1
|
Griffiths S, Power L, Breen D. Pulmonary endoscopy - central to an interventional pulmonology program. Expert Rev Respir Med 2024:1-18. [PMID: 39370862 DOI: 10.1080/17476348.2024.2413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Pulmonary endoscopy occupies a central role in Interventional Pulmonology and is frequently the mainstay of diagnosis of respiratory disease, in particular lung malignancy. Older techniques such as rigid bronchoscopy maintain an important role in central airway obstruction. Renewed interest in the peripheral pulmonary nodule is driving major advances in technologies to increase the diagnostic accuracy and advance new potential endoscopic therapeutic options. AREAS COVERED This paper describes the role of pulmonary endoscopy, in particular ultrasound in the diagnosis and staging of lung malignancy. We will explore the recent expansion of ultrasound to include endoscopic ultrasound - bronchoscopy (EUS-B) and combined ultrasound (CUS) techniques. We will discuss in detail the advances in the workup of the peripheral pulmonary nodule.We performed a non-systematic, narrative review of the literature to summarize the evidence regarding the indications, diagnostic yield, and safety of current bronchoscopic sampling techniques. EXPERT OPINION EBUS/EUS-B has revolutionized the diagnosis and staging of thoracic malignancy resulting in more accurate assessment of the mediastinum compared to mediastinoscopy alone, thus reducing the rate of futile thoracotomies. Although major advances in the assessment of the peripheral pulmonary nodule have been made, the role of endoscopy in this area requires further clarification and investigation.
Collapse
Affiliation(s)
- Sally Griffiths
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| | - Lucy Power
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| | - David Breen
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
2
|
Matsumoto Y, Kho SS, Furuse H. Improving diagnostic strategies in bronchoscopy for peripheral pulmonary lesions. Expert Rev Respir Med 2024; 18:581-595. [PMID: 39093300 DOI: 10.1080/17476348.2024.2387089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION In the past two decades, bronchoscopy of peripheral pulmonary lesions (PPLs) has improved its diagnostic yield due to the combination of various instruments and devices. Meanwhile, the application is complex and intertwined. AREAS COVERED This review article outlines strategies in diagnostic bronchoscopy for PPLs. We summarize the utility and evidence of key instruments and devices based on the results of clinical trials. Future perspectives of bronchoscopy for PPLs are also discussed. EXPERT OPINION The accuracy of reaching PPLs by bronchoscopy has improved significantly with the introduction of combined instruments such as navigation, radial endobronchial ultrasound, digital tomosynthesis, and cone-beam computed tomography. It has been accelerated with the advent of approach tools such as newer ultrathin bronchoscopes and robotic-assisted bronchoscopy. In addition, needle aspiration and cryobiopsy provide further diagnostic opportunities beyond forceps biopsy. Rapid on-site evaluation may also play an important role in decision making during the procedures. As a result, the diagnostic yield of bronchoscopy for PPLs has improved to a level comparable to that of transthoracic needle biopsy. The techniques and technologies developed in the diagnosis will be carried over to the next step in the transbronchial treatment of PPLs in the future.
Collapse
Affiliation(s)
- Yuji Matsumoto
- Department of Endoscopy, Respiratory Endoscopy Division/Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Sze Shyang Kho
- Division of Respiratory Medicine, Department of Internal Medicine, Sarawak General Hospital, Kuching, Malaysia
| | - Hideaki Furuse
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Lee B, Hwang HS, Jang SJ, Oh SY, Kim MY, Choi C, Ji W. Optimal approach for diagnosing peripheral lung nodules by combining electromagnetic navigation bronchoscopy and radial probe endobronchial ultrasound. Thorac Cancer 2024; 15:1638-1645. [PMID: 38886915 PMCID: PMC11260552 DOI: 10.1111/1759-7714.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Electromagnetic navigation bronchoscopy (ENB) and radial probe endobronchial ultrasound (RP-EBUS) are essential bronchoscopic procedures for diagnosing peripheral lung lesions. Despite their individual advantages, the optimal circumstances for their combination remain uncertain. METHODS This single-center retrospective study enrolled 473 patients with 529 pulmonary nodules who underwent ENB and/or RP-EBUS biopsies between December 2021 and December 2022. Diagnostic yield was calculated using strict, intermediate, and liberal definitions. In the strict definition, only malignant and specific benign lesions were deemed diagnostic at the time of the index procedure. The intermediate and liberal definitions included additional results from the follow-up period. RESULTS The diagnostic yield of the strict definition was not statistically different among the three groups (ENB/Combination/RP-EBUS 63.8%/64.2%/62.6%, p = 0.944). However, the diagnostic yield was superior in the ENB + RP-EBUS group for nodules with a bronchus type II or III and a solid part <20 mm (odds ratio 1.96, 95% confidence interval 1.09-3.53, p = 0.02). In terms of complications, bleeding was significantly higher in the ENB + RP-EBUS group (ENB/Combination/RP-EBUS 3.7% /6.2/0.6%, p = 0.002), but no major adverse event was observed. CONCLUSION The combination of ENB and RP-EBUS enhanced the diagnostic yield for nodules with bronchus type II or III and solid part <20 mm, despite a slightly elevated risk of bleeding. Careful patient selection based on nodule characteristics is important to benefit from this combined approach.
Collapse
Affiliation(s)
- Bora Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hee Sang Hwang
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Se Jin Jang
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sang Young Oh
- Department of Radiology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Mi Young Kim
- Department of Radiology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Chang‐Min Choi
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of Oncology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Wonjun Ji
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
4
|
Yuan M, Hu Y, Wang L, Yin W, Xiao Y. Diagnostic outcomes of radial endobronchial ultrasound bronchoscopy guided by manual navigation in the evaluation of peripheral pulmonary lesions: An observational study. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13768. [PMID: 38685753 PMCID: PMC11058397 DOI: 10.1111/crj.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS Manual navigation (MN), drawing a bronchoscopic road map simply by looking at the consecutive computed tomography (CT), is feasible and economical. However, scant data about the use of MN in radial endobronchial ultrasound (r-EBUS) bronchoscopy have been documented till now. We aimed to evaluate the diagnostic performance of r-EBUS bronchoscopy guided by MN for diagnosing peripheral pulmonary lesions (PPLs) and to determine clinical factors affecting the diagnostic yield. METHODS We performed a retrospective, cohort study of consecutive patients with PPLs who underwent r-EBUS bronchoscopic biopsy via guidance of MN from May 2020 to June 2021 in our Respiratory Endoscopic Division. The overall diagnostic yield of MN-guided r-EBUS, the factors affecting the yield, and the diagnostic performance for malignancy were evaluated. RESULTS A total of 102 patients (103 lesions) were evaluated. The overall diagnostic yield of MN-guided r-EBUS was 82.0%, and it ranged from 79.6% to 82.5%, assuming the undermined cases were all positive cases (79.6%) or negatives (82.5%). The sensitivity of MN-guided r-EBUS for malignancy was 71.4%, ranging from 68.2% to 71.4%, the specificity was 100%, the positive predictive value was 100%, and the negative predictive value was 67.3%, ranging from 63.8% to 69.0%. The multivariate logistic regression showed that "bronchus sign on CT" was the only predictor of the overall diagnostic yield (odds ratio = 11.5, 95% confidence interval: 1.9-70.9, P = 0.009). CONCLUSIONS MN-guided r-EBUS is feasible in diagnosing PPLs, especially for lesions with bronchus sign on CT.
Collapse
Affiliation(s)
- Mingli Yuan
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Hu
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liangchao Wang
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wen Yin
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Xiao
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Tian S, Li X, Liu J, Wang X, Chen H, Dai Z, Chen Q, Shi H, Li Y, Huang H, Bai C. Radial endobronchial ultrasound - guided bronchoscopy for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis of prospective trials. Heliyon 2024; 10:e29446. [PMID: 38660275 PMCID: PMC11040069 DOI: 10.1016/j.heliyon.2024.e29446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Background The diagnostic yield of radial endobronchial ultrasound (r-EBUS) for the diagnosis of peripheral pulmonary lesions (PPLs) varies between studies and is affected by multiple factors. We aimed to evaluate the efficacy and safety of r-EBUS, and to explore the factors influencing the diagnostic yield of r-EBUS in patients with PPLs. Methods The PubMed, Web of Science, and EMBASE databases were searched to identify relevant studies that used r-EBUS for diagnosing PPLs from the date of inception to Dec 2022. Meta-analysis was conducted using Review Manager 5.4 and Stata 15.1. Results An analysis of 46 studies with a total of 7252 PPLs was performed. The pooled diagnostic yield of r-EBUS was 73.4 % (95 % CI: 69.9%-76.7 %), with significant heterogeneity detected among studies (I2 = 90 %, P < 0.001). Further analysis demonstrated PPLs located in the middle or lower lobe, >2 cm in size, malignant in type, solid in appearance on computerized tomography (CT), present in bronchus sign, the within probe location, and the addition of rapid on-site evaluation (ROSE) were associated with increased diagnostic yield, whereas use of a guide sheath (GS), bronchoscopy type, and a multimodality approach failed to influence the outcome. The pooled incidence rates of overall complications, pneumothorax and moderate and severe bleeding were 3.1 % (95 % CI: 2.1%-4.3 %), 0.4 % (95 % CI: 0.1%-0.7 %) and 1.1 % (95 % CI: 0.5%-2.0 %), respectively. Conclusions r-EBUS has an appreciable diagnostic yield and an excellent safety manifestation when used to deal with PPLs.
Collapse
Affiliation(s)
- Sen Tian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Xiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xinyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zeyu Dai
- Department of Orthopaedic Oncology, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qian Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Cardiothoracic Surgery, No. 904 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Wuxi, China
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yonghua Li
- Department of Respiratory and Critical Care Medicine, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Xu D, Xie F, Zhang J, Chen H, Chen Z, Guan Z, Hou G, Ji C, Li H, Li M, Li W, Li X, Li Y, Lian H, Liao J, Liu D, Luo Z, Ouyang H, Shen Y, Shi Y, Tang C, Wan N, Wang T, Wang H, Wang H, Wang J, Wu X, Xia Y, Xiao K, Xu W, Xu F, Yang H, Yang J, Ye T, Ye X, Yu P, Zhang N, Zhang P, Zhang Q, Zhao Q, Zheng X, Zou J, Chen E, Sun J. Chinese expert consensus on cone-beam CT-guided diagnosis, localization and treatment for pulmonary nodules. Thorac Cancer 2024; 15:582-597. [PMID: 38337087 PMCID: PMC10912555 DOI: 10.1111/1759-7714.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 02/12/2024] Open
Abstract
Cone-beam computed tomography (CBCT) system can provide real-time 3D images and fluoroscopy images of the region of interest during the operation. Some systems can even offer augmented fluoroscopy and puncture guidance. The use of CBCT for interventional pulmonary procedures has grown significantly in recent years, and numerous clinical studies have confirmed the technology's efficacy and safety in the diagnosis, localization, and treatment of pulmonary nodules. In order to optimize and standardize the technical specifications of CBCT and guide its application in clinical practice, the consensus statement has been organized and written in a collaborative effort by the Professional Committee on Interventional Pulmonology of China Association for Promotion of Health Science and Technology.
Collapse
Affiliation(s)
- Dongyang Xu
- Department of Respiratory Endoscopy, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Jisong Zhang
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory DiseaseSir Run Run Shaw Hospital of Zhejiang UniversityHangzhouChina
| | - Hong Chen
- Department of Pulmonary and Critical Care MedicineSecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhongbo Chen
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Zhenbiao Guan
- Department of Respiration, Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship HospitalBeijingChina
| | - Cheng Ji
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haitao Li
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wei Li
- Department of Respiratory DiseaseThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Xuan Li
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yishi Li
- Dept of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hairong Lian
- Department of Respiratory MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Jiangrong Liao
- Department of Respiratory MedicineGuizhou Aerospace HospitalZunyiChina
| | - Dan Liu
- Department of Respiratory and Critical Care MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Zhuang Luo
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Haifeng Ouyang
- Department of Respiratory DiseasesXi'an International Medical CenterXi'anChina
| | - Yongchun Shen
- Department of Respiratory and Critical Care MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Yiwei Shi
- Department of Respiratory and Critical Care MedicineShanxi Medical University Affiliated First HospitalTaiyuanChina
| | - Chunli Tang
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Nansheng Wan
- Department of Respiratory and Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Wang
- Department of Respiratory MedicineLanzhou University Second HospitalLanzhouChina
| | - Huaqi Wang
- Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Juan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xuemei Wu
- Department of Respiratory CentreThe Second Affiliated Hospital of Xiamen Medical CollegeXiamenChina
| | - Yang Xia
- Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Kui Xiao
- Department of Respiratory Medicine, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Fei Xu
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huizhen Yang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junyong Yang
- Department of Respiratory MedicineXinjiang Chest HospitalWulumuqiChina
| | - Taosheng Ye
- Department of TuberculosisThe Third People's Hospital of ShenzhenShenzhenChina
| | - Xianwei Ye
- Department of Pulmonary and Critical Care MedicineGuizhou Provincial People's HospitalGuiyangChina
| | - Pengfei Yu
- Department of Respiratory and Critical Care Medicine, Yantai Yuhuangding HospitalAffiliated with the Medical College of QingdaoYantaiChina
| | - Nan Zhang
- Department of Respiratory Medicine, Emergency General HospitalBeijingChina
| | - Peng Zhang
- Pulmonary Intervention DepartmentAnhui Chest HospitalHefeiChina
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qi Zhao
- Department of Respiratory Medicine, Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Xiaoxuan Zheng
- Department of Respiratory Endoscopy, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | - Jun Zou
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Enguo Chen
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory DiseaseSir Run Run Shaw Hospital of Zhejiang UniversityHangzhouChina
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Respiratory EndoscopyShanghaiChina
| | | |
Collapse
|
7
|
Li Y, Chen W, Xie F, Huang R, Liu X, Xiao Y, Cao L, Hu Y, Ke M, Wu S, Sun J. Novel electromagnetic navigation bronchoscopy system for the diagnosis of peripheral pulmonary nodules: a prospective, multicentre study. Thorax 2023; 78:1197-1205. [PMID: 37734951 PMCID: PMC10715528 DOI: 10.1136/thorax-2022-219664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Traditional electromagnetic navigation bronchoscopy (ENB) is a real-time image-guided system and used with thick bronchoscopes for the diagnosis of peripheral pulmonary nodules (PPNs). A novel ENB that could be used with thin bronchoscopes was developed. This study aimed to evaluate the diagnostic yield and the experience of using this ENB system in a real clinical scenario. METHODS This multicentre study enrolled consecutive patients with PPNs adopting ENB from March 2019 to August 2021. ENB was performed with different bronchoscopes, ancillary techniques and sampling instruments according to the characteristics of the nodule and the judgement of the operator. The primary endpoint was the diagnostic yield. The secondary endpoints included the diagnostic yield of subgroups, procedural details and complication rate. RESULTS In total, 479 patients with 479 nodules were enrolled in this study. The median lesion size was 20.9 (IQR, 15.9-25.9) mm. The overall diagnostic yield was 74.9% (359/479). A thin bronchoscope was used in 96.2% (461/479) nodules. ENB in combination with radial endobronchial ultrasound (rEBUS), a guide sheath (GS) and a thin bronchoscope was the most widely used guided method, producing a diagnostic yield of 74.1% (254/343). The median total procedural time was 1325.0 (IQR, 1014.0-1676.0) s. No severe complications occurred. CONCLUSION This novel ENB system can be used in combination with different bronchoscopes, ancillary techniques and sampling instruments with a high diagnostic yield and safety profile for the diagnosis of PPNs, of which the combination of thin bronchoscope, rEBUS and GS was the most common method in clinical practice. TRIAL REGISTRATION NUMBER NCT03716284.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Wei Chen
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Rui Huang
- Department of Respiratory Centre, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Xiang Liu
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Xiao
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Cao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Hu
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyao Ke
- Department of Respiratory Centre, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Shiman Wu
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| |
Collapse
|
8
|
Chen B, Zheng K, Fang S, Huang K, Chu C, Zhuang J, Lin J, Li S, Yao H, Liu A, Liu G, Lin J, Lin X. B7H3 targeting gold nanocage pH-sensitive conjugates for precise and synergistic chemo-photothermal therapy against NSCLC. J Nanobiotechnology 2023; 21:378. [PMID: 37848956 PMCID: PMC10583352 DOI: 10.1186/s12951-023-02078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The combination of drug delivery with immune checkpoint targeting has been extensively studied in cancer therapy. However, the clinical benefit for patients from this strategy is still limited. B7 homolog 3 protein (B7-H3), also known as CD276 (B7-H3/CD276), is a promising therapeutic target for anti-cancer treatment. It is widely overexpressed on the surface of malignant cells and tumor vasculature, and its overexpression is associated with poor prognosis. Herein, we report B7H3 targeting doxorubicin (Dox)-conjugated gold nanocages (B7H3/Dox@GNCs) with pH-responsive drug release as a selective, precise, and synergistic chemotherapy-photothermal therapy agent against non-small-cell lung cancer (NSCLC). RESULTS In vitro, B7H3/Dox@GNCs exhibited a responsive release of Dox in the tumor acidic microenvironment. We also demonstrated enhanced intracellular uptake, induced cell cycle arrest, and increased apoptosis in B7H3 overexpressing NSCLC cells. In xenograft tumor models, B7H3/Dox@GNCs exhibited tumor tissue targeting and sustained drug release in response to the acidic environment. Wherein they synchronously destroyed B7H3 positive tumor cells, tumor-associated vasculature, and stromal fibroblasts. CONCLUSION This study presents a dual-compartment targeted B7H3 multifunctional gold conjugate system that can precisely control Dox exposure in a spatio-temporal manner without evident toxicity and suggests a general strategy for synergistic therapy against NSCLC.
Collapse
Affiliation(s)
- Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Kaifan Zheng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shubin Fang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, 350122, China
| | - Kangping Huang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Junyang Zhuang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jin Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shaoguang Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Hong Yao
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ailin Liu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, 350122, China.
- The Department of Otolaryngology, Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, 55404, USA.
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
9
|
Steinfort DP, Evison M, Witt A, Tsaknis G, Kheir F, Manners D, Madan K, Sidhu C, Fantin A, Korevaar DA, Van Der Heijden EHFM. Proposed quality indicators and recommended standard reporting items in performance of EBUS bronchoscopy: An official World Association for Bronchology and Interventional Pulmonology Expert Panel consensus statement. Respirology 2023; 28:722-743. [PMID: 37463832 DOI: 10.1111/resp.14549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Since their introduction, both linear and radial endobronchial ultrasound (EBUS) have become an integral component of the practice of Pulmonology and Thoracic Oncology. The quality of health care can be measured by comparing the performance of an individual or a health service with an ideal threshold or benchmark. The taskforce sought to evaluate quality indicators in EBUS bronchoscopy based on clinical relevance/importance and on the basis that observed significant variation in outcomes indicates potential for improvement in health care outcomes. METHODS A comprehensive literature review informed the composition of a comprehensive list of candidate quality indicators in EBUS. A multiple-round modified Delphi consensus process was subsequently performed with the aim of reaching consensus over a final list of quality indicators and performance targets for these indicators. Standard reporting items were developed, with a strong preference for items where evidence demonstrates a relationship with quality indicator outcomes. RESULTS Twelve quality Indicators are proposed, with performance targets supported by evidence from the literature. Standardized reporting items for both radial and linear EBUS are recommended, with evidence supporting their utility in assessing procedural outcomes presented. CONCLUSION This statement is intended to provide a framework for individual proceduralists to assess the quality of EBUS they provide their patients through the identification of clinically relevant, feasible quality measures. Emphasis is placed on outcome measures, with a preference for consistent terminology to allow communication and benchmarking between centres.
Collapse
Affiliation(s)
- Daniel P Steinfort
- Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Matthew Evison
- Lung Cancer & Thoracic Surgery Directorate, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ashleigh Witt
- Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Victoria, Australia
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Georgios Tsaknis
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- Department of Respiratory Medicine, Kettering General Hospital, UK
| | - Fayez Kheir
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Manners
- St John of God Midland Public and Private Hospitals, Midland, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Calvin Sidhu
- School of Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Alberto Fantin
- Department of Pulmonology, University Hospital of Udine (ASUFC), Udine, Italy
| | - Daniel A Korevaar
- Department of Respiratory Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Hu Z, Tian S, Wang X, Wang Q, Gao L, Shi Y, Li X, Tang Y, Zhang W, Dong Y, Bai C, Huang H. Predictive value of the resistance of the probe to pass through the lesion in the diagnosis of peripheral pulmonary lesions using radial probe endobronchial ultrasound with a guide sheath. Front Oncol 2023; 13:1168870. [PMID: 37588089 PMCID: PMC10425773 DOI: 10.3389/fonc.2023.1168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
Background Transbronchial lung biopsy guided by radial probe endobronchial ultrasonography with a guide sheath (EBUS-GS-TBLB) is becoming a significant approach for diagnosing peripheral pulmonary lesions (PPLs). We aimed to explore the clinical value of the resistance of the probe to pass through the lesion in the diagnosis of PPLs when performing EBUS-GS-TBLB, and to determine the optimum number of EBUS-GS-TBLB. Methods We performed a prospective, single-center study of 126 consecutive patients who underwent EBUS-GS-TBLB for solid and positive-bronchus-sign PPLs where the probe was located within the lesion from September 2019 to May 2022. The classification of probe resistance for each lesion was carried out by two bronchoscopists independently, and the final result depended on the bronchoscopist responsible for the procedures. The primary endpoint was the diagnostic yield according with the resistance pattern. The secondary endpoints were the optimum number of EBUS-GS-TBLB and factors affecting diagnostic yield. Procedural complications were also recorded. Results The total diagnostic yield of EBUS-GS-TBLB was 77.8%, including 83.8% malignant and 67.4% benign diseases (P=0.033). Probe resistance type II displayed the highest diagnostic yield (87.5%), followed by type III (81.0%) and type I (61.1%). A significant difference between the diagnostic yield of malignant and benign diseases was detected in type II (P = 0.008), whereas others did not. Although most of the malignant PPLs with a definitive diagnosis using EBUS-GS-TBLB in type II or type III could be diagnosed in the first biopsy, the fourth biopsy contributed the most sufficient biopsy samples. In contrast, considerably limited tissue specimens could be obtained for each biopsy in type I. The inter-observer agreement of the two blinded bronchoscopists for the classification of probe resistance was excellent (κ = 0.84). Conclusion The probe resistance is a useful predictive factor for successful EBUS-GS-TBLB diagnosis of solid and positive-bronchus-sign PPLs where the probe was located within the lesion. Four serial biopsies are appropriate for both probe resistance type II and type III, and additional diagnostic procedures are needed for type I.
Collapse
Affiliation(s)
- Zhenli Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Sen Tian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Xiangqi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qin Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuxuan Shi
- Department of Nephrology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, China
| | - Yilian Tang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Takashima Y, Oki M. Endobronchial ultrasound with a guide sheath during bronchoscopy for peripheral pulmonary lesions. Expert Rev Respir Med 2023; 17:929-936. [PMID: 37953606 DOI: 10.1080/17476348.2023.2278605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Radial probe endobronchial ultrasound (rEBUS) improves the diagnostic yield of peripheral pulmonary lesions (PPLs). A notable methodological limitation of rEBUS is that it does not provide real-time images during transbronchial biopsy (TBB) procedures. To overcome this limitation, a guide sheath (GS) method was developed. AREAS COVERED This review covers the procedures and complications of rEBUS-guided TBB with a GS (EGS method). We also present the data from key randomized controlled trials (RCTs) of the EGS method and summarize the usefulness of combining the EGS method with various techniques. Finally, we discuss in which situations EGS should be used. EXPERT OPINION A large RCT showed that the diagnostic yield of the EGS method for PPLs was significantly higher than that of rEBUS-guided TBB without a GS (non-GS method). However, since the EGS and non-GS methods each have their own advantages and disadvantages, they should be considered complementary and used flexibly in different cases. In some cases, a combination of the two may be an option. The appropriate combination of EGS with various techniques may enhance the diagnostic yield of PPLs and help prevent complications. The choice should be based on the location and texture of the target lesion, as well as operator skill, resource availability, safety, and accuracy.
Collapse
Affiliation(s)
- Yuta Takashima
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahide Oki
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
12
|
Zheng X, Zhong C, Xie F, Li S, Wang G, Zhang L, Sun J. Virtual bronchoscopic navigation and endobronchial ultrasound with a guide sheath without fluoroscopy for diagnosing peripheral pulmonary lesions with a bronchus leading to or adjacent to the lesion: A randomized non‐inferiority trial. Respirology 2022; 28:389-398. [PMID: 36356596 DOI: 10.1111/resp.14405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Transbronchial sampling of peripheral pulmonary lesions (PPLs) is routinely performed under fluoroscopy. However, advanced ancillary techniques have become available, such as virtual bronchoscopic navigation (VBN) and radial endobronchial ultrasound with a guide sheath (rEBUS-GS). This study was performed to determine whether the diagnostic utility of VBN and rEBUS with a GS is similar with or without fluoroscopy. METHODS This multicenter non-inferiority trial randomized patients to a VBN-rEBUS-GS with or without fluoroscopy group at three centres. The primary endpoint was the diagnostic yield. The secondary endpoints were the time for rEBUS, GS, and the total operation. Complications were also recorded. RESULTS Four hundred and ninety-six subjects were assessed and 426 subjects were included in the analysis (212 in non-fluoroscopy-guided-group and 214 in fluoroscopy-guided-group). The diagnostic yield in the non-fluoroscopy-guided-group (84.0%) was not inferior to that in the fluoroscopy-guided-group (84.6%), with a diagnostic difference of -0.6% (95% CI: -6.4%, 5.2%). Multivariable analysis confirmed that bronchus sign and lesion nature were valuable diagnostic predictors in non-fluoroscopy-guided-group. The non-fluoroscopy-guided-group had shorter rEBUS, GS, and total operation time. No severe complications occurred in either group. CONCLUSION Transbronchial diagnosis of PPLs suspicious of malignancy and presence of a bronchus leading to or adjacent to lesions using VBN-rEBUS-GS without fluoroscopy is a safe and effective method that is non-inferior to VBN-rEBUS-GS with fluoroscopy. Bronchus leading to lesions and malignant nature are associated with high diagnostic yield in VBN-rEBUS-GS without fluoroscopy for the diagnosis of PPLs.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Department of Respiratory Endoscopy and Department of Respiratory and Critical Care Medicine Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Respiratory Endoscopy Shanghai China
| | - Changhao Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Fangfang Xie
- Department of Respiratory Endoscopy and Department of Respiratory and Critical Care Medicine Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Respiratory Endoscopy Shanghai China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Guiqi Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lei Zhang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy and Department of Respiratory and Critical Care Medicine Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Respiratory Endoscopy Shanghai China
| |
Collapse
|