1
|
Jung KH, Argenio KL, Jackson DJ, Miller RL, Perzanowski MS, Rundle AG, Bacharier LB, Busse WW, Cohen RT, Visness CM, Gill MA, Gruchalla RS, Hershey GK, Kado RK, Sherenian MG, Liu AH, Makhija MM, Pillai DK, Rivera-Spoljaric K, Gergen PJ, Altman MC, Sandel MT, Sorkness CA, Kattan M, Lovinsky-Desir S. Home and school pollutant exposure, respiratory outcomes, and influence of historical redlining. J Allergy Clin Immunol 2024; 154:1159-1168. [PMID: 38992473 PMCID: PMC11560541 DOI: 10.1016/j.jaci.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The discriminatory and racist policy of historical redlining in the United States during the 1930s played a role in perpetuating contemporary environmental health disparities. OBJECTIVE Our objectives were to determine associations between home and school pollutant exposure (fine particulate matter [PM2.5], NO2) and respiratory outcomes (Composite Asthma Severity Index, lung function) among school-aged children with asthma and examine whether associations differed between children who resided and/or attended school in historically redlined compared to non-redlined neighborhoods. METHODS Children ages 6 to 17 with moderate-to-severe asthma (N = 240) from 9 US cities were included. Combined home and school exposure to PM2.5 and NO2 was calculated based on geospatially assessed monthly averaged outdoor pollutant concentrations. Repeated measures of Composite Asthma Severity Index and lung function were collected. RESULTS Overall, 37.5% of children resided and/or attended schools in historically redlined neighborhoods. Children in historically redlined neighborhoods had greater exposure to NO2 (median: 15.4 vs 12.1 parts per billion) and closer distance to a highway (median: 0.86 vs 1.23 km), compared to those in non-redlined neighborhoods (P < .01). Overall, PM2.5 was not associated with asthma severity or lung function. However, among children in redlined neighborhoods, higher PM2.5 was associated with worse asthma severity (P < .005). No association was observed between pollutants and lung function or asthma severity among children in non-redlined neighborhoods (P > .005). CONCLUSIONS Our findings highlight the significance of historical redlining and current environmental health disparities among school-aged children with asthma, specifically, the environmental injustice of PM2.5 exposure and its associations with respiratory health.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kira L Argenio
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Daniel J Jackson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tenn
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Robyn T Cohen
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | | | - Michelle A Gill
- Department of Pediatrics, Washington University, St Louis, Mo
| | - Rebecca S Gruchalla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Gurjit K Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rachel K Kado
- Division of Allergy and Immunology, Department of Internal Medicine, Henry Ford Health System, Sterling Heights, Mich
| | - Michael G Sherenian
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew H Liu
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Melanie M Makhija
- Division of Allergy and Immunology, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Dinesh K Pillai
- Division of Pulmonary Medicine, Children's National Medical Center, Washington, DC; Pulmonary Medicine, Pediatric Specialists of Virginia, Fairfax, Va
| | | | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Wash; Immunology Division, Benaroya Research Institute Systems, Seattle, Wash
| | - Megan T Sandel
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | - Christine A Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Meyer Kattan
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY; Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
2
|
Rosser F. Outdoor Air Pollution and Pediatric Respiratory Disease. Clin Chest Med 2024; 45:531-541. [PMID: 39069319 PMCID: PMC11286236 DOI: 10.1016/j.ccm.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Outdoor air pollution is ubiquitous, and no safe level of exposure has been identified for the most common air pollutants such as ozone and particle pollution. Children are uniquely more susceptible to the harms of outdoor air pollution, which can cause and exacerbate respiratory disease. Although challenging to identify the effects of outdoor air pollution on individual patients, understanding the basics of outdoor air pollution is essential for pediatric respiratory health care providers. This review covers basic information regarding outdoor air pollution, unique considerations for children, mechanisms for increased susceptibility, and association with incident and exacerbation of respiratory disease in children.
Collapse
Affiliation(s)
- Franziska Rosser
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
3
|
Lee EY, Park S, Kim YB, Lee M, Lim H, Ross-White A, Janssen I, Spence JC, Tremblay MS. Exploring the Interplay Between Climate Change, 24-Hour Movement Behavior, and Health: A Systematic Review. J Phys Act Health 2024:1-19. [PMID: 39187251 DOI: 10.1123/jpah.2023-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Given the emergence of climate change and health risks, this review examined potential relationships between varying indicators of climate change, movement behaviors (ie, physical activity [PA], sedentary behavior, and sleep), and health. METHODS Seven databases were searched in March 2020, April 2023, and April 2024. To be included, studies must have examined indicators of climate change and at least one of the movement behaviors as either an exposure or a third variable (ie, mediator/moderator), and a measure of health as outcome. Evidence was summarized by the role (mediator/moderator) that either climate change or movement behavior(s) has with health measures. Relationships and directionality of each association, as well as the strength and certainty of evidence were synthesized. RESULTS A total of 79 studies were eligible, representing 6,671,791 participants and 3137 counties from 25 countries (40% low- and middle-income countries). Of 98 observations from 17 studies that examined PA as a mediator, 34.7% indicated that PA mediated the relationship between climate change and health measure such that indicators of adverse climate change were associated with lower PA, and worse health outcome. Of 274 observations made from 46 studies, 28% showed that PA favorably modified the negative association between climate change and health outcome. Evidence was largely lacking and inconclusive for sedentary behavior and sleep, as well as climate change indicators as an intermediatory variable. CONCLUSIONS PA may mitigate the adverse impact of climate change on health. Further evidence is needed to integrate PA into climate change mitigation, adaptation, and resilience strategies.
Collapse
Affiliation(s)
- Eun-Young Lee
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
- Department of Gender Studies, Queen's University, Kingston, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa,ON, Canada
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Seiyeong Park
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Yeong-Bae Kim
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Mikyung Lee
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Heejun Lim
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Amanda Ross-White
- Bracken Health Sciences Library, Queen's University, Kingston, ON, Canada
| | - Ian Janssen
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
- Department of Health Sciences, Queen's University, Kingston, ON, Canada
| | - John C Spence
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Mark S Tremblay
- Children's Hospital of Eastern Ontario Research Institute, Ottawa,ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Jung KH, Goodwin KE, Ross JM, Cai J, Chillrud SN, Perzanowski M, Perera FP, Miller RL, Lovinsky-Desir S. Characteristics of peak exposure to black carbon pollution in school, commute and home environments among school children in an urban community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120991. [PMID: 36596374 PMCID: PMC9900622 DOI: 10.1016/j.envpol.2022.120991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Although real-time personal exposure monitoring devices have the ability to capture a wealth of data regarding fluctuations in pollutant levels, only a few studies have defined 'peaks' in black carbon (BC) exposure utilizing high-resolution data. Furthermore, studies to assess and characterize various features of peak exposure are very limited especially among children. A better understanding of characteristics of BC peak exposure would improve our understanding of health risks associated with BC. By capturing personal BC exposure at 5-min intervals using a real-time monitor during 24-hr monitoring periods among children in New York City (NYC), we defined 'peak characteristics' in 4 different ways across three major microenvironments (school vs. commute vs. home): 1) mean concentrations of BC across the 3 microenvironments, 2) 'peak duration' or time spent above the peak threshold (i.e., ≥1.5 μg/m3), 3) 'peak intensity' or the rate of exposure, defined as time spent above the threshold within each microenvironment divided by the total time spent in the microenvironment and 4) a novel metric of 'peak variability', defined as frequency of peaks (i.e., data points with +50% and -50% changes compared to the preceding and the subsequent data points), divided by the total time spent in the microenvironment. While peak duration was greatest at home, the intensity of peak exposure was greatest during commute hours, despite the short time spent in commute (p < 0.05). Peak variability was highest during commute, yet lowest in home environments (p < 0.05), particularly during non-sleeping hours. Children residing in a high-density urban setting spent on average, 5.4 hr per day above our peak threshold (≥1.5 μg/m3) in their everyday environments. Policies that limit children's exposure during high traffic periods and improved efforts to increase the number of vehicles using clean air technology could reduce the intensity of peaks and peak variability in children's BC exposure.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons , 3959 Broadway CHC 7-750, New York, NY 10032, United States
| | - Kathleen E Goodwin
- Columbia University, Vagelos College of Physicians and Sugeons, 630 W. 168th Stree, New York, NY 10032, United States
| | - James M Ross
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9W Palisades, New York, 10964, United States
| | - Jing Cai
- School of Public Health, Fudan University, 130 Dong'An Road, Shanghai, 200032, China
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9W Palisades, New York, 10964, United States
| | - Matthew Perzanowski
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, 722 W. 168 St., New York, NY, 10032, United States
| | - Frederica P Perera
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, 722 W. 168 St., New York, NY, 10032, United States
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, United States
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons , 3959 Broadway CHC 7-750, New York, NY 10032, United States.
| |
Collapse
|
5
|
Guo L, Wang Y, Yang X, Wang T, Yin J, Zhao L, Lin Y, Dai Y, Hou S, Duan H. Aberrant mitochondrial DNA methylation and declined pulmonary function in a population with polycyclic aromatic hydrocarbon composition in particulate matter. ENVIRONMENTAL RESEARCH 2022; 214:113797. [PMID: 35779619 DOI: 10.1016/j.envres.2022.113797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Air pollution exposure has been found to be associated with epigenetic modification of the mitochondrial genome, which could subsequently induce adverse health outcomes. However, very limited studies exist regarding the association between fine particulate matter (PM2.5) exposure and pulmonary function at the molecular level of mitochondrial epigenetic changes. This study aimed to investigate the association of platelet mitochondrial DNA (mtDNA) methylation with occupational PM2.5 exposure and pulmonary function. First, 768 participants were occupationally exposed to polycyclic aromatic hydrocarbon (PAH)-enriched PM2.5 in a coke-oven plant in East China. The levels of PM2.5, PAH components bound to PM2.5, and urinary PAH metabolites in the workplace environment were measured as an internal dose, respectively. mtDNA methylation was measured by bisulfite pyrosequencing of two genes of ATP synthase (MT-ATP6 and MT-ATP8). Mediation analysis was conducted to evaluate the role of mtDNA methylation in pulmonary alteration induced by PAH. A decreasing trend of platelet mtDNA methylation was observed with increase in PM2.5 exposure across all participants. As an important PAH metabolite in urine, 1-hydroxypyrene (1-OHP) was significantly negatively associated with FEV1/FVC (Forced Expiratory Volume in 1s/Forced Vital Capacity) ratio. The participants with high serum folate levels (≥10 nmol/L) showed positive association between MT-ATP6 methylation and FEV1/FVC ratio. Mediation analysis suggested that MT-ATP6 methylation mediated the significant association of urinary 1-OHP with FEV1/FVC. Our findings suggested the methylation of platelet mitochondrial gene MT-ATP6 and FEV1/FVC to be negatively associated with PM exposure. Platelet mtDNA methylation acted as an intermediary between PAH exposure and lung function decline. The mitochondrial epigenetic regulation in platelets, in response to PM exposure, might be involved in subsequent progress of abnormal pulmonary function.
Collapse
Affiliation(s)
- Liqiong Guo
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueli Yang
- Department of Occupational & Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingjing Yin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Zhao
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yang Lin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
6
|
You Y, Wang D, Liu J, Chen Y, Ma X, Li W. Physical Exercise in the Context of Air Pollution: An Emerging Research Topic. Front Physiol 2022; 13:784705. [PMID: 35295574 PMCID: PMC8918627 DOI: 10.3389/fphys.2022.784705] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Physical exercise (PE) brings physiological benefits to human health; paradoxically, exposure to air pollution (AP) is harmful. Hence, the combined effects of AP and PE are interesting issues worth exploring. The objective of this study is to review literature involved in AP-PE fields to perform a knowledge-map analysis and explore the collaborations, current hotspots, physiological applications, and future perspectives. Herein, cluster, co-citation, and co-occurrence analysis were applied using CiteSpace and VOSviewer software. The results demonstrated that AP-PE domains have been springing up and in rapid growth since the 21st century. Subsequently, active countries and institutions were identified, and the productive institutions were mainly located in USA, China, UK, Spain, and Canada. Developed countries seemed to be the major promoters. Additionally, subject analysis found that environmental science, public health, and sports medicine were the core subjects, and multidimensional communications were forming. Thereafter, a holistic presentation of reference co-citation clusters was conducted to discover the research topics and trace the development focuses. Youth, elite athletes, and rural population were regarded as the noteworthy subjects. Commuter exposure and moderate aerobic exercise represented the common research context and exercise strategy, respectively. Simultaneously, the research hotspots and application fields were elaborated by keyword co-occurrence distribution. It was noted that physiological adaptations including respiratory, cardiovascular, metabolic, and mental health were the major themes; oxidative stress and inflammatory response were the mostly referred mechanisms. Finally, several challenges were proposed, which are beneficial to promote the development of the research field. Molecular mechanisms and specific pathways are still unknown and the equilibrium points and dose-effect relationships remain to be further explored. We are highly confident that this study provides a unique perspective to systematically and comprehensively review the pieces of AP-PE research and its related physiological mechanisms for future investigations.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Dizhi Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jianxiu Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
- *Correspondence: Xindong Ma
| | - Wenkai Li
- China Table Tennis College, Shanghai University of Sport, Shanghai, China
- Wenkai Li
| |
Collapse
|
7
|
Nitrogen Dioxide Pollutant Exposure and Exercise-induced Bronchoconstriction in Urban Childhood Asthma: A Pilot Study. Ann Am Thorac Soc 2022; 19:139-142. [PMID: 34214020 PMCID: PMC8787788 DOI: 10.1513/annalsats.202103-254rl] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
8
|
Reyes-Angel J, Han YY, Forno E, Celedón JC, Rosser FJ. Parental knowledge and usage of air quality in childhood asthma management. Front Pediatr 2022; 10:966372. [PMID: 36440347 PMCID: PMC9687089 DOI: 10.3389/fped.2022.966372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The current United States asthma management guidelines recommend usage of the Air Quality Index (AQI) for outdoor activity modification when air pollution is high. Little is known about parental knowledge and usage of air quality including the AQI in managing childhood asthma. METHODS Forty parents (or legal guardians) of children with persistent asthma completed a questionnaire designed to assess 4 areas related to outdoor air pollution: awareness, perception, behavioral modification, and prior healthcare provider discussion. Descriptive statistics were obtained and Fisher's exact test was used for analysis of behavioral change by selected variables. RESULTS Almost all parents reported awareness of air quality alerts or AQI, however, only 20% checked the AQI on the AirNow app or website. Most parents reported air pollution as a trigger (65%), yet few parents reported behavioral modification of their child's outdoor activity based on the perception of poor air quality (43%) or based on AQI or alerts (40%). Over half of parents reported a healthcare provider had ever discussed air pollution as a trigger, with few parents (23%) reporting recommendations for behavior change. Perception of air pollution as a trigger, healthcare provider discussion and recommendations, and usage of AirNow were associated with increased reported activity change. CONCLUSION Healthcare providers should discuss outdoor air pollution during asthma management in children and should discuss AirNow as a source for AQI information and behavioral recommendations.
Collapse
Affiliation(s)
- Jessica Reyes-Angel
- Department of Pediatrics, Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yueh-Ying Han
- Department of Pediatrics, Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Erick Forno
- Department of Pediatrics, Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C Celedón
- Department of Pediatrics, Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Franziska J Rosser
- Department of Pediatrics, Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Jung KH, Goodwin KE, Perzanowski MS, Chillrud SN, Perera FP, Miller RL, Lovinsky-Desir S. Personal Exposure to Black Carbon at School and Levels of Fractional Exhaled Nitric Oxide in New York City. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97005. [PMID: 34495741 PMCID: PMC8425518 DOI: 10.1289/ehp8985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Schools are often located near traffic sources, leading to high levels of exposure to traffic-related air pollutants, including black carbon (BC). Thus, the school environment could play in a significant role in the adverse respiratory health of children. OBJECTIVES Our objective was to determine associations between personal BC levels at school and airway inflammation [i.e., fractional exhaled nitric oxide (FeNO)] in school-age children. We hypothesized that higher school BC (SBC) would be associated with higher FeNO. METHODS Children 9-14 years of age in New York City (NYC) (n=114) wore BC monitors for two 24-h periods over a 6-d sampling period, repeated 6 months later. SBC was defined as the average personal BC concentrations measured during NYC school hours (i.e., 0830-1430 hours). FeNO was measured following each 24-h BC monitoring period. Multivariable linear regression in generalized estimating equation models were used to examine associations between SBC and FeNO. Results are presented as percentage difference (PD) in FeNO. RESULTS Personal BC at school was associated with higher FeNO (PD=7.47% higher FeNO per 1-μg/m3 BC (95% CI: 1.31, 13.9), p=0.02]. Compared with BC exposure during school, a smaller PD in FeNO was observed in association with BC exposure while commuting to and from school [PD=6.82% (95% CI: 0.70, 13.3), p=0.03]. Personal BC in non-school environments and residential BC were not associated with FeNO (p>0.05). A significant association between personal BC at school and FeNO was observed among children with seroatopy who did not have asthma [PD=21.5% (95% CI: 4.81, 40.9), p=0.01]. DISCUSSION Schools may be important sources of BC exposure that contribute to airway inflammation in school-age children. Our results provide rationale for interventions that target improved air quality in urban schools and classrooms. https://doi.org/10.1289/EHP8985.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Kathleen E. Goodwin
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Matthew S. Perzanowski
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, New York, New York, USA
| | - Frederica P. Perera
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Rachel L. Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|