020.109644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/13/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Exposure to traffic-related fine particulate matter air pollution (tr-PM2.5) has been associated with adverse health outcomes including preterm birth and low birthweight. In-vehicle exposure to tr-PM2.5 can contribute substantially to total tr-PM2.5 exposure. Because average commuting habits of women differ from men, a research gap is estimating in-vehicle tr-PM2.5 exposures for women commuters. For 46 women commuters in the Washington, D.C. metro area, we measured personal exposure to PM2.5 during all vehicle trips taken in a 48-h sampling period. We also measured 48-h integrated PM2.5 chemical constituents including black carbon and zinc. We identified trip times using vehicle monitors, specifically on-board diagnostics data loggers and dashboard cameras. For 386 trips, we estimated associations between PM2.5 exposure and trip characteristics using linear mixed models accounting for participant, day, and time of day. Additionally, we estimated associations between rush hour trip PM2.5 and 48-h integrated PM2.5 chemical constituents using linear models. Exposure to PM2.5 during trips was 1.9 μg/m3 (95% confidence interval (CI): 0.9, 2.9) higher than non-trip exposures and rush hour trip exposures were 3.2 μg/m3 (95% CI: 1.8, 4.6) higher than non-trip exposures on average. We did not find differences in PM2.5 exposure by trip length. Although concentrations of tr-PM2.5 chemical constituents were generally positively associated with rush hour trip PM2.5, associations were weak indicating that other settings contribute to total tr-PM2.5 exposure. Our study demonstrates the utility of combining vehicle monitors and personal PM2.5 monitors for estimating personal exposure to tr-PM2.5. Future work will investigate whether additional data collected by vehicle monitors, such as traffic and speed, can be leveraged to better understand tr-PM2.5 exposure among commuters.
Collapse
Affiliation(s)
- Jenna R Krall
- Department of Global and Community Health, George Mason University, Fairfax, VA 4400 University Drive, MS 5B7, Fairfax, VA, 22030, United States.
| | - Nada Adibah
- Department of Global and Community Health, George Mason University, Fairfax, VA 4400 University Drive, MS 5B7, Fairfax, VA, 22030, United States
| | - Leah M Babin
- Department of Global and Community Health, George Mason University, Fairfax, VA 4400 University Drive, MS 5B7, Fairfax, VA, 22030, United States
| | - Yi-Ching Lee
- Department of Psychology, George Mason University, Fairfax, VA 4400 University Drive, MS 3F5, Fairfax, VA, 22030, United States
| | - Vivian Genaro Motti
- Department of Information Sciences and Technology, George Mason University, Fairfax, VA 4400 University Drive, MS 1G8, Fairfax, VA, 22030, United States
| | - Michelle McCombs
- RTI International, Research Triangle Park, NC 3040 E. Cornwallis Rd, RTP, NC, 27709, United States
| | - Andrea McWilliams
- RTI International, Research Triangle Park, NC 3040 E. Cornwallis Rd, RTP, NC, 27709, United States
| | - Jonathan Thornburg
- RTI International, Research Triangle Park, NC 3040 E. Cornwallis Rd, RTP, NC, 27709, United States
| | - Anna Z Pollack
- Department of Global and Community Health, George Mason University, Fairfax, VA 4400 University Drive, MS 5B7, Fairfax, VA, 22030, United States
| |
Collapse
|