1
|
Park SY, Ardura MI, Zhang SX. Diagnostic limitations and challenges in current clinical guidelines and potential application of metagenomic sequencing to manage pulmonary invasive fungal infections in patients with haematological malignancies. Clin Microbiol Infect 2024; 30:1139-1146. [PMID: 38460819 DOI: 10.1016/j.cmi.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Pulmonary invasive fungal infections (pIFI) disproportionately affect patients with haematological malignancies (HM). Establishing a rapid and accurate diagnosis of pIFI is challenging. Multiple guidelines recommend diagnostic testing of invasive fungal infections but lack consensus and may contribute to inconsistent diagnostic approaches. OBJECTIVE To identify key diagnostic challenges and review metagenomic sequencing data. SOURCES PubMed, professional consortium, and scientific society websites search to identify relevant, published, evidence-based clinical guidelines within the past 5 years. PubMed searchs for papers describing clinically relevant novel diagnostic technologies. CONTENT Current guidelines for patients with HM and suspected pIFI recommend chest computed tomography imaging and specimen testing with microscopic examination (including calcofluor white stain, histopathology, cytopathology, etc.), Aspergillus galactomannan, β-D-glucan, PCR, and culture, each with certain limitations. Emerging real-world data support the adjunctive use of metagenomic sequencing-based tests for the timely diagnosis of pIFI. IMPLICATIONS High-quality evidence from robust clinical trials is needed to determine whether guidelines should be updated to include novel diagnostic technologies. Trials should ask whether the combination of powerful novel diagnostics, such as pathogen-agnostic metagenomic sequencing technologies in conjunction with conventional testing can optimize the diagnostic yield for all potential pIFI pathogens that impact the health of patients with HM.
Collapse
Affiliation(s)
| | - Monica I Ardura
- Section of Infectious Diseases & Host Defense Program, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sean X Zhang
- Medical Mycology Laboratory, Johns Hopkins Hospital, Baltimore, MD, USA; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Liu C, Zhang L, Zhang J, Wang M, You S, Su R, Qi W. Rational design of antibodies and development of a novel method for (1-3)-β-D glucan detection as an alternative to Limulus amebocyte lysate assay. Front Cell Infect Microbiol 2024; 14:1322264. [PMID: 38328671 PMCID: PMC10847287 DOI: 10.3389/fcimb.2024.1322264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
With advances in medicine, increasing medical interventions have increased the risk of invasive fungal disease development. (1-3)-β-D glucan (BDG) is a common fungal biomarker in serological tests. However, the scarcity of Limulus resources for BDG detection poses a challenge. This study addresses the need for an alternative to Limulus amebocyte lysate by using BDG mutant antibody for chemiluminescence detection. The wild-type BDG antibody was obtained by immunizing rabbits. An optimal V52HI/N34L Y mutant antibody, which has increased 3.7-fold of the testing efficiency compared to the wild-type antibody, was first achieved by mutating "hot-spot" residues that contribute to strong non-covalent bonds, as determined by alanine scanning and molecular dynamics simulation. The mutant was then applied to develop the magnetic particle chemiluminescence method. 574 clinical samples were tested using the developed method, with a cutoff value of 95 pg/mL set by Limulus amebocyte lysate. The receiver operating characteristic curve demonstrated an area under the curve of 0.905 (95% CI: 0.880-0.929). Chemiluminescence detected an antigen concentration of 89.98 pg/mL, exhibiting a sensitivity of 83.33% and specificity of 89.76%. In conclusion, the results showed a good agreement with Limulus amebocyte lysate and demonstrated the feasibility of using BDG mutant antibodies for invasive fungal disease diagnosis. The new method based on chemiluminescence for detecting BDG could shorten the sample-to-result time to approximately 30 min, rescue Limulus from being endangered and is resource efficient in terms of equipment and the non-use of a skilled technician.
Collapse
Affiliation(s)
- Chunlong Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- R&D Department, Dynamiker Biotechnology (Tianjin) Co., Ltd, Tianjin, China
| | - Lin Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mengfan Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
3
|
Hill JA, Park SY, Gajurel K, Taplitz R. A Systematic Literature Review to Identify Diagnostic Gaps in Managing Immunocompromised Patients With Cancer and Suspected Infection. Open Forum Infect Dis 2024; 11:ofad616. [PMID: 38221981 PMCID: PMC10787371 DOI: 10.1093/ofid/ofad616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024] Open
Abstract
Patients with cancer are increasingly vulnerable to infections, which may be more severe than in the general population. Improvements in rapid and timely diagnosis to optimize management are needed. We conducted a systematic literature review to determine the unmet need in diagnosing acute infections in immunocompromised patients with cancer and identified 50 eligible studies from 5188 records between 1 January 2012 and 23 June 2022. There was considerable heterogeneity in study designs and parameters, laboratory methods and definitions, and assessed outcomes, with limited evaluation of diagnostic impact on clinical outcomes. Culture remains the primary diagnostic strategy. Fewer studies employing molecular technologies exist, but emerging literature suggests that pathogen-agnostic molecular tests may add to the diagnostic armamentarium. Well-designed clinical studies using standardized methodologies are needed to better evaluate performance characteristics and clinical and economic impacts of emerging diagnostic techniques to improve patient outcomes.
Collapse
Affiliation(s)
- Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sarah Y Park
- Medical Affairs, Karius, Inc, Redwood City, California, USA
| | - Kiran Gajurel
- Division of Infectious Diseases, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA
| | - Randy Taplitz
- Department of Medicine, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
4
|
Jia H, Liu H, Tu M, Wang Y, Wang X, Li J, Zhang G. Diagnostic efficacy of metagenomic next generation sequencing in bronchoalveolar lavage fluid for proven invasive pulmonary aspergillosis. Front Cell Infect Microbiol 2023; 13:1223576. [PMID: 37692168 PMCID: PMC10484620 DOI: 10.3389/fcimb.2023.1223576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Objective To assess the diagnostic efficacy of metagenomic next generation sequencing (mNGS) for proven invasive pulmonary aspergillosis (IPA). Methods A total of 190 patients including 53 patients who had been diagnosed with proven IPA were retrospectively analyzed. Using the pathological results of tissue biopsy specimens as gold standard, we ploted the receiver operating characteristic (ROC) curve to determine the optimal cut-off value of mNGS species-specific read number (SSRN) of Aspergillus in bronchoalveolar lavage fluid (BALF)for IPA. Furthermore, we evaluated optimal cut-off value of mNGS SSRN in different populations. Results The optimal cut-off value of Aspergillus mNGS SSRN in BALF for IPA diagnosis was 2.5 for the whole suspected IPA population, and 1 and 4.5 for immunocompromised and diabetic patients, respectively. The accuracy of mNGS was 80.5%, 73.7% and 85.3% for the whole population, immunocompromised and diabetic patients, respectively. Conclusions The mNGS in BALF has a high diagnostic efficacy for proven IPA, superioring to Aspergillus culture in sputum and BALF and GM test in blood and BALF. However, the cut-off value of SSRN should be adjusted when in different population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Keri VC, Chandrasekar PH. Polymerase chain reaction in the diagnosis of invasive aspergillosis: approaches for appropriate use. Leuk Lymphoma 2023; 64:1330-1334. [PMID: 37211858 DOI: 10.1080/10428194.2023.2209683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Detection of aspergillus by PCR is a helpful tool for early diagnosis. The test has excellent sensitivity and specificity with a high negative predictive value. Well-accepted, standardized method for DNA extraction for PCR testing is to be adopted for all commercial assays and conclusive validation data are awaited in varied clinical settings. This perspective offers guidance for utilizing PCR testing while awaiting such data. Quantification by PCR, species-specific identification assays and detection of resistance genetic markers are of future promise. Herein, we summarize the available data on aspergillus PCR and describe its potential utility through a clinical case scenario-based approach.
Collapse
Affiliation(s)
- Vishakh C Keri
- Division of Infectious diseases, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
6
|
Ao Z, Xu H, Li M, Liu H, Deng M, Liu Y. Clinical characteristics, diagnosis, outcomes and lung microbiome analysis of invasive pulmonary aspergillosis in the community-acquired pneumonia patients. BMJ Open Respir Res 2023; 10:e001358. [PMID: 36828645 PMCID: PMC9972439 DOI: 10.1136/bmjresp-2022-001358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/06/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Invasive pulmonary aspergillosis (IPA) remains underestimated in patients with community-acquired pneumonia (CAP). This study aims to describe clinical features and outcomes of IPA in CAP patients, assess diagnostic performance of metagenomic next-generation sequencing (mNGS) for IPA and analyse lung microbiome via mNGS data. METHODS This retrospective cohort study included CAP patients from 22 April 2019 to 30 September 2021. Clinical and microbiological data were analysed. Diagnostic performance of mNGS was compared with traditional detection methods. The lung microbiome detected by mNGS was characterised and its association with clinical features was evaluated. MAIN RESULTS IPA was diagnosed in 26 (23.4%) of 111 CAP patients. Patients with IPA displayed depressed immunity, higher hospital mortality (30.8% vs 11.8%) and intensive care unit mortality (42.1% vs 17.5%) compared with patients without IPA. The galactomannan (GM) antigen test had the highest sensitivity (57.7%) in detecting the Aspergillus spp, followed by mNGS (42.3%), culture (30.8%) and smear (7.7%). The mNGS, culture and smear had 100% specificity, while GM test had 92.9% specificity. The microbial structure of IPA significantly differed from non-IPA patients (p<0.001; Wilcoxon test). Nineteen different species were significantly correlated with clinical outcomes and laboratory biomarkers, particularly for Streptococcus salivarius, Prevotella timonensis and Human betaherpesvirus 5. CONCLUSIONS Our results reveal that patients with Aspergillus infection tend to have a higher early mortality rate. The mNGS may be suggested as a complement to routine microbiological test in diagnosis of patients at risk of Aspergillus infection. The lung microbiota is associated with inflammatory, immune and metabolic conditions of IPA, and thus influences clinical outcomes.
Collapse
Affiliation(s)
- Zhi Ao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Xu
- Department of Scientific Affairs, Vision Medicals for Infection Diseases, Guangzhou, China
| | - Mengqi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huifang Liu
- Department of Scientific Affairs, Vision Medicals for Infection Diseases, Guangzhou, China
| | - Min Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuliang Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Chan J, Duong PAT. Imaging of Endemic and Opportunistic Fungal Pulmonary Disease. Semin Roentgenol 2022; 57:53-66. [DOI: 10.1053/j.ro.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/09/2021] [Indexed: 11/11/2022]
|
8
|
Fungal Infection and Prevention in Lung Transplant. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Kennedy CC, Pennington KM, Beam E, Razonable RR. Fungal Infection in Lung Transplantation. Semin Respir Crit Care Med 2021; 42:471-482. [PMID: 34030208 DOI: 10.1055/s-0041-1729173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Invasive fungal infections threaten lung transplant outcomes with high associated morbidity and mortality. Pharmacologic prophylaxis may be key to prevent posttransplant invasive fungal infections, but cost, adverse effects, and absorption issues are barriers to effective prophylaxis. Trends in fungal infection diagnostic strategies utilize molecular diagnostic methodologies to complement traditional histopathology and culture techniques. While lung transplant recipients are susceptible to a variety of fungal pathogens, Candida spp. and Aspergillus spp. infections remain the most common. With emerging resistant organisms and multiple novel antifungal agents in the research pipeline, it is likely that treatment strategies will continue to evolve.
Collapse
Affiliation(s)
- Cassie C Kennedy
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Kelly M Pennington
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Elena Beam
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota.,Division of Infectious Disease, Mayo Clinic, Rochester, Minnesota
| | - Raymund R Razonable
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota.,Division of Infectious Disease, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Pulmonary Manifestations of Immunodeficiency and Immunosuppressive Diseases Other than Human Immunodeficiency Virus. Pediatr Clin North Am 2021; 68:103-130. [PMID: 33228927 DOI: 10.1016/j.pcl.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immune deficiencies may alter normal lung function and protective mechanisms, resulting in a myriad of pulmonary manifestations. Primary immunodeficiencies involve multiple branches of the immune system, and defects may predispose to recurrent upper and lower respiratory infections by common pathogens; opportunistic infections; and autoimmune, inflammatory, and malignant processes that may result in interstitial pneumonias. Secondary immunodeficiencies may result from neoplasms or their treatment, organ transplant and immunosuppression, and from autoimmune diseases and their treatments. Primary and secondary immunodeficiencies and their pulmonary manifestations may be difficult to diagnose and treat. A multidisciplinary approach to evaluation is essential.
Collapse
|
11
|
Emerging Microbiology Diagnostics for Transplant Infections: On the Cusp of a Paradigm Shift. Transplantation 2020; 104:1358-1384. [PMID: 31972701 DOI: 10.1097/tp.0000000000003123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In light of the heightened risk for infection associated with solid organ and hematopoietic stem cell transplantation, rapid and accurate microbiology diagnostics are essential to the practice of transplant clinicians, including infectious diseases specialists. In the last decade, diagnostic microbiology has seen a shift toward culture-independent techniques including single-target and multiplexed molecular testing, mass-spectrometry, and magnetic resonance-based methods which have together greatly expanded the array of pathogens identified, increased processing speed and throughput, allowed for detection of resistance determinants, and ultimately improved the outcomes of infected transplant recipients. More recently, a newer generation of diagnostics with immense potential has emerged, including multiplexed molecular panels directly applicable to blood and blood culture specimens, next-generation metagenomics, and gas chromatography mass spectrometry. Though these methods have some recognized drawbacks, many have already demonstrated improved sensitivity and a positive impact on clinical outcomes in transplant and immunocompromised patients.
Collapse
|
12
|
Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement. J Fungi (Basel) 2020; 6:jof6040216. [PMID: 33050598 PMCID: PMC7712958 DOI: 10.3390/jof6040216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Breakthrough invasive fungal infections (bIFI) cause significant morbidity and mortality. Their diagnosis can be challenging due to reduced sensitivity to conventional culture techniques, serologic tests, and PCR-based assays in patients undergoing antifungal therapy, and their diagnosis can be delayed contributing to poor patient outcomes. In this review, we provide consensus recommendations on behalf of the European Confederation for Medical Mycology (ECMM) for the diagnosis of bIFI caused by invasive yeasts, molds, and endemic mycoses, to guide diagnostic efforts in patients receiving antifungals and support the design of future clinical trials in the field of clinical mycology. The cornerstone of lab-based diagnosis of breakthrough infections for yeast and endemic mycoses remain conventional culture, to accurately identify the causative pathogen and allow for antifungal susceptibility testing. The impact of non-culture-based methods are not well-studied for the definite diagnosis of breakthrough invasive yeast infections. Non-culture-based methods have an important role for the diagnosis of breakthrough invasive mold infections, in particular invasive aspergillosis, and a combination of testing involving conventional culture, antigen-based assays, and PCR-based assays should be considered. Multiple diagnostic modalities, including histopathology, culture, antibody, and/or antigen tests and occasionally PCR-based assays may be required to diagnose breakthrough endemic mycoses. A need exists for diagnostic tests that are effective, simple, cheap, and rapid to enable the diagnosis of bIFI in patients taking antifungals.
Collapse
|