1
|
Berezhkovskii AM, Makarov DE. On distributions of barrier crossing times as observed in single-molecule studies of biomolecules. BIOPHYSICAL REPORTS 2021; 1:100029. [PMID: 36425456 PMCID: PMC9680812 DOI: 10.1016/j.bpr.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule experiments that monitor time evolution of molecular observables in real time have expanded beyond measuring transition rates toward measuring distributions of times of various molecular events. Of particular interest is the first-passage time for making a transition from one molecular configuration ( a ) to another ( b ) and conditional first-passage times such as the transition path time, which is the first-passage time from a to b conditional upon not leaving the transition region intervening between a and b . Another experimentally accessible (but not yet studied experimentally) observable is the conditional exit time, i.e., the time to leave the transition region through a specified boundary. The distributions of such times contain a wealth of mechanistic information about the transitions in question. Here, we use the first and the second (and, if desired, higher) moments of these distributions to characterize their relative width for the model in which the experimental observable undergoes Brownian motion in a potential of mean force. We show that although the distributions of transition path times are always narrower than exponential (in that the ratio of the standard deviation to the distribution's mean is always less than 1), distributions of first-passage times and of conditional exit times can be either narrow or broad, in some cases displaying long power-law tails. The conditional exit time studied here provides a generalization of the transition path time that also allows one to characterize the temporal scales of failed barrier crossing attempts.
Collapse
Affiliation(s)
- Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Dmitrii E. Makarov
- Department of Chemistry and Biochemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
2
|
Scheerer D, Chi H, McElheny D, Keiderling TA, Hauser K. Enhanced Sensitivity to Local Dynamics in Peptides by Use of Temperature-Jump IR Spectroscopy and Isotope Labeling. Chemistry 2020; 26:3524-3534. [PMID: 31782580 PMCID: PMC7155074 DOI: 10.1002/chem.201904497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/12/2022]
Abstract
Site-specific isotopic labeling of molecules is a widely used approach in IR spectroscopy to resolve local contributions to vibrational modes. The induced frequency shift of the corresponding IR band depends on the substituted masses, as well as on hydrogen bonding and vibrational coupling. The impact of these different factors was analyzed with a designed three-stranded β-sheet peptide and by use of selected 13 C isotope substitutions at multiple positions in the peptide backbone. Single-strand labels give rise to isotopically shifted bands at different frequencies, depending on the specific sites; this demonstrates sensitivity to the local environment. Cross-strand double- and triple-labeled peptides exhibited two resolved bands that could be uniquely assigned to specific residues, the equilibrium IR spectra of which indicated only weak local-mode coupling. Temperature-jump IR laser spectroscopy was applied to monitor structural dynamics and revealed an impressive enhancement of the isotope sensitivity to both local positions and coupling between them, relative to that of equilibrium FTIR spectroscopy. Site-specific relaxation rates were altered upon the introduction of additional cross-strand isotopes. Likewise, the rates for the global β-sheet dynamics were affected in a manner dependent on the distinct relaxation behavior of the labeled oscillator. This study reveals that isotope labels provide not only local structural probes, but rather sense the dynamic complexity of the molecular environment.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Heng Chi
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.,Jiangsu Food and Pharmaceutical Science College, Huai'an, P.R. China
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
3
|
Scheerer D, Chi H, McElheny D, Keiderling TA, Hauser K. Isotopically Site-Selected Dynamics of a Three-Stranded β-Sheet Peptide Detected with Temperature-Jump Infrared-Spectroscopy. J Phys Chem B 2018; 122:10445-10454. [PMID: 30372071 DOI: 10.1021/acs.jpcb.8b08336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infrared detected temperature-jump (T-jump) spectroscopy and site-specific isotopic labeling were applied to study a model three-stranded β-sheet peptide with the goal of individually probing the dynamics of strand and turn structural elements. This peptide had two DPro-Gly (pG) turn sequences to stabilize the two component hairpins, which were labeled with 13C═O on each of the Gly residues to resolve them spectroscopically. Labeling the second turn on the amide preceding the DPro (Xxx-DPro amide) provided an alternate turn label as a control. Placing 13C═O labels on specific in-strand residues gave shifted modes that overlap the Xxx-DPro amide I' modes. Their impact could be separated from the turn dynamics by a novel difference transient analysis approach. Fourier-transform infrared spectra were modeled with density functional theory-computations which showed the local, isotope-selected vibrations were effectively uncoupled from the other amide I modes. Our T-jump dynamics results, combined with nuclear magnetic resonance structures and equilibrium spectral measurements, showed the first turn to be most stable and best formed with the slowest dynamics, whereas the second turn and first strand (N-terminus) had similar dynamics, and the third strand (C-terminus) had the fastest dynamics and was the least structured. The relative dynamics of the strands, Xxx-DPro amides, and 13C-labeled Gly residues on the turns also qualitatively corresponded to molecular dynamics (MD) simulations of turn and strand fluctuations. MD trajectories indicated the turns to be bistable, with the first turn being Type I' and the second turn flipping from I' to II'. The differences in relaxation times for each turn and the separate strands revealed that the folding process of this turn-stabilized β-sheet structure proceeds in a multistep process.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany
| | - Heng Chi
- Department of Chemistry , University of Illinois at Chicago , 60607-7061 Chicago , Illinois , United States.,Jiangsu Food and Pharmaceutical Science College , 223003 Huai'an , China
| | - Dan McElheny
- Department of Chemistry , University of Illinois at Chicago , 60607-7061 Chicago , Illinois , United States
| | - Timothy A Keiderling
- Department of Chemistry , University of Illinois at Chicago , 60607-7061 Chicago , Illinois , United States
| | - Karin Hauser
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany
| |
Collapse
|
4
|
Das A, Makarov DE. Dynamics of Disordered Proteins under Confinement: Memory Effects and Internal Friction. J Phys Chem B 2018; 122:9049-9060. [PMID: 30092636 DOI: 10.1021/acs.jpcb.8b06112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many proteins are disordered under physiological conditions. How efficiently they can search for their cellular targets and how fast they can fold upon target binding is determined by their intrinsic dynamics, which have thus attracted much recent attention. Experiments and molecular simulations show that the inherent reconfiguration timescale for unfolded proteins has a solvent friction component and an internal friction component, and the microscopic origin of the latter, along with its proper mathematical description, has been a topic of considerable debate. Internal friction varies across different proteins of comparable length and increases with decreasing denaturant concentration, showing that it depends on how compact the protein is. Here we report on a systematic atomistic simulation study of how confinement, which induces a more compact unfolded state, affects dynamics and friction in disordered peptides. We find that the average reconfiguration timescales increase exponentially as the peptide's spatial dimensions are reduced; at the same time, confinement broadens the spectrum of relaxation timescales exhibited by the peptide. There are two important implications of this broadening: First, it limits applicability of the common Rouse and Zimm models with internal friction, as those models attempt to capture internal friction effects by introducing a single internal friction timescale. Second, the long-tailed distribution of relaxation times leads to anomalous diffusion effects in the dynamics of intramolecular distances. Analysis and interpretation of experimental signals from various measurements that probe intramolecular protein dynamics (such as single-molecule fluorescence correlation spectroscopy and single-molecule force spectroscopy) rely on the assumption of diffusive dynamics along the distances being probed; hence, our results suggest the need for more general models allowing for anomalous diffusion effects.
Collapse
Affiliation(s)
- Atanu Das
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Dmitrii E Makarov
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States.,Institute for Computational Engineering and Sciences , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
5
|
Scheerer D, Chi H, McElheny D, Samer A, Keiderling TA, Hauser K. Role of Aromatic Cross-Links in Structure and Dynamics of Model Three-Stranded β-Sheet Peptides. J Phys Chem A 2018; 122:543-553. [DOI: 10.1021/acs.jpca.7b10190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Scheerer
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Heng Chi
- Department
of Chemistry, University of Illinois at Chicago, Chicago, Illinois United States
- Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Dan McElheny
- Department
of Chemistry, University of Illinois at Chicago, Chicago, Illinois United States
| | - Ayesha Samer
- Department
of Chemistry, University of Illinois at Chicago, Chicago, Illinois United States
| | - Timothy A. Keiderling
- Department
of Chemistry, University of Illinois at Chicago, Chicago, Illinois United States
| | - Karin Hauser
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Orevi T, Rahamim G, Amir D, Kathuria S, Bilsel O, Matthews CR, Haas E. Sequential Closure of Loop Structures Forms the Folding Nucleus during the Refolding Transition of the Escherichia coli Adenylate Kinase Molecule. Biochemistry 2015; 55:79-91. [DOI: 10.1021/acs.biochem.5b00849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tomer Orevi
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Gil Rahamim
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Dan Amir
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Sagar Kathuria
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Osman Bilsel
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - C. Robert Matthews
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Elisha Haas
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| |
Collapse
|
7
|
Acharya S, Saha S, Ahmad B, Lapidus LJ. Effects of Mutations on the Reconfiguration Rate of α-Synuclein. J Phys Chem B 2015; 119:15443-50. [PMID: 26572968 DOI: 10.1021/acs.jpcb.5b10136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is still poorly understood why α-synuclein, the intrinsically disordered protein involved in Parkinson's and other neurodegenerative diseases, is so prone to aggregation. Recent work has shown a correlation between the aggregation rate and the rate of diffusional reconfiguration by varying temperature and pH. Here we examine the effects of several point mutations in the sequence on the conformational ensemble and reconfiguration rate. We find that at lower temperatures the PD causing aggregation enhancing mutations slow down and aggregation reducing mutations drastically speed up intramolecular diffusion, as compared to the wild type sequence. However, at higher temperatures, one of three familial mutations that enhance aggregation slows intramolecular diffusion while non-natural mutations that inhibit aggregation speed up intramolecular diffusion. These results support the hypothesis that the first step of aggregation is kinetically controlled by reconfiguration in which the protein chain cannot reconfigure rapidly enough to escape oligomerization. Finally we provide physical and chemical insights into why small point mutations cause these dramatic changes in the conformational ensemble and dynamics.
Collapse
Affiliation(s)
- Srabasti Acharya
- Department of Physics and Astronomy, and ‡Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Shreya Saha
- Department of Physics and Astronomy, and ‡Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Basir Ahmad
- Department of Physics and Astronomy, and ‡Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Lisa J Lapidus
- Department of Physics and Astronomy, and ‡Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Donten ML, Hassan S, Popp A, Halter J, Hauser K, Hamm P. pH-jump induced leucine zipper folding beyond the diffusion limit. J Phys Chem B 2015; 119:1425-32. [PMID: 25536860 DOI: 10.1021/jp511539c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The folding of a pH-sensitive leucine zipper, that is, a GCN4 mutant containing eight glutamic acid residues, has been investigated. A pH-jump induced by a caged proton (o-nitrobenzaldehyde, oNBA) is employed to initiate the process, and time-resolved IR spectroscopy of the amide I band is used to probe it. The experiment has been carefully designed to minimize the buffer capacity of the sample solution so that a large pH jump can be achieved, leading to a transition from a completely unfolded to a completely folded state with a single laser shot. In order to eliminate the otherwise rate-limiting diffusion-controlled step of the association of two peptides, they have been covalently linked. The results for the folding kinetics of the cross-linked peptide are compared with those of an unlinked peptide, which reveals a detailed picture of the folding mechanism. That is, folding occurs in two steps, one on an ∼1-2 μs time scale leading to a partially folded α-helix even in the monomeric case and a second one leading to the final coiled-coil structure on distinctively different time scales of ∼30 μs for the cross-linked peptide and ∼200 μs for the unlinked peptide. By varying the initial pH, it is found that the folding mechanism is consistent with a thermodynamic two-state model, despite the fact that a transient intermediate is observed in the kinetic experiment.
Collapse
Affiliation(s)
- Mateusz L Donten
- Department of Chemistry, Universität Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Ben Ishay E, Rahamim G, Orevi T, Hazan G, Amir D, Haas E. Fast Subdomain Folding Prior to the Global Refolding Transition of E. coli Adenylate Kinase: A Double Kinetics Study. J Mol Biol 2012; 423:613-23. [DOI: 10.1016/j.jmb.2012.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 11/16/2022]
|
10
|
Paul M, Vieillard V, Roumi E, Cauvin A, Despiau M, Laurent M, Astier A. Long-term stability of bevacizumab repackaged in 1mL polypropylene syringes for intravitreal administration. ANNALES PHARMACEUTIQUES FRANÇAISES 2012; 70:139-54. [DOI: 10.1016/j.pharma.2012.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 11/16/2022]
|
11
|
Regner N, Herzog TT, Haiser K, Hoppmann C, Beyermann M, Sauermann J, Engelhard M, Cordes T, Rück-Braun K, Zinth W. Light-Switchable Hemithioindigo–Hemistilbene-Containing Peptides: Ultrafast Spectroscopy of the Z → E Isomerization of the Chromophore and the Structural Dynamics of the Peptide Moiety. J Phys Chem B 2012; 116:4181-91. [DOI: 10.1021/jp300982a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- N. Regner
- BioMolekulare
Optik and Center
for Integrated Protein Science at the Department of Physics, Ludwig-Maximilians University Munich, Oettingenstraße
67, 80538 Munich, Germany
| | - T. T. Herzog
- BioMolekulare
Optik and Center
for Integrated Protein Science at the Department of Physics, Ludwig-Maximilians University Munich, Oettingenstraße
67, 80538 Munich, Germany
| | - K. Haiser
- BioMolekulare
Optik and Center
for Integrated Protein Science at the Department of Physics, Ludwig-Maximilians University Munich, Oettingenstraße
67, 80538 Munich, Germany
| | - C. Hoppmann
- Institut für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße
10, 13125 Berlin, Germany
| | - M. Beyermann
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße
10, 13125 Berlin, Germany
| | - J. Sauermann
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Staße 11, 44227
Dortmund, Germany
| | - M. Engelhard
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Staße 11, 44227
Dortmund, Germany
| | - T. Cordes
- Molecular Microscopy Research Group & Single-Molecule Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - K. Rück-Braun
- Institut für Chemie, Technische Universität Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - W. Zinth
- BioMolekulare
Optik and Center
for Integrated Protein Science at the Department of Physics, Ludwig-Maximilians University Munich, Oettingenstraße
67, 80538 Munich, Germany
| |
Collapse
|
12
|
Reiner A. Triplet-triplet energy transfer studies on conformational dynamics in peptides and a protein. J Pept Sci 2011; 17:413-9. [PMID: 21360629 DOI: 10.1002/psc.1353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/10/2022]
Abstract
Peptides and proteins are highly dynamic systems, which can adopt more or less stable conformations. The dynamics of these molecules, particularly those on the nanosecond to tens of microsecond time scale, are difficult to assess with conventional techniques. This review summarizes experiments using TTET, a technique that reports on van der Waals contact formation between a triplet donor and acceptor group, and which is sensitive in this time range. TTET allows to directly measure the chain dynamics of unstructured model peptides, i.e. large-amplitude fluctuations on the nanosecond time scale. Furthermore, contact formation can be used as irreversible probing reaction to study the kinetics of conformational equilibria. This approach enabled us to measure local α-helix folding and unfolding in helical peptides, which gave new insight into the equilibrium dynamics of this fundamental secondary structure element. TTET has also been applied to study the dynamics both in the native and unfolded state of a protein, the villin headpiece subdomain. The contact formation kinetics between different positions revealed an unlocking and local unfolding reaction in the native state of this model protein, and gave information about the chain dynamics in the unfolded state ensemble.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Abstract
Small proteins can fold remarkably rapidly, even in μs. What limits their rate of folding? The Engrailed homeodomain is a particularly well-characterized example, which folds ultrafast via an intermediate, I, of solved structure. It is a puzzle that the helix2-turn-helix3 motif of the 3-helix bundle forms in approximately 2 μs, but the final docking of preformed helix1 in I requires approximately 20 μs. Simulation and structural data suggest that nonnative interactions may slow down helix docking. Here we report the direct measurement of chain motions in I by using photoinduced electron transfer fluorescence-quenching correlation spectroscopy (PET-FCS). We use a mutant that traps I at physiological ionic strength but refolds at higher ionic strength. A single Trp in helix3 quenches the fluorescence of an extrinsic label on contact with it. We placed the label along the sequence to probe segmental chain motions. At high ionic strength, we found two relaxations for all probed positions on the 2- and 20-μs time scale, corresponding to the known folding processes, and a 200-ns phase attributable to loop closure kinetics in the unfolded state. At low ionic strength, we found only the 2-μs and 200-ns phase for labels in the helix2-turn-helix3 motif of I, because the native state is not significantly populated. But for labels in helix1 we observed an additional approximately 10-μs phase showing that it was moving slowly, with a rate constant similar to that for overall folding under native conditions. Folding was rate-limited by chain motions on a rough energy surface where nonnative interactions constrain motion.
Collapse
|
14
|
Nabuurs SM, Westphal AH, aan den Toorn M, Lindhoud S, van Mierlo CPM. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule. J Am Chem Soc 2009; 131:8290-5. [PMID: 19456154 DOI: 10.1021/ja9014309] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing characteristic of natively folded proteins. These ensembles of interconverting conformers are prone to aggregation and potentially play a role in numerous devastating pathologies, and thus attract considerable attention. The molten globule that is observed during folding of apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can be formed. Here we report that this species can be trapped under nativelike conditions by substituting amino acid residue F44 by Y44, allowing spectroscopic characterization of its conformation. Whereas native apoflavodoxin contains a parallel beta-sheet surrounded by alpha-helices (i.e., the flavodoxin-like or alpha-beta parallel topology), it is shown that the molten globule has a totally different topology: it is helical and contains no beta-sheet. The presence of this remarkably nonnative species shows that single polypeptide sequences can code for distinct folds that swap upon changing conditions. Topological switching between unrelated protein structures is likely a general phenomenon in the protein structure universe.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Nabuurs SM, Westphal AH, van Mierlo CPM. Noncooperative Formation of the off-pathway molten globule during folding of the alpha-beta parallel protein apoflavodoxin. J Am Chem Soc 2009; 131:2739-46. [PMID: 19170491 DOI: 10.1021/ja8089476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During folding of many proteins, molten globules are formed. These partially folded forms of proteins have a substantial amount of secondary structure but lack virtually all tertiary side-chain packing characteristic of native structures. Molten globules are ensembles of interconverting conformers and are prone to aggregation, which can have detrimental effects on organisms. Consequently, molten globules attract considerable attention. The molten globule that is observed during folding of flavodoxin from Azotobacter vinelandii is a kinetically off-pathway species, as it has to unfold before the native state of the protein can be formed. This intermediate contains helices and can be populated at equilibrium using guanidinium hydrochloride as denaturant, allowing the use of NMR spectroscopy to follow molten globule formation at the residue level. Here, we track changes in chemical shifts of backbone amides, as well as disappearance of resonances of unfolded apoflavodoxin, upon decreasing denaturant concentration. Analysis of the data shows that structure formation within virtually all parts of the unfolded protein precedes folding to the molten globule state. This folding transition is noncooperative and involves a series of distinct transitions. Four structured elements in unfolded apoflavodoxin transiently interact and subsequently form the ordered core of the molten globule. Although hydrophobic, tryptophan side chains are not involved in the latter process. This ordered core is gradually extended upon decreasing denaturant concentration, but part of apoflavodoxin's molten globule remains random coil in the denaturant range investigated. The results presented here, together with those reported on the molten globule of alpha-lactalbumin, show that helical molten globules apparently fold in a noncooperative manner.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
16
|
Laslo AC, Ganea E, Obinger C. Refolding of hexameric porcine leucine aminopeptidase using a cationic detergent and dextrin-10 as artificial chaperones. J Biotechnol 2009; 140:162-8. [DOI: 10.1016/j.jbiotec.2009.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 10/15/2008] [Accepted: 01/29/2009] [Indexed: 11/29/2022]
|
17
|
Nabuurs SM, Westphal AH, van Mierlo CPM. Extensive formation of off-pathway species during folding of an alpha-beta parallel protein is due to docking of (non)native structure elements in unfolded molecules. J Am Chem Soc 2009; 130:16914-20. [PMID: 19053416 DOI: 10.1021/ja803841n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed information about unfolded states is required to understand how proteins fold. Knowledge about folding intermediates formed subsequently is essential to get a grip on pathological aggregation phenomena. During folding of apoflavodoxin, which adopts the widely prevalent alpha-beta parallel topology, most molecules fold via an off-pathway folding intermediate with helical properties. To better understand why this species is formed, guanidine hydrochloride-unfolded apoflavodoxin is characterized at the residue level using heteronuclear NMR spectroscopy. In 6.0 M denaturant, the protein behaves as a random coil. In contrast, at 3.4 M denaturant, secondary shifts and (1)H-(15)N relaxation rates report four transiently ordered regions in unfolded apoflavodoxin. These regions have restricted flexibility on the (sub)nanosecond time scale. Secondary shifts show that three of these regions form alpha-helices, which are populated about 10% of the time, as confirmed by far-UV CD data. One region of unfolded apoflavodoxin adopts non-native structure. Of the alpha-helices observed, two are present in native apoflavodoxin as well. A substantial part of the third helix becomes beta-strand while forming native protein. Chemical shift changes due to amino acid residue replacement show that the latter alpha-helix has hydrophobic interactions with all other ordered regions in unfolded apoflavodoxin. Remarkably, these ordered segments dock non-natively, which causes strong competition with on-pathway folding. Thus, rather than directing productive folding, conformational preorganization in the unfolded state of an alpha-beta parallel-type protein promotes off-pathway species formation.
Collapse
Affiliation(s)
- Sanne M Nabuurs
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
18
|
Orevi T, Ben Ishay E, Pirchi M, Jacob MH, Amir D, Haas E. Early closure of a long loop in the refolding of adenylate kinase: a possible key role of non-local interactions in the initial folding steps. J Mol Biol 2008; 385:1230-42. [PMID: 19013178 DOI: 10.1016/j.jmb.2008.10.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 09/16/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
Abstract
Most globular protein chains, when transferred from high to low denaturant concentrations, collapse instantly before they refold to their native state. The initial compaction of the protein molecule is assumed to have a key effect on the folding pathway, but it is not known whether the earliest structures formed during or instantly after collapse are defined by local or by non-local interactions--that is, by secondary structural elements or by loop closure of long segments of the protein chain. Stable closure of one or several long loops can reduce the chain entropy at a very early stage and can prevent the protein from following non-productive pathways whose number grows exponentially with the length of the protein chain. In Escherichia coli adenylate kinase (AK), about seven long loops define the topology of the native structure. We selected four loop-forming sections of the chain and probed the time course of loop formation during refolding of AK. We labeled the termini of the loop segments with tryptophan and cysteine-5-amidosalicylic acid. This donor-acceptor pair of probes used with fluorescence resonance excitation energy transfer spectroscopy (FRET) is suitable for detecting very short distances and thus is able to distinguish between random and specific compactions. Refolding of AK was initiated by stopped-flow mixing, followed simultaneously by donor and acceptor fluorescence, and analyzed in terms of energy transfer efficiency and distance. In the collapsed state of AK, observed after the 5-ms dead time of the instrument, one of the selected segments shows a native-like separation of its termini; it forms a loop already in the collapsed state. A second segment that includes the first but is longer by 15 residues shows an almost native-like separation of its termini. In contrast, a segment that is shorter but part of the second segment shows a distance separation of its termini as high as a segment that spans almost the whole protein chain. We conclude that a specific network of non-local interactions, the closure of one or several loops, can play an important role in determining the protein folding pathway at its early phases.
Collapse
Affiliation(s)
- Tomer Orevi
- The E. Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Schuler B, Haran G. Protein Folding and Dynamics from Optical Single Molecule Spectroscopy. SINGLE MOLECULES AND NANOTECHNOLOGY 2008. [DOI: 10.1007/978-3-540-73924-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Schulenburg C, Martinez-Senac MM, Löw C, Golbik R, Ulbrich-Hofmann R, Arnold U. Identification of three phases in Onconase refolding. FEBS J 2007; 274:5826-33. [DOI: 10.1111/j.1742-4658.2007.06106.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Długosz M, Antosiewicz JM. Effects of solute-solvent proton exchange on polypeptide chain dynamics: a constant-pH molecular dynamics study. J Phys Chem B 2007; 109:13777-84. [PMID: 16852726 DOI: 10.1021/jp0505779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method for performing implicit-solvent molecular dynamics simulations at constant pH was applied to a pentapeptide acetyl-Ala-Asp-Ala-Lys-Ala-amide at pH 4. As a reference, molecular dynamics simulations were done for the same peptide with two variants of its fixed protonation patterns expected to dominate at pH 4, i.e., with a protonated and a deprotonated side chain of the Asp residue and the protonated Lys residue in both cases. The dynamic trajectories of the peptide were used to discuss the problem of the significance of the solute-solvent proton exchange phenomena for the dynamics and structural distributions of the polypeptide chain. The Asp-Lys distance was used as a probe of the overall molecular structure of the investigated pentapeptide. To characterize the dynamics, distributions of the "waiting" times for a transition from a "short" distance conformation to a "long" distance conformation were constructed, based on the generated molecular dynamics trajectories. We show that the relaxation time for the transitions, derived from the constant-pH simulations, is very close to the relaxation time characterizing a permanently protonated molecule, although the average protonation probability of the short-distance conformation is close to zero. However, the distribution of the Asp-Lys distances obtained from constant-pH simulations cannot be reproduced as a linear combination of the distributions resulting from the simulations with fixed protonation states.
Collapse
Affiliation(s)
- M Długosz
- Department of Biophysics, Warsaw University, Zwirki i Wigury 93, Warsaw 02-089, Poland
| | | |
Collapse
|
22
|
Fierz B, Kiefhaber T. End-to-end vs interior loop formation kinetics in unfolded polypeptide chains. J Am Chem Soc 2007; 129:672-9. [PMID: 17227031 DOI: 10.1021/ja0666396] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformational search for favorable intramolecular interactions during protein folding is limited by intrachain diffusion processes. Recent studies on the dynamics of loop formation in unfolded polypeptide chains have focused on loops involving residues near the chain ends. During protein folding, however, most contacts are formed between residues in the interior of the chain. We compared the kinetics of end-to-end loop formation (type I loops) to the formation of end-to-interior (type II loops) and interior-to-interior loops (type III loops) using triplet-triplet energy transfer from xanthone to naphthylalanine. The results show that formation of type II and type III loops is slower compared to type I loops of the same size and amino acid sequence. The rate constant for type II loop formation decreases with increasing overall chain dimensions up to a limiting value, at which loop formation is about 2.5-fold slower for type II loops compared to type I loops. Comparing type II loops of different loop size and amino acid sequence shows that the ratio of loop dimension over total chain dimension determines the rate constant for loop formation. Formation of type III loops is 1.7-fold slower than formation of type II loops, indicating that local chain motions are strongly coupled to motions of other chain segments which leads to faster dynamics toward the chain ends. Our results show that differences in the kinetics of formation of type I, type II, and type III loops are mainly caused by differences in internal flexibility at the different positions in the polypeptide chain. Interactions of the polypeptide chain with the solvent contribute to the kinetics of loop formation, which are strongly viscosity-dependent. However, the observed differences in the kinetics of formation of type I, type II, and type III loops are not due to the increased number of peptide-solvent interactions in type II and type III loops compared to type I loops as indicated by identical viscosity dependencies for the kinetics of formation of the different types of loops.
Collapse
Affiliation(s)
- Beat Fierz
- Division of Biophysical Chemistry, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
23
|
Hunt NT, Kattner L, Shanks RP, Wynne K. The dynamics of water-protein interaction studied by ultrafast optical Kerr-effect spectroscopy. J Am Chem Soc 2007; 129:3168-72. [PMID: 17315992 DOI: 10.1021/ja066289n] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in the ultrafast dynamics and terahertz Raman spectrum accompanying a helix-to-coil transition of a homo-polypeptide have been observed for the first time. Formation of the alpha-helix is associated with a shift to lower frequency of a broad Raman band attributable to solvent-peptide intermolecular hydrogen bonding. This band facilitates direct spectroscopic observation of so-called hydration water near a peptide and yields the first quantitative estimate of the time scale of the ultrafast dynamics in the solvation shell, which range from 0.18 to 0.33 ps (185-100 cm(-1)) depending on the secondary structure of the peptide. Such fast motions of solvent molecules have been referred to as the "lubricant of life" and are thought to play key roles in determining structure and activity of proteins.
Collapse
Affiliation(s)
- Neil T Hunt
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Abstract
Single-molecule spectroscopy is an important new approach for studying the intrinsically heterogeneous process of protein folding. This Review illustrates how different single-molecule fluorescence techniques have improved our understanding of mechanistic aspects in protein folding, exemplified by a series of recent experiments on a small protein.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| |
Collapse
|
25
|
Rehm S, Lenz MO, Mensch S, Schwalbe H, Wachtveitl J. Ultrafast spectroscopy of a photoswitchable 30-amino acid de novo synthesized peptide. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2005.08.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Kuo NNW, Huang JJT, Miksovska J, Chen RPY, Larsen RW, Chan SI. Effects of Turn Stability on the Kinetics of Refolding of a Hairpin in a β-sheet. J Am Chem Soc 2005; 127:16945-54. [PMID: 16316240 DOI: 10.1021/ja0543191] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As part of our continuing study of the effects of the turn sequence on the conformational stability as well as the mechanism of folding of a beta-sheet structure, we have undertaken a parallel investigation of the solution structure, conformational stability, and kinetics of refolding of the beta-sheet VFIVDGOTYTEV(D)PGOKILQ. The latter peptide is an analogue of the original Gellman beta-sheet VFITS(D)PGKTYTEV(D)PGOKILQ, wherein the TS(D)PGK turn sequence in the first hairpin has been replaced by VDGO. Thermodynamics studies revealed comparable conformational stability of the two peptides. However, unlike the Gellman peptide, which showed extremely rapid refolding of the first hairpin, early kinetic events associated with the refolding of the corresponding hairpin in the VDGO mutant were found to be significantly slower. A detailed study of the conformation of the modified peptide suggested that hydrophobic interactions might be contributing to its stability. Accordingly, we surmise that the early kinetic events are sensitive to whether the formation of the hairpin is nucleated at the turn or by sequestering of the hydrophobic residues across the strand, before structural rearrangements to produce the nativelike topology. Nucleation of the hairpin at the turn is expected to be intrinsically rapid for a strong turn. However, if the process must involve collapse of hydrophobic side chains, the nucleation should be slower as solvent molecules must be displaced to sequester the hydrophobic residues. These findings reflect the contribution of different forces toward nucleation of hairpins in the mechanism of folding of beta-sheets.
Collapse
Affiliation(s)
- Nicole N-W Kuo
- Institute of Chemistry, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
27
|
Chang CC, Lin PY, Yeh XC, Deng KH, Ho YP, Kan LS. Protein folding stabilizing time measurement: A direct folding process and three-dimensional random walk simulation. Biochem Biophys Res Commun 2005; 328:845-50. [PMID: 15707956 DOI: 10.1016/j.bbrc.2005.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Indexed: 11/28/2022]
Abstract
Protein particles undergo Brownian motion and collisions in solution. The diffusive collisions may lead to aggregation. For proteins to fold successfully the process has to occur quickly and before significant collision takes place. The speed of protein folding was deduced by studying the correlation time of a lysozyme refolding process from autocorrelation function analysis of the mean collision time and aggregation/soluble ratio of protein. It is a measure of time before which an aggregate can be formed and also is the time measure for a protein to fold into a stable state. We report on the protein folding stabilizing time of a lysozyme system to be 25.5-27.5 micros (<+/-4%) between 295 and 279K via direct folding experimental studies, supported by a three-dimensional random walk simulation of diffusion-limited aggregation model. Aggregation is suppressed when the protein is folded to a stable form. Spontaneous folding and diffusion-limited aggregation are antagonistic in nature. Meanwhile, the resultant aggresome, suggested by Raman and mass spectroscopy, may be formed by cross-linkages of disulfide bonds and hydrophobic interactions.
Collapse
Affiliation(s)
- Chia-Ching Chang
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan.
| | | | | | | | | | | |
Collapse
|
28
|
Bollen YJM, van Mierlo CPM. Protein topology affects the appearance of intermediates during the folding of proteins with a flavodoxin-like fold. Biophys Chem 2004; 114:181-9. [PMID: 15829351 DOI: 10.1016/j.bpc.2004.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 10/25/2004] [Accepted: 12/08/2004] [Indexed: 11/23/2022]
Abstract
The topology of a native protein influences the rate with which it is formed, but does topology affect the appearance of folding intermediates and their specific role in kinetic folding as well? This question is addressed by comparing the folding data recently obtained on apoflavodoxin from Azotobacter vinelandii with those available on all three other alpha-beta parallel proteins the kinetic folding mechanism of which has been studied, i.e. Anabaena apoflavodoxin, Fusarium solani pisi cutinase and CheY. Two kinetic folding intermediates, one on-pathway and the other off-pathway, seem to be present during the folding of proteins with an alpha-beta parallel, also called flavodoxin-like, topology. The on-pathway intermediate lies on a direct route from the unfolded to the native state of the protein involved. The off-pathway intermediate needs to unfold to allow the production of native protein. Available simulation data of the folding of CheY show the involvement of two intermediates with characteristics that resemble those of the two intermediates experimentally observed. Apparently, protein topology governs the appearance and kinetic roles of protein folding intermediates during the folding of proteins that have a flavodoxin-like fold.
Collapse
Affiliation(s)
- Yves J M Bollen
- Department of Agrotechnology and Food Sciences, Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | |
Collapse
|
29
|
Postma B, Kleibeuker W, Poppelier MJJG, Boonstra M, Van Kessel KPM, Van Strijp JAG, de Haas CJC. Residues 10-18 within the C5a receptor N terminus compose a binding domain for chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem 2004; 280:2020-7. [PMID: 15542591 DOI: 10.1074/jbc.m412230200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is excreted by the majority of S. aureus strains and is a potent inhibitor of C5a- and formylated peptide-mediated chemotaxis of neutrophils and monocytes. Recently, we reported that CHIPS binds to the C5a receptor (C5aR) and the formylated peptide receptor, thereby blocking activation by C5a and formylated peptides, respectively. The anaphylatoxin C5a plays an important role in host immunity and pathological inflammatory processes. For C5a a two-site binding model is proposed in which C5a initially binds the C5aR N terminus, followed by interaction of the C5a C-terminal tail with an effector domain on the receptor. We have shown here that CHIPS does not affect activation of the C5aR by a peptide mimic of the C5a C terminus. Moreover, CHIPS was found to bind human embryonic kidney 293 cells expressing only the C5aR N terminus. Deletion and mutation experiments within this C5aR N-terminal expression system revealed that the binding site of CHIPS is contained in a short stretch of 9 amino acids (amino acids 10-18), of which the aspartic acid residues at positions 10, 15, and 18 plus the glycine at position 12 are crucial. Binding studies with C5aR/C3aR and C5aR/IL8RA chimeras confirmed that CHIPS binds only to the C5aR N terminus without involvement of its extracellular loops. CHIPS may provide new strategies to block the C5aR, which may lead to the development of new C5aR antagonists.
Collapse
Affiliation(s)
- Bent Postma
- Eijkman-Winkler Institute, G04.614, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Wachtveitl J, Spörlein S, Satzger H, Fonrobert B, Renner C, Behrendt R, Oesterhelt D, Moroder L, Zinth W. Ultrafast conformational dynamics in cyclic azobenzene peptides of increased flexibility. Biophys J 2004; 86:2350-62. [PMID: 15041673 PMCID: PMC1304084 DOI: 10.1016/s0006-3495(04)74292-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Structural changes of peptides containing the azobenzene dye 4-aminomethyl-phenylazobenzoic acid (AMPB) are studied with ultrafast spectroscopy. AMPB peptides are a new class of molecules where the photoisomerizable dye azobenzene is linked to the peptide moiety via a flexible methylene spacer. The ultrafast reactions in the femtosecond to nanosecond time domain are investigated for the optical switch AMPB, a linear and cyclic octapeptide, and a bicyclic octapeptide containing an additional disulfide bridge. These molecules with increasing conformational constraints are studied for the cis to trans and the trans to cis photoreactions. For the cis to trans reaction the isomerization of the chromophore occurs fast in the 1-ps range, whereas it is slower (10-ps range) in the trans to cis reaction. In all peptides the structural changes of the chromophore lead to modifications in the peptide structure in the 10-ps-1-ns time range. The results indicate that the chromophore AMPB acts simultaneously as a fast molecular switch and as a sensor for initial conformational dynamics in the peptide. Experiments in the mid-infrared range where the structural changes of the peptide backbone are directly observed demonstrate that the essential part of the structural dynamics in the bicyclic AMPB peptide occurs faster than 10 ns.
Collapse
Affiliation(s)
- J Wachtveitl
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, 60439 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Proteins are multifunctional: their amino acid sequences simultaneously determine folding, function and turnover. Correspondingly, evolution selected for compromises between rigidity (stability) and flexibility (folding/function/degradation), to the result that generally the free energy of stabilization of globular proteins in solution is the equivalent to only a few weak intermolecular interactions. Additional increments may come from extrinsic factors such as ligands or specific compatible solutes. Apart from the enthalpic effects, entropy may play a role by reducing the flexibility (cystine bridges, increased proline content), or by water release from residues buried upon folding and association. Additional quaternary interactions and closer packing are typical characteristics of proteins from thermophiles. In halophiles, protein stability and function are maintained by increased ion binding and glutamic acid content, both allowing the protein inventory to compete for water at high salt. Acidophiles and alkalophiles show neutral intracellular pH; proteins facing the outside extremes of pH possess anomalously high contents in ionizable amino acids. Global comparisons of the amino acid compositions and sequences of proteins from mesophiles and extremophiles did not result in general rules of protein stabilization, even after including complete genome sequences into the search. Obviously, proteins are individuals that optimize internal packing and external solvent interactions by very different mechanisms, each protein in its own way. Strategies deduced from specific ultrastable proteins allow stabilizing point mutations to be predicted.
Collapse
Affiliation(s)
- R Jaenicke
- Institut f]ur Biophysik und Physikalische Biochemie, Universit]at Regensburg, Universitatsstrasse 31, D-93040, Regensburg, Germany.
| |
Collapse
|