1
|
Brückner A, Brandtner A, Rieck S, Matthey M, Geisen C, Fels B, Stei M, Kusche-Vihrog K, Fleischmann BK, Wenzel D. Site-specific genetic and functional signatures of aortic endothelial cells at aneurysm predilection sites in healthy and AngII ApoE -/- mice. Angiogenesis 2024; 27:719-738. [PMID: 38965173 PMCID: PMC11564227 DOI: 10.1007/s10456-024-09933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified "Häutchen method" for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE-/- model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.
Collapse
Affiliation(s)
- Alexander Brückner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Adrian Brandtner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Caroline Geisen
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Benedikt Fels
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Marta Stei
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Bernd K Fleischmann
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany.
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
2
|
Yi SA, Cho D, Kim S, Kim H, Choi MK, Choi HS, Shin S, Yun S, Lim A, Jeong JK, Yoon DE, Cha HJ, Kim K, Han JW, Cho HS, Cho J. Functional loss of ERBB receptor feedback inhibitor 1 (MIG6) promotes glioblastoma tumorigenesis by aberrant activation of epidermal growth factor receptor (EGFR). Mol Oncol 2024. [PMID: 39129344 DOI: 10.1002/1878-0261.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Dysregulation of epidermal growth factor receptor (EGFR) is one of the most common mechanisms associated with the pathogenesis of various cancers. Mitogen-inducible gene 6 [MIG6; also known as ERBB receptor feedback inhibitor 1 (ERRFI1)], identified as a feedback inhibitor of EGFR, negatively regulates EGFR by directly inhibiting its kinase activity and facilitating its internalization, subsequently leading to degradation. Despite its proposed role as an EGFR-dependent tumor suppressor, the functional consequences and clinical relevance in cancer etiology remain incompletely understood. Here, we identify that the stoichiometric balance between MIG6 and EGFR is crucial in promoting EGFR-dependent oncogenic growth in various experimental model systems. In addition, a subset of ERRFI1 (the official gene symbol of MIG6) mutations exhibit impaired ability to suppress the enzymatic activation of EGFR at multiple levels. In summary, our data suggest that decreased or loss of MIG6 activity can lead to abnormal activation of EGFR, potentially contributing to cellular transformation. We propose that the mutation status of ERRFI1 and the expression levels of MIG6 can serve as additional biomarkers for guiding EGFR-targeted cancer therapies, including glioblastoma.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Daseul Cho
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Sujin Kim
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Hyunjin Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hee Seong Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sukjin Shin
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Sujin Yun
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Ahjin Lim
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Jae Kyun Jeong
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hye Ji Cha
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Jeung-Whan Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeonghee Cho
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| |
Collapse
|
3
|
Wang H, Liu H, Lu G, Tang X, Luo S, Du M, Christiani DC, Wei Q. Potentially functional variants of ERRFI1 in hypoxia-related genes predict survival of non-small cell lung cancer patients. Cancer Med 2024; 13:e70073. [PMID: 39096122 PMCID: PMC11297539 DOI: 10.1002/cam4.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Hypoxia is often involved in tumor microenvironment, and the hypoxia-induced signaling pathways play a key role in aggressive cancer phenotypes, including angiogenesis, immune evasion, and therapy resistance. However, it is unknown what role genetic variants in the hypoxia-related genes play in survival of patients with non-small cell lung cancer (NSCLC). METHODS We evaluated the associations between 16,092 single-nucleotide polymorphisms (SNPs) in 182 hypoxia-related genes and survival outcomes of NSCLC patients. Data from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial were used as the discovery dataset, and the Harvard Lung Cancer Susceptibility (HLCS) Study served as the replication dataset. We also performed additional linkage disequilibrium analysis and a stepwise multivariable Cox proportional hazards regression analysis in the PLCO dataset. RESULTS An independent SNP, ERRFI1 rs28624 A > C, was identified with an adjusted hazards ratio (HR) of 1.31 (95% CI = 1.14-1.51, p = 0.0001) for overall survival (OS). In further analyses, unfavorable genotypes AC and CC, compared with the AA genotype, were associated a worse OS (HR = 1.20, 95% CI = 1.03-1.39, p = 0.014) and disease-specific survival (HR = 1.21, 95% CI = 1.04-1.42, p = 0.016). Further expression quantitative trait loci analysis indicated that ERRFI1 rs28624C genotypes were significantly associated with higher ERRFI1 mRNA expression levels in the whole blood. Additional analysis showed that high ERRFI1 mRNA expression levels were associated with a worse OS in patients with lung adenocarcinoma. CONCLUSION Our findings suggest that genetic variants in the hypoxia-related gene ERRFI1 may modulate NSCLC survival, potentially through their effect on the gene expression.
Collapse
Affiliation(s)
- Huilin Wang
- Department of Respiratory Oncology, Guangxi Cancer HospitalGuangxi Medical University Cancer HospitalNanningGuangxiChina
- Duke Cancer Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Guojun Lu
- Duke Cancer Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingJiangsuChina
| | - Xiaozhun Tang
- Duke Cancer Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Head and Neck Surgery, Guangxi Cancer HospitalGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Sheng Luo
- Department of Biostatistics and BioinformaticsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Mulong Du
- Department of Environmental Health and Department of EpidemiologyHarvard TH Chan School of Public HealthBostonMassachusettsUSA
| | - David C. Christiani
- Department of Environmental Health and Department of EpidemiologyHarvard TH Chan School of Public HealthBostonMassachusettsUSA
- Department of MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Global Health Institute, Duke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
4
|
Cao F, Jiang Y, Chang L, Du H, Chang D, Pan C, Huang X, Yu D, Zhang M, Fan Y, Bian X, Li K. High-throughput functional screen identifies YWHAZ as a key regulator of pancreatic cancer metastasis. Cell Death Dis 2023; 14:431. [PMID: 37452033 PMCID: PMC10349114 DOI: 10.1038/s41419-023-05951-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Pancreatic cancer is a leading cause of cancer death due to its early metastasis and limited response to the current therapies. Metastasis is a complicated multistep process, which is determined by complex genetic alterations. Despite the identification of many metastasis-related genes, distinguishing the drivers from numerous passengers and establishing the causality in cancer pathophysiology remains challenging. Here, we established a high-throughput and piggyBac transposon-based genetic screening platform, which enables either reduced or increased expression of chromosomal genes near the incorporation site of the gene search vector cassette that contains a doxycycline-regulated promoter. Using this strategy, we identified YWHAZ as a key regulator of pancreatic cancer metastasis. We demonstrated that functional activation of Ywhaz by the gene search vector led to enhanced metastatic capability in mouse pancreatic cancer cells. The metastasis-promoting role of YWHAZ was further validated in human pancreatic cancer cells. Overexpression of YWHAZ resulted in more aggressive metastatic phenotypes in vitro and a shorter survival rate in vivo by modulating epithelial-to-mesenchymal transition. Hence, our study established a high-throughput screening method to investigate the functional relevance of novel genes and validated YWHAZ as a key regulator of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Fang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yunpeng Jiang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Chang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Hongzhen Du
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - De Chang
- Department of Pulmonary and Critical Care Medicine, 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunxiao Pan
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Donglin Yu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Mi Zhang
- Department of Pulmonary and Critical Care Medicine, 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongna Fan
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Xiaocui Bian
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China.
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
5
|
Xing L, Huang G, Chen R, Huang L, Liu J, Ren X, Wang S, Kuang H, Kumar A, Kim JK, Jiang Q, Li X, Lee C. Critical role of mitogen-inducible gene 6 in restraining endothelial cell permeability to maintain vascular homeostasis. J Cell Commun Signal 2023; 17:151-165. [PMID: 36284029 PMCID: PMC10030747 DOI: 10.1007/s12079-022-00704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022] Open
Abstract
Although mitogen-inducible gene 6 (MIG6) is highly expressed in vascular endothelial cells, it remains unknown whether MIG6 affects vascular permeability. Here, we show for the first time a critical role of MIG6 in limiting vascular permeability. We unveil that genetic deletion of Mig6 in mice markedly increased VEGFA-induced vascular permeability, and MIG6 knockdown impaired endothelial barrier function. Mechanistically, we reveal that MIG6 inhibits VEGFR2 phosphorylation by binding to the VEGFR2 kinase domain 2, and MIG6 knockdown increases the downstream signaling of VEGFR2 by enhancing phosphorylation of PLCγ1 and eNOS. Moreover, MIG6 knockdown disrupted the balance between RAC1 and RHOA GTPase activation, leading to endothelial cell barrier breakdown and the elevation of vascular permeability. Our findings demonstrate an essential role of MIG6 in maintaining endothelial cell barrier integrity and point to potential therapeutic implications of MIG6 in the treatment of diseases involving vascular permeability. Xing et al. (2022) investigated the critical role of MIG6 in vascular permeability. MIG6 deficiency promotes VEGFA-induced vascular permeability via activation of PLCγ1-Ca2+-eNOS signaling and perturbation of the balance in RAC1/RHOA activation, resulting in endothelial barrier disruption.
Collapse
Affiliation(s)
- Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guanqun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Juanxi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jong Kyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qin Jiang
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Li C, Edeni D, Platkin S, Liu R, Li J, Hossain M, Rahman M, Islam H, Phillips JL, Xu D. Effect of Gene 33/Mig6/ERRFI1 on hexavalent chromium-induced transformation of human bronchial epithelial cells depends on the length of exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:227-247. [PMID: 36715065 DOI: 10.1080/26896583.2022.2147358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) compounds are environmental and occupational lung carcinogens. The present study followed the chronic effect of Cr(VI) on the neoplastic transformation of BEAS-2B lung bronchial epithelial cells with or without deletion of Gene 33 (Mig6, EFFRI1), a multifunctional adaptor protein. We find that Gene 33-deleted cells exhibit increased anchorage-independent growth compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure. Gene 33-deleted cells show a higher level of cell proliferation and are more resistant to acute Cr(VI) toxicity compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure, despite that 24-week-transformed cells have increased resistance to acute Cr(VI) toxicity. However, Gene 33-deleted cells show increased migration after transformed by both 8-week and 24-week Cr(VI) exposures. Furthermore, only cells transformed by 24 weeks of Cr(VI) exposure can form subcutaneous tumors in nude mice. Although no significant difference in the size of tumors formed by the two cell types, there is a marked difference in the histological manifestation and more MMP3 expression in tumors from Gene 33-deleted cells. Our results demonstrate progressive neoplastic transformation of BEAS-2B cells and the adaptation of these cells to Gene 33 deletion during chronic exposure to Cr(VI).
Collapse
Affiliation(s)
- Cen Li
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dina Edeni
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Sarah Platkin
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Raymond Liu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Jiangwei Li
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Maheen Hossain
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Mozibur Rahman
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Humayun Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - John L Phillips
- Department of Urology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dazhong Xu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| |
Collapse
|
7
|
Kan Y, Miller WT. Activity of the nonreceptor tyrosine kinase Ack1 is regulated by tyrosine phosphorylation of its Mig6 homology region. FEBS Lett 2022; 596:2808-2820. [PMID: 36178070 PMCID: PMC9879303 DOI: 10.1002/1873-3468.14505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
Ack1 is a proto-oncogenic tyrosine kinase with homology to the tumour suppressor Mig6, an inhibitor of the epidermal growth factor receptor (EGFR). The residues critical for binding of Mig6 to EGFR are conserved within the Mig6 homology region (MHR) of Ack1. We tested whether intramolecular interactions between the Ack1 MHR and kinase domain (KD) are regulated by phosphorylation. We identified two Src phosphorylation sites within the MHR (Y859, Y860). Addition of Src-phosphorylated MHR to the Ack1 KD enhanced enzymatic activity. Co-expression of Src in cells led to increased Ack1 activity; mutation of Y859/Y860 blocked this increase. Collectively, the data suggest that phosphorylation of the Ack1 MHR regulates its kinase activity. Phosphorylation of Y859/Y860 occurs in cancers of the brain, breast, colon, and prostate, where genomic amplification or somatic mutations of Ack1 play a role in disease progression. Our findings suggest that MHR phosphorylation could contribute to Ack1 dysregulation in tumours.
Collapse
Affiliation(s)
- Yağmur Kan
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| |
Collapse
|
8
|
Wang D, Ruan W, Fan L, Xu H, Song Q, Diao H, He R, Jin Y, Zhang A. Hypermethylation of Mig-6 gene promoter region inactivates its function, leading to EGFR/ERK signaling hyperphosphorylation, and is involved in arsenite-induced hepatic stellate cells activation and extracellular matrix deposition. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129577. [PMID: 35850069 DOI: 10.1016/j.jhazmat.2022.129577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a widespread naturally contaminant. Previous studies have highlighted the issue of liver fibrosis induced by arsenic exposure, while the exact mechanisms are not yet fully understood. Recent studies suggest that Mig-6/EGFR/ERK signaling appear to play important roles in fibrosis caused by various factors. In this study, we focused on the epigenetic modification combined with the signaling dysregulation to validate the role of Mig-6 in regulating EGFR/ERK signaling in arsenite-induced human hepatic stellate cells (HSCs) activation. Our results revealed that arsenite exposure induced HSCs activation and extracellular matrix (ECM) deposition. The EGFR/ERK signaling was significantly hyperphosphorylated in arsenite-exposed HSCs, and Mig-6 inactivation was involved in arsenite induced hyperphosphorylation of EGFR and activation of HSCs. Additionally, we further illustrated that hypermethylation of Mig-6 gene promoter region was responsible for the downregulation of Mig-6 induced by arsenite exposure. Moreover, 5-Aza-dC (a DNA methyltransferase inhibitor) can efficiently rescue hypermethylation of Mig-6 gene, decrease the hyperphosphorylation of EGFR/ERK signaling, then reverse arsenite induced HSCs activation. Taken together, the present study strongly suggests that inactivating of Mig-6 function by hypermethylation of its promoter region leading to hyperphosphorylation of EGFR/ERK signaling, and is involved in arsenite-induced HSCs activation and ECM deposition.
Collapse
Affiliation(s)
- Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Wenli Ruan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China; Tongren Center for Disease Control and Prevention, Tongren 554300, Guizhou, China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Huifen Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
9
|
Androgen-Induced MIG6 Regulates Phosphorylation of Retinoblastoma Protein and AKT to Counteract Non-Genomic AR Signaling in Prostate Cancer Cells. Biomolecules 2022; 12:biom12081048. [PMID: 36008945 PMCID: PMC9405759 DOI: 10.3390/biom12081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The bipolar androgen therapy (BAT) includes the treatment of prostate cancer (PCa) patients with supraphysiological androgen level (SAL). Interestingly, SAL induces cell senescence in PCa cell lines as well as ex vivo in tumor samples of patients. The SAL-mediated cell senescence was shown to be androgen receptor (AR)-dependent and mediated in part by non-genomic AKT signaling. RNA-seq analyses compared with and without SAL treatment as well as by AKT inhibition (AKTi) revealed a specific transcriptome landscape. Comparing the top 100 genes similarly regulated by SAL in two human PCa cell lines that undergo cell senescence and being counteracted by AKTi revealed 33 commonly regulated genes. One gene, ERBB receptor feedback inhibitor 1 (ERRFI1), encodes the mitogen-inducible gene 6 (MIG6) that is potently upregulated by SAL, whereas the combinatory treatment of SAL with AKTi reverses the SAL-mediated upregulation. Functionally, knockdown of ERRFI1 enhances the pro-survival AKT pathway by enhancing phosphorylation of AKT and the downstream AKT target S6, whereas the phospho-retinoblastoma (pRb) protein levels were decreased. Further, the expression of the cell cycle inhibitor p15INK4b is enhanced by SAL and ERRFI1 knockdown. In line with this, cell senescence is induced by ERRFI1 knockdown and is enhanced slightly further by SAL. Treatment of SAL in the ERRFI1 knockdown background enhances phosphorylation of both AKT and S6 whereas pRb becomes hypophosphorylated. Interestingly, the ERRFI1 knockdown does not reduce AR protein levels or AR target gene expression, suggesting that MIG6 does not interfere with genomic signaling of AR but represses androgen-induced cell senescence and might therefore counteract SAL-induced signaling. The findings indicate that SAL treatment, used in BAT, upregulates MIG6, which inactivates both pRb and the pro-survival AKT signaling. This indicates a novel negative feedback loop integrating genomic and non-genomic AR signaling.
Collapse
|
10
|
DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci Rep 2022; 12:5760. [PMID: 35388101 PMCID: PMC8986772 DOI: 10.1038/s41598-022-09779-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
To combat the various DNA lesions and their harmful effects, cells have evolved different strategies, collectively referred as DNA damage response (DDR). The DDR largely relies on intranuclear protein networks, which sense DNA lesions, recruit DNA repair enzymes, and coordinates several aspects of the cellular response, including a temporary cell cycle arrest. In addition, external cues mediated by the surface EGF receptor (EGFR) through downstream signaling pathways contribute to the cellular DNA repair capacity. However, cell cycle progression driven by EGFR activation should be reconciled with cell cycle arrest necessary for effective DNA repair. Here, we show that in damaged cells, the expression of Mig-6 (mitogen-inducible gene 6), a known regulator of EGFR signaling, is reduced resulting in heightened EGFR phosphorylation and downstream signaling. These changes in Mig-6 expression and EGFR signaling do not occur in cells deficient of Mre-11, a component of the MRN complex, playing a central role in double-strand break (DSB) repair or when cells are treated with the MRN inhibitor, mirin. RNAseq and functional analysis reveal that DNA damage induces a shift in cell response to EGFR triggering that potentiates DDR-induced p53 pathway and cell cycle arrest. These data demonstrate that the cellular response to EGFR triggering is skewed by components of the DDR, thus providing a plausible explanation for the paradox of the known role played by a growth factor such as EGFR in the DNA damage repair.
Collapse
|
11
|
Hexachlorophene, a selective SHP2 inhibitor, suppresses proliferation and metastasis of KRAS-mutant NSCLC cells by inhibiting RAS/MEK/ERK and PI3K/AKT signaling pathways. Toxicol Appl Pharmacol 2022; 441:115988. [DOI: 10.1016/j.taap.2022.115988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022]
|
12
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
13
|
Rudolf Vegas A, Podico G, Canisso IF, Bollwein H, Almiñana C, Bauersachs S. Spatiotemporal endometrial transcriptome analysis revealed the luminal epithelium as key player during initial maternal recognition of pregnancy in the mare. Sci Rep 2021; 11:22293. [PMID: 34785745 PMCID: PMC8595723 DOI: 10.1038/s41598-021-01785-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
During the period of maternal recognition of pregnancy (MRP) in the mare, the embryo needs to signal its presence to the endometrium to prevent regression of the corpus luteum and prepare for establishment of pregnancy. This is achieved by mechanical stimuli and release of various signaling molecules by the equine embryo while migrating through the uterus. We hypothesized that embryo's signals induce changes in the endometrial gene expression in a highly cell type-specific manner. A spatiotemporal transcriptomics approach was applied combining laser capture microdissection and low-input-RNA sequencing of luminal and glandular epithelium (LE, GE), and stroma of biopsy samples collected from days 10-13 of pregnancy and the estrous cycle. Two comparisons were performed, samples derived from pregnancies with conceptuses ≥ 8 mm in diameter (comparison 1) and conceptuses ≤ 8 mm (comparison 2) versus samples from cyclic controls. The majority of gene expression changes was identified in LE and much lower numbers of differentially expressed genes (DEGs) in GE and stroma. While 1253 DEGs were found for LE in comparison 1, only 248 were found in comparison 2. Data mining mainly focused on DEGs in LE and revealed regulation of genes related to prostaglandin transport, metabolism, and signaling, as well as transcription factor families that could be involved in MRP. In comparison to other mammalian species, differences in regulation of genes involved in epithelial barrier formation and conceptus attachment and implantation reflected the unique features of equine reproduction at the time of MRP at the molecular level.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Institute of Veterinary Anatomy and Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland.
| |
Collapse
|
14
|
Lu G, Li X, Zhang J, Xu Q. Molecular insight into the affinity, specificity and cross-reactivity of systematic hepatocellular carcinoma RALT interaction profile with human receptor tyrosine kinases. Amino Acids 2021; 53:1715-1728. [PMID: 34618235 DOI: 10.1007/s00726-021-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
The ErbB family of receptor tyrosine kinases (RTKs) contains four members: EGFR, ErbB2, ErbB3 and ErbB4; they are involved in the tumorigenesis of diverse cancers and can be inhibited natively by receptor-associated late transducer (RALT), a negative feedback regulator of ErbB signaling in human hepatocytes and hepatocellular carcinoma. Although the biological effects of RALT on EGFR kinase have been widely documented previously, the binding behavior of RALT to other ErbB/RTK kinases still remains largely unexplored. Here, the intermolecular interactions of RALT ErbB-binding region (EBR) as well as its functional sections and peptide segments with ErbBs and other human RTKs were systematically investigated at molecular and structural levels, from which we were able to identify those potential kinase targets of RALT protein, and to profile the affinity, specificity and cross-reactivity of RALT EBR domain and its sub-regions against various RTKs. It is revealed that RALT can target all the four ErbB kinases with high affinity for EGFR/ErbB2/ErbB4 and moderate affinity for ErbB3, but generally exhibits modest affinity to other RTKs, albeit few kinases such as LTK, EPHB6, MET and MUSK were also top-ranked as the unexpected targets of RALT. Peptide segments covering the key binding regions of RALT EBR domain were identified with computational alanine scanning, which were then optimized to obtain a number of designed peptide mutants with improved selectivity between different top-ranked RTKs.
Collapse
Affiliation(s)
- Guang Lu
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Xiaoping Li
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Jun Zhang
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Qinghua Xu
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China.
| |
Collapse
|
15
|
ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov 2021; 7:274. [PMID: 34608122 PMCID: PMC8490388 DOI: 10.1038/s41420-021-00666-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Tryptophan metabolism is an essential regulator of tumor immune evasion. However, the effect of tryptophan metabolism on cancer cells remains largely unknown. Here, we find that tumor cells have distinct responses to tryptophan deficiency in terms of cell growth, no matter hepatocellular carcinoma (HCC) cells, lung cancer cells, or breast cancer cells. Further study shows that ERRFI1 is upregulated in sensitive HCC cells, but not in resistant HCC cells, in response to tryptophan deficiency, and ERRFI1 expression level positively correlates with HCC patient overall survival. ERRFI1 knockdown recovers tryptophan deficiency-suppressed cell growth of sensitive HCC cells. In contrast, ERRFI1 overexpression sensitizes resistant HCC cells to tryptophan deficiency. Moreover, ERRFI1 induces apoptosis by binding PDCD2 in HCC cells, PDCD2 knockdown decreases the ERRFI1-induced apoptosis in HCC cells. Thus, we conclude that ERRFI1-induced apoptosis increases the sensitivity of HCC cells to tryptophan deficiency and ERRFI1 interacts with PDCD2 to induce apoptosis in HCC cells.
Collapse
|
16
|
Liu CY, Cham CM, Chang EB. Epithelial wound healing in inflammatory bowel diseases: the next therapeutic frontier. Transl Res 2021; 236:35-51. [PMID: 34126257 PMCID: PMC8380699 DOI: 10.1016/j.trsl.2021.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Patients with one of the many chronic inflammatory disorders broadly classified as inflammatory bowel disease (IBD) now have a diverse set of immunomodulatory therapies at their disposal. Despite these recent medical advances, complete sustained remission of disease remains elusive for most patients. The full healing of the damaged intestinal mucosa is the primary goal of all therapies. Achieving this requires not just a reduction of the aberrant immunological response, but also wound healing of the epithelium. No currently approved therapy directly targets the epithelium. Epithelial repair is compromised in IBD and normally facilitates re-establishment of the homeostatic barrier between the host and the microbiome. In this review, we summarize the evidence that epithelial wound healing represents an important yet underdeveloped therapeutic modality for IBD. We highlight 3 general approaches that are promising for developing a new class of epithelium-targeted therapies: epithelial stem cells, cytokines, and microbiome engineering. We also provide a frank discussion of some of the challenges that must be overcome for epithelial repair to be therapeutically leveraged. A concerted approach by the field to develop new therapies targeting epithelial wound healing will offer patients a game-changing, complementary class of medications and could dramatically improve outcomes.
Collapse
Affiliation(s)
- Cambrian Y Liu
- Department of Medicine, The University of Chicago, Chicago, Illinois.
| | - Candace M Cham
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
17
|
Zhang A, Liu P, Dou C, Liu Y, Che L. Molecular conversion of MIG6 hotspot-3 peptide from the nonbinder to a moderate binder of HER2 by rational design of an orthogonal interaction system at the HER2-peptide interface. Biophys Chem 2021; 276:106625. [PMID: 34077816 DOI: 10.1016/j.bpc.2021.106625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) has been established as an approved druggable target for the treatment of patients with diverse gynecological tumors such as ovarian, cervical and breast cancers. The mitogen-inducible gene 6 (MIG6) protein is a negative regulator of HER2 signaling by using its Seg1 segment to disrupt the allosteric dimerization of HER2 kinase domain. Previous studies found that the Seg1 adopts three separated hotspots to interact with the HER2 dimerization interface, in which the third hotspot (H3) is located at the core region of the interface but its derived H3 peptide (356PKYVS360) and Tyr358Phe mutant (356PKFVS360) cannot bind effectively to the interface in an independent manner. In this study, we demonstrate that the H3 peptide can be converted from nonbinder to a moderate binder of HER2 by just adding an orthogonal noncovalent interaction system (X⋯O┄H) between a halogen bond (X⋯O) and a hydrogen bond (H┄O) involving peptide Phe358 residue and HER2 Val948/Trp951 residues. High-level calculations are utilized to rigorously characterize and rationally design the X⋯O┄H system, which is then optimized with different halogen atoms and at different substituting positions. It is revealed that there is a synergistic effect between the X⋯O and H┄O of the orthogonal interaction system; formation of the halogen bond can enhance the interaction strength of the hydrogen bond. In silico analysis and in vitro assay reach a consistence that Br-substitution at the m-position of peptide Phe358 phenyl moiety is the best choice that can render strong interaction for the X⋯O┄H system, which also makes the peptide 'bindable' to HER2 kinase domain, while F/Cl/I-substitution at the same position can only improve the peptide affinity moderately or modestly. In contrast, the Br-substitution at the o- and p-positions of peptide Phe358 phenyl moiety cannot define effective X⋯O┄H interaction and thus does not confer additional affinity to the HER2-peptide complex.
Collapse
Affiliation(s)
- Aihong Zhang
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Chuncheng Dou
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Lifan Che
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China.
| |
Collapse
|
18
|
Zhong H, He J, Yu J, Li X, Mei Y, Hao L, Wu X. Mig6 not only inhibits EGFR and HER2 but also targets HER3 and HER4 in a differential specificity: Implications for targeted esophageal cancer therapy. Biochimie 2021; 190:132-142. [PMID: 34293452 DOI: 10.1016/j.biochi.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
The human EGF receptor family plays pivotal roles in physiology and cancer, which contains four closely-related members: HER1/EGFR, HER2, HER3 and HER4. Previously, it was found that the mitogen-inducible gene 6 (Mig6) protein is a negative regulator of EGFR and HER2 by using its S1 segment to bind at the kinase dimerization interface. However, it is still unclear whether the S1 segment can also effectively target HER3 and HER4? Here, we performed a systematic investigation to address this issue. The segment can bind to all the four HER kinases with a varying affinity and moderate selectivity; breaking of the segment into shorter hotspot peptides would largely impair the affinity and selectivity, indicating that the full-length sequence is required for the effective binding of S1 to these kinases. The hs2 peptide, which corresponds to the middle hotspot region of S1 segment, can partially retain the affinity to HER kinases, can moderately compete with S1 segment at the dimerization interfaces, and can mimic the biological function of Mig6 protein to suppress HER4+ esophageal cancer at cellular level. In addition, we also analyzed the binding potency of S1 segment and hs2 peptide to the kinase domains of other five widely documented growth factor receptors (GFRs). It was showed that both the S1 and hs2 cannot effectively interact with these receptors. Overall, the Mig6 is suggested as a specific pan-HER inhibitor, which can target and suppress HER family members with a broad selectivity, but exhibits weak or no activity towards other GFRs.
Collapse
Affiliation(s)
- Hai Zhong
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiothoracic Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Jiajia He
- Department of Hematologic Oncology, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Jingjing Yu
- Department of Hematologic Oncology, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Xiang Li
- Department of Emergency, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxian Mei
- Department of Urology, Wenling Hospital of Traditional Chinese Medicine, Wenling, 317500, China
| | - Long Hao
- Department of General Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Xu Wu
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Yoshizawa R, Umeki N, Yamamoto A, Okada M, Murata M, Sako Y. p52Shc regulates the sustainability of ERK activation in a RAF-independent manner. Mol Biol Cell 2021; 32:1838-1848. [PMID: 34260260 PMCID: PMC8684710 DOI: 10.1091/mbc.e21-01-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p52SHC (SHC) and GRB2 are adaptor proteins involved in the RAS/MAPK (ERK) pathway mediating signals from cell-surface receptors to various cytoplasmic proteins. To further examine their roles in signal transduction, we studied the translocation of fluorescently labeled SHC and GRB2 to the cell surface, caused by the activation of ERBB receptors by heregulin (HRG). We simultaneously evaluated activated ERK translocation to the nucleus. Unexpectedly, the translocation dynamics of SHC were sustained when those of GRB2 were transient. The sustained localization of SHC positively correlated with the sustained nuclear localization of ERK, which became more transient after SHC knockdown. SHC-mediated PI3K activation was required to maintain the sustainability of the ERK translocation regulating MEK but not RAF. In cells overexpressing ERBB1, SHC translocation became transient, and the HRG-induced cell fate shifted from a differentiation to a proliferation bias. Our results indicate that SHC and GRB2 functions are not redundant but that SHC plays the critical role in the temporal regulation of ERK activation.
Collapse
Affiliation(s)
- Ryo Yoshizawa
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Yasushi Sako
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
21
|
Qiao Z, Wang S. Directed Molecular Engineering of Mig6 Peptide Selectivity between Proto-oncogene ErbB Family Receptor Tyrosine Kinases. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0102-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Heymann AK, Schnabel K, Billenkamp F, Bühler S, Frahm J, Kersten S, Hüther L, Meyer U, von Soosten D, Trakooljul N, Teifke JP, Dänicke S. Effects of glyphosate residues and different concentrate feed proportions in dairy cow rations on hepatic gene expression, liver histology and biochemical blood parameters. PLoS One 2021; 16:e0246679. [PMID: 33577576 PMCID: PMC7880452 DOI: 10.1371/journal.pone.0246679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
Glyphosate (GLY) is worldwide one of the most used active substances in non-selective herbicides. Although livestock might be orally exposed via GLY-contaminated feedstuffs, not much is known about possible hepatotoxic effects of GLY. As hepatic xenobiotic and nutrient metabolism are interlinked, toxic effects of GLY residues might be influenced by hepatic nutrient supply. Therefore, a feeding trial with lactating dairy cows was conducted to investigate effects of GLY-contaminated feedstuffs and different concentrate feed proportions (CFP) in the diets as tool for varying nutrient supply to the liver. For this, 61 German Holstein cows (207 ± 49 days in milk; mean ± standard deviation) were either fed a GLY-contaminated total mixed ration (TMR, GLY groups, mean GLY intake 122.7 μg/kg body weight/day) or control TMR (CON groups, mean GLY intake 1.2 μg/kg body weight/day) for 16 weeks. Additionally, both groups were further split into subgroups fed a lower (LC, 30% on dry matter basis) or higher (HC, 60% on dry matter basis) CFP resulting in groups CONHC (n = 16), CONLC (n = 16), GLYHC (n = 15), GLYLC (n = 14). Blood parameters aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, cholesterol, triglyceride, total protein, calcium, phosphorus, acetic acid and urea and histopathological evaluation were not influenced by GLY, whereas all mentioned parameters were at least affected by time, CFP or an interactive manner between time and CFP. Total bilirubin blood concentration was significantly influenced by an interaction between GLY and CFP with temporarily elevated concentrations in GLYHC, whereas the biological relevance remained unclear. Gene expression analysis indicated 167 CFP-responsive genes, while seven genes showed altered expression in GLY groups compared to CON groups. Since expression changes of GLY-responsive genes were low and liver-related blood parameters changed either not at all or only slightly, the tested GLY formulation was considered to have no toxic effects on the liver of dairy cows.
Collapse
Affiliation(s)
- Ann-Katrin Heymann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Karina Schnabel
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Fabian Billenkamp
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jens Peter Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
23
|
Abdelli F, Jellali K, Anguita E, González-Muñoz M, Villalobo E, Madroñal I, Alcalde J, Ben Ali M, Elloumi-Mseddi J, Jemel I, Tebar F, Enrich C, Aifa S, Villalobo A. The role of the calmodulin-binding and calmodulin-like domains of the epidermal growth factor receptor in tyrosine kinase activation. J Cell Physiol 2020; 236:4997-5011. [PMID: 33305427 DOI: 10.1002/jcp.30205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) harbors a calmodulin (CaM)-binding domain (CaM-BD) and a CaM-like domain (CaM-LD) upstream and downstream, respectively, of the tyrosine kinase (TK) domain. We demonstrate in this paper that deletion of the positively charged CaM-BD (EGFR/CaM-BD∆) inactivated the TK activity of the receptor. Moreover, deletion of the negatively charged CaM-LD (EGFR/CaM-LD∆), leaving a single negative residue (glutamate), reduced the activity of the receptor. In contrast, substituting the CaM-LD with a histidine/valine-rich peptide (EGFR/InvCaM-LD) caused full inactivation. We also demonstrated using confocal microscopy and flow cytometry that the chimera EGFR-green fluorescent protein (GFP)/CaM-BD∆, the EGFR/CaM-LD∆, and EGFR/InvCaM-LD mutants all bind tetramethylrhodamine-labelled EGF. These EGFR mutants were localized at the plasma membrane as the wild-type receptor does. However, only the EGFR/CaM-LD∆ and EGFR/InvCaM-LD mutants appear to undergo ligand-dependent internalization, while the EGFR-GFP/CaM-BD∆ mutant seems to be deficient in this regard. The obtained results and in silico modelling studies of the asymmetric structure of the EGFR kinase dimer support a role of a CaM-BD/CaM-LD electrostatic interaction in the allosteric activation of the EGFR TK.
Collapse
Affiliation(s)
- Faten Abdelli
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Karim Jellali
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Estefanía Anguita
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - María González-Muñoz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ivan Madroñal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Alcalde
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Jihene Elloumi-Mseddi
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Ikram Jemel
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Francesc Tebar
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sami Aifa
- Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
| |
Collapse
|
24
|
Cho J. Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective. BMB Rep 2020. [PMID: 32172728 PMCID: PMC7118354 DOI: 10.5483/bmbrep.2020.53.3.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.
Collapse
Affiliation(s)
- Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
25
|
Mojica CAR, Ybañez WS, Olarte KCV, Poblete ABC, Bagamasbad PD. Differential Glucocorticoid-Dependent Regulation and Function of the ERRFI1 Gene in Triple-Negative Breast Cancer. Endocrinology 2020; 161:5841101. [PMID: 32432675 PMCID: PMC7316368 DOI: 10.1210/endocr/bqaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs; eg, hydrocortisone [CORT]) are routinely used as chemotherapeutic, anti-emetic, and palliative agents in breast cancer (BCa) therapy. The effects of GC signaling on BCa progression, however, remain a contentious topic as GC treatment seems to be beneficial for receptor-positive subtypes but elicits unfavorable responses in triple-negative BCa (TNBC). The mechanistic basis for these conflicting effects of GC in BCa is poorly understood. In this study, we sought to decipher the molecular mechanisms that govern the GC-dependent induction of the tumor suppressor ERRFI1 gene, an inhibitor of epidermal growth factor receptor (EGFR) signaling, and characterize the role of the GC-ERRFI1 regulatory axis in TNBC. Treatment of TNBC cell lines with a protein synthesis inhibitor or GC receptor (GR) antagonist followed by gene expression analysis suggests that ERRFI1 is a direct GR target. Using in silico analysis coupled with enhancer-reporter assays, we identified a putative ERRFI1 enhancer that supports CORT-dependent transactivation. In orthogonal assays for cell proliferation, survival, migration, and apoptosis, CORT mostly facilitated an oncogenic phenotype regardless of malignancy status. Lentiviral knockdown and overexpression of ERRFI1 showed that the CORT-enhanced oncogenic phenotype is restricted by ERRFI1 in the normal breast epithelial model MCF10A and to a lesser degree in the metastatic TNBC line MDA-MB-468. Conversely, ERRFI1 conferred pro-tumorigenic effects in the highly metastatic TNBC model MDA-MB-231. Taken together, our findings suggest that the progressive loss of the GC-dependent regulation and anti-tumorigenic function of ERRFI1 influences BCa progression and may contribute to the unfavorable effects of GC therapy in TNBC.
Collapse
Affiliation(s)
- Chromewell Agustin R Mojica
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Weand S Ybañez
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kevin Christian V Olarte
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Alyssa Beatrice C Poblete
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Correspondence: Pia D. Bagamasbad, PhD, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, Quezon City, Metro Manila 1101, Philippines. E-mail:
| |
Collapse
|
26
|
Yu X, Zhang A, Sun G, Li X. Molecular selectivity design of mitogen-inducible gene-derived phosphopeptides between oncogenic HER kinases. J Mol Graph Model 2020; 99:107661. [PMID: 32574989 DOI: 10.1016/j.jmgm.2020.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/28/2022]
Abstract
Mitogen-inducible gene (MIG) is a natural negative regulator of the oncogenic HER kinase signaling by binding at the activation interface of kinase domain to disrupt the kinase dimerization. In this study, we systematically examine the binding structures, dynamics and energetics of MIG region 2 to four HER kinases based on their crystal or modeled complex structures, and identify an 8-mer phosphopeptide segment pYpY from the core strand sequence of MIG region 2 as the binding hotspot of MIG protein to HER kinases. We demonstrate that the small pYpY phosphopeptide can partially restore the binding affinity of full-length MIG protein, but exhibit a moderate selectivity over different HER kinases (S = 2.3-fold). In addition, the two phosphotyrosine residues pTyr394 and pTyr395 play an essential role in MIG-HER binding; dephosphorylation of them would fully eliminate the binding capability. A machine evolution algorithm is used to optimize the wild-type pYpY phosphopeptide, aiming to simultaneously improve affinity for these kinases and to maximize the affinity gap between different kinases. Consequently, a population is computationally evolved as selective phosphopeptide candidates; the dissociation constants of four representatives with HER kinases are systematically determined using binding affinity analysis, from which their selectivity is derived. The designed pYpYp3 phosphopeptide possesses a high selectivity over different HER kinases (S = 4.8-fold) and satisfactory affinity profile to these kinase (KD = 140-1000 μM). Structural analysis observes that the global binding modes of pYpYp3 to different kinases are roughly consistent, but its local conformation may vary considerably, thus conferring specificity to the phosphopeptide.
Collapse
Affiliation(s)
- Xiuli Yu
- Department of Radiotherapy, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Aiying Zhang
- Orthopaedic Trauma, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Guoyu Sun
- Intensive Care Unit, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Xuebo Li
- Department of Radiotherapy, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China.
| |
Collapse
|
27
|
Bellini M, Pest MA, Miranda-Rodrigues M, Qin L, Jeong JW, Beier F. Overexpression of MIG-6 in the cartilage induces an osteoarthritis-like phenotype in mice. Arthritis Res Ther 2020; 22:119. [PMID: 32430054 PMCID: PMC7236969 DOI: 10.1186/s13075-020-02213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis and characterized by degeneration of the articular cartilage. Mitogen-inducible gene 6 (Mig-6) has been identified as a negative regulator of the epidermal growth factor receptor (EGFR). Cartilage-specific Mig-6 knockout (KO) mice display increased EGFR signaling, an anabolic buildup of the articular cartilage, and formation of chondro-osseous nodules. Since our understanding of the EGFR/Mig-6 network in the cartilage remains incomplete, we characterized mice with cartilage-specific overexpression of Mig-6 in this study. METHODS Utilizing knee joints from cartilage-specific Mig-6-overexpressing (Mig-6over/over) mice (at multiple time points), we evaluated the articular cartilage using histology, immunohistochemical staining, and semi-quantitative histopathological scoring (OARSI) at multiple ages. MicroCT analysis was employed to examine skeletal morphometry, body composition, and bone mineral density. RESULTS Our data show that cartilage-specific Mig-6 overexpression did not cause any major developmental abnormalities in the articular cartilage, although Mig-6over/over mice have slightly shorter long bones compared to the control group. Moreover, there was no significant difference in bone mineral density and body composition in any of the groups. However, our results indicate that Mig-6over/over male mice show accelerated cartilage degeneration at 12 and 18 months of age. Immunohistochemistry for SOX9 demonstrated that the number of positively stained cells in Mig-6over/over mice was decreased relative to controls. Immunostaining for MMP13 appeared increased in areas of cartilage degeneration in Mig-6over/over mice. Moreover, staining for phospho-EGFR (Tyr-1173) and lubricin (PRG4) was decreased in the articular cartilage of Mig-6over/over mice. CONCLUSION Overexpression of Mig-6 in the articular cartilage causes no major developmental phenotype; however, these mice develop earlier OA during aging. These data demonstrate that Mig-6/EGFR pathways are critical for joint homeostasis and might present a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Melina Bellini
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
| | - Michael A Pest
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
| | - Manuela Miranda-Rodrigues
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Western University Bone and Joint Institute, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Western University Bone and Joint Institute, London, ON, Canada.
- Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
28
|
Chen Y, Leng M, Gao Y, Zhan D, Choi JM, Song L, Li K, Xia X, Zhang C, Liu M, Ji S, Jain A, Saltzman AB, Malovannaya A, Qin J, Jung SY, Wang Y. A Cross-Linking-Aided Immunoprecipitation/Mass Spectrometry Workflow Reveals Extensive Intracellular Trafficking in Time-Resolved, Signal-Dependent Epidermal Growth Factor Receptor Proteome. J Proteome Res 2019; 18:3715-3730. [PMID: 31442056 DOI: 10.1021/acs.jproteome.9b00427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ligand binding to the cell surface receptors initiates signaling cascades that are commonly transduced through a protein-protein interaction (PPI) network to activate a plethora of response pathways. However, tools to capture the membrane PPI network are lacking. Here, we describe a cross-linking-aided mass spectrometry workflow for isolation and identification of signal-dependent epidermal growth factor receptor (EGFR) proteome. We performed protein cross-linking in cell culture at various time points following EGF treatment, followed by immunoprecipitation of endogenous EGFR and analysis of the associated proteins by quantitative mass spectrometry. We identified 140 proteins with high confidence during a 2 h time course by data-dependent acquisition and further validated the results by parallel reaction monitoring. A large proportion of proteins in the EGFR proteome function in endocytosis and intracellular protein transport. The EGFR proteome was highly dynamic with distinct temporal behavior; 10 proteins that appeared in all time points constitute the core proteome. Functional characterization showed that loss of the FYVE domain-containing proteins altered the EGFR intracellular distribution but had a minor effect on EGFR proteome or signaling. Thus, our results suggest that the EGFR proteome include functional regulators that influence EGFR signaling and bystanders that are captured as the components of endocytic vesicles. The high-resolution spatiotemporal information of these molecules facilitates the delineation of many pathways that could determine the strength and duration of the signaling, as well as the location and destination of the receptor.
Collapse
Affiliation(s)
- Yue Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Mei Leng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Yankun Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Dongdong Zhan
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai 200241 , China
| | - Jong Min Choi
- Advanced Technology Core, Baylor College of Medicine, Houston, Texas77030, United States
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Kai Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Chunchao Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Shuhui Ji
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China
| | - Antrix Jain
- Advanced Technology Core, Baylor College of Medicine, Houston, Texas77030, United States
| | - Alexander B Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States,Advanced Technology Core, Baylor College of Medicine, Houston, Texas77030, United States,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas77030, United States,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China.,The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai 200241 , China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (The PHOENIX Center, Beijing), Institute of Lifeomics , Beijing 102206 , China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77003, United States,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77003, United States
| |
Collapse
|
29
|
Structure-based inhibitory peptide design targeting peptide-substrate binding site in EGFR tyrosine kinase. PLoS One 2019; 14:e0217031. [PMID: 31116768 PMCID: PMC6530890 DOI: 10.1371/journal.pone.0217031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/02/2019] [Indexed: 11/19/2022] Open
Abstract
EGFR (epidermal growth factor receptor) plays the critical roles in the vital cell activities, proliferation, differentiation, migration and survival in response to polypeptide growth factor ligands. Aberrant activation of this receptor has been demonstrated in many human cancers, particularly in non-small cell lung carcinoma (NSCLC). L858R point mutation is the most common oncogenic mutation in EGFR tyrosine kinase domain in patients with EGFR-mutated NSCLC. A feedback inhibitor of EGFR is MIG6 molecule which binds peptide-substrate binding site of the receptor and leads to degradation of activated EGFR. In this in silico study, the peptide-substrate binding site of EGFRL858R mutant has been targeted to inhibit it using molecular docking, MD simulation and MM-PBSA method. Finally, physicochemical properties of the designed peptides have been evaluated. A peptide library was provided composed of 31 peptides which were designed based on the MIG6 structure. The results indicated that, two peptides were able to inhibit EGFRL858R mutant selectively. This computational study could be helpful in designing novel inhibitory peptides to inhibit oncogenic EGFR mutants which do not respond to available EGFR TKIs.
Collapse
|
30
|
Ichise T, Yoshida N, Ichise H. CBP/p300 antagonises EGFR‐Ras‐Erk signalling and suppresses increased Ras‐Erk signalling‐induced tumour formation in mice. J Pathol 2019; 249:39-51. [DOI: 10.1002/path.5279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Taeko Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
- Institute for Animal Research, Faculty of Medicine University of the Ryukyus Okinawa Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Hirotake Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
- Institute for Animal Research, Faculty of Medicine University of the Ryukyus Okinawa Japan
| |
Collapse
|
31
|
Xiao Z, Sperl B, Gärtner S, Nedelko T, Stacher-Priehse E, Ullrich A, Knyazev PG. Lung cancer stem cells and their aggressive progeny, controlled by EGFR/MIG6 inverse expression, dictate a novel NSCLC treatment approach. Oncotarget 2019; 10:2546-2560. [PMID: 31069016 PMCID: PMC6493460 DOI: 10.18632/oncotarget.26817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
The lung cancer stem cell (LuCSC) model comprises an attractive framework to explore acquired drug resistance in non-small cell lung cancer (NSCLC) treatment. Here, we used NSCLC cell line model to translate cellular heterogeneity into tractable populations to understand the origin of lung cancers and drug resistance. The epithelial LuCSCs, presumably arising from alveolar bipotent stem/progenitor cells, were lineage naïve, noninvasive, and prone to creating aggressive progeny expressing AT2/AT1 markers. LuCSC-holoclones were able to initiate rimmed niches, where their specialization created pseudo-alveoli structures. Mechanistically, LuCSC transitioning from self-renewal (β-catenin and Nanog signaling) to malignant lineage differentiation is regulated by EGFR activation and the inverse inhibition of tumor suppressor MIG6. We further identified the functional roles of endogenous EGFR signaling in mediating progeny invasiveness and their ligands in LuCSC differentiation. Importantly, drug screening demonstrated that EGFR driving progeny were strongly responsive to TKIs; however, the LuCSCs were exclusively resistant but sensitive to AMPK agonist Metformin, antibiotic Salinomycin and to a lesser degree Carboplatin. Our data reveals previously an unknown mechanism of NSCLC resistance to EGFR-TKIs, which is associated with LuCSCs bearing a silenced EGFR and inversely expressed MIG6 suppressor gene. Taken altogether, successful NSCLC treatment requires development of a novel combination of drugs, efficiently targeting both LuCSCs and heterogeneous progeny.
Collapse
Affiliation(s)
- Zhiguang Xiao
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany,2 Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bianca Sperl
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Silvia Gärtner
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Tatiana Nedelko
- 3 Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, 81675, Germany
| | | | - Axel Ullrich
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Pjotr G. Knyazev
- 1 Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany,5 Current address: DoNatur GmbH, Martinsried, Munich, 82152, Germany
| |
Collapse
|
32
|
Donner DB, Ruan DT, Toriguchi K, Bergsland EK, Nakakura EK, Lin MH, Antonia RJ, Warren RS. Mitogen Inducible Gene-6 Is a Prognostic Marker for Patients with Colorectal Liver Metastases. Transl Oncol 2019; 12:550-560. [PMID: 30639964 PMCID: PMC6328378 DOI: 10.1016/j.tranon.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Prognostic schemes that rely on clinical variables to predict outcome after resection of colorectal metastases remain imperfect. We hypothesized that molecular markers can improve the accuracy of prognostic schemes. METHODS We screened the transcriptome of matched colorectal liver metastases (CRCLM) and primary tumors from 42 patients with unresected CRCLM to identify differentially expressed genes. Among the differentially expressed genes identified, we looked for associations between expression and time to disease progression or overall survival. To validate such associations, mRNA levels of the candidate genes were assayed by qRT-PCR from CRCLM in 56 additional patients who underwent hepatectomy. RESULTS Seven candidate genes were selected for validation based on their differential expression between metastases and primary tumors and a correlation between expression and surgical outcome: lumican; tissue inhibitor metalloproteinase 1; basic helix-loop-helix domain containing class B2; fibronectin; transmembrane 4 superfamily member 1; mitogen inducible gene 6 (MIG-6); and serpine 2. In the hepatectomy group, only MIG-6 expression was predictive of poor survival after hepatectomy. Quantitative PCR of MIG-6 mRNA was performed on 25 additional hepatectomy patients to determine if MIG-6 expression could substratify patients beyond the clinical risk score. Patients within defined clinical risk score categories were effectively substratified into distinct groups by relative MIG-6 expression. CONCLUSIONS MIG-6 expression is inversely associated with survival after hepatectomy and may be used to improve traditional prognostic schemes that rely on clinicopathologic data such as the Clinical Risk Score.
Collapse
Affiliation(s)
- David B Donner
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143.
| | - Dan T Ruan
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Kan Toriguchi
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Emily K Bergsland
- The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; Department of Medicine, Division of Hematology/Oncology, The University of California San Francisco, San Francisco, CA. 94143
| | - Eric K Nakakura
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Meng Hsun Lin
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Ricardo J Antonia
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Robert S Warren
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| |
Collapse
|
33
|
The Tumor Suppressor MIG6 Controls Mitotic Progression and the G2/M DNA Damage Checkpoint by Stabilizing the WEE1 Kinase. Cell Rep 2018; 24:1278-1289. [DOI: 10.1016/j.celrep.2018.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
|
34
|
Li H, Chen H, Wang H, Dong Y, Yin M, Zhang L, Wei J. MicroRNA-374a Promotes Hepatocellular Carcinoma Cell Proliferation by Targeting Mitogen-Inducible Gene 6 (MIG-6). Oncol Res 2018; 26:557-563. [PMID: 28734040 PMCID: PMC7844684 DOI: 10.3727/096504017x15000784459799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a disease with poor prognosis rates and ineffective therapeutic options. Previous studies have reported the involvement of mitogen-inducible gene 6 (MIG-6) as a negative regulator in tumor formation. MicroRNAs (miRNAs) play crucial roles in the development of different types of cancer. However, the underlying mechanisms of miRNAs in HCC are poorly understood. This study was aimed to investigate the role of miR-374a in HCC and its role in the regulation of expression of MIG-6. The results showed that MIG-6 overexpression significantly inhibited cell viability of HepG2 cells after 4 days posttransfection. Moreover, MIG-6 was a direct target of miR-374a, and the expression of MIG-6 was remarkably downregulated by the overexpression of miR-374a in HepG2 cells. Furthermore, we found that overexpression of miR-374a promoted cell viability; however, the protective effect was abolished by MIG-6 overexpression. In addition, overexpression of miR-374a activated the EGFR and AKT/ERK signaling pathways by regulation of MIG-6. Our findings suggest that miR-374a could promote cell viability by targeting MIG-6 and activating the EGFR and AKT/ERK signaling pathways. These data provide a promising therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Hui Li
- *Department of Liver and Infectious Diseases, Liver Disease Research Center, The Second People’s Hospital of Yunnan Province, Kunming, P.R. China
| | - Huicheng Chen
- †School of Medicine, Yunnan University, Kunming, P.R. China
| | - Haibin Wang
- ‡The Second Department of Liver Diseases, The Third People’s Hospital of Kunming City, Kunming, P.R. China
| | - Yilong Dong
- †School of Medicine, Yunnan University, Kunming, P.R. China
| | - Min Yin
- †School of Medicine, Yunnan University, Kunming, P.R. China
| | - Liang Zhang
- §Liver Disease Research Center, The Second People’s Hospital of Yunnan Province, Kunming, P.R. China
| | - Jia Wei
- *Department of Liver and Infectious Diseases, Liver Disease Research Center, The Second People’s Hospital of Yunnan Province, Kunming, P.R. China
| |
Collapse
|
35
|
Zhang H, Liu W, Wang Z, Meng L, Wang Y, Yan H, Li L. MEF2C promotes gefitinib resistance in hepatic cancer cells through regulating MIG6 transcription. TUMORI JOURNAL 2018; 104:221-231. [PMID: 29714661 DOI: 10.1177/0300891618765555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Mitogen-inducible gene 6 ( MIG6) holds a special position in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance. As MIG6 regulates the activity of EGFR signal pathway negatively, high level of MIG6 can increase the EGFR TKI resistance of cancer cells, and limit the therapeutic action of EGFR TKI, such as gefitinib or erlotinib. Therefore, better understanding of the molecular mechanisms underlying the regulation of EGFR TKI resistance holds great value in cancer therapy. Methods: In our study, we mainly explored the function of transcription activator, myocyte enhancer factor 2C (MEF2C), on MIG6 expression as well as gefitinib-resistant ability of hepatic cancer cells. Results: Our results indicated that both MEF2C and MIG6 could be upregulated in gefitinib-resistant cancer tissues and cancer cell lines compared with gefitinib-sensitive ones. Chromatin immunoprecipitation assay and dual luciferase assay showed that MEF2C could bind to the MEF2C element in the promoter sequence of MIG6 and promote the transcription of MIG6. This effect increased the gefitinib-resistant ability of cancer cells. Therefore, MEF2C knockdown inhibited the gefitinib resistance and limited the proliferation of hepatic cancer cells in vitro and in vivo, while overexpression of MEF2C showed opposite effect on cancer cell proliferation. Conclusion: Our study provides novel insight into the regulation mechanism of MIG6 and suggests potential implications for the therapeutic strategies of gefitinib resistance through inhibiting MEF2C in hepatic cancer cells.
Collapse
Affiliation(s)
- Hui Zhang
- Department II of Hepatobiliary Surgery, The People’s Hospital of Chuxiong Yi Autonomous Prefecture, the Fourth Affiliated Hospital of Dali University, Chuxiong, China
| | - Wei Liu
- Department II of Hepatobiliary Surgery, The People’s Hospital of Chuxiong Yi Autonomous Prefecture, the Fourth Affiliated Hospital of Dali University, Chuxiong, China
| | - Zhi Wang
- Department II of Hepatobiliary Surgery, The People’s Hospital of Chuxiong Yi Autonomous Prefecture, the Fourth Affiliated Hospital of Dali University, Chuxiong, China
| | - Lin Meng
- Department II of Hepatobiliary Surgery, The People’s Hospital of Chuxiong Yi Autonomous Prefecture, the Fourth Affiliated Hospital of Dali University, Chuxiong, China
| | - Yunhua Wang
- Department II of Hepatobiliary Surgery, The People’s Hospital of Chuxiong Yi Autonomous Prefecture, the Fourth Affiliated Hospital of Dali University, Chuxiong, China
| | - Huawu Yan
- Department II of Hepatobiliary Surgery, The People’s Hospital of Chuxiong Yi Autonomous Prefecture, the Fourth Affiliated Hospital of Dali University, Chuxiong, China
| | - Lin Li
- Department II of Hepatobiliary Surgery, The People’s Hospital of Chuxiong Yi Autonomous Prefecture, the Fourth Affiliated Hospital of Dali University, Chuxiong, China
| |
Collapse
|
36
|
Inhibition of Cdc42 is essential for Mig-6 suppression of cell migration induced by EGF. Oncotarget 2018; 7:49180-49193. [PMID: 27341132 PMCID: PMC5226500 DOI: 10.18632/oncotarget.10205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022] Open
Abstract
The adaptor protein Mig-6 is a negative regulator of EGF signaling. It is shown that Mig-6 inhibits cell migration via direct interaction with the ErbB receptors, thereby inhibiting cross-phosphorylation or targeting the receptors for degradation. Mig-6 has also been shown to bind to and inhibit the Rho GTPase Cdc42 to suppress cytoskeletal rearrangement. However, the molecular mechanism(s) by which Mig-6 inhibits cell migration via Cdc42 is still not entirely clear. Here, we show that Mig-6 binding to Cdc42 is necessary and sufficient to inhibit EGF-induced filopodia formation and migration. This binding, mediated by four specific residues (I11, R12, M26, R30) in the Mig-6 CRIB domain, is essential for Mig-6 function. In addition, ectopic expression of Cdc42 reverses Mig-6 inhibition of cell migration. Mig-6 CRIB domain, alone, is sufficient to inhibit cell migration. Conversely, Mig-6 binding to EGFR is dispensable for Mig-6-mediated inhibition of cell migration. Moreover, we found that decreased Mig-6 expression correlates with cancer progression in breast and prostate cancers. Together, our results demonstrate that Mig-6 inhibition of Cdc42 signaling is critical in Mig-6 function to suppress cell migration and that dysregulation of this pathway may play a critical role in cancer development.
Collapse
|
37
|
Cairns J, Fridley BL, Jenkins GD, Zhuang Y, Yu J, Wang L. Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation. EMBO Rep 2018; 19:embr.201744767. [PMID: 29335246 PMCID: PMC5835844 DOI: 10.15252/embr.201744767] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
AKT signaling is modulated by a complex network of regulatory proteins and is commonly deregulated in cancer. Here, we present a dual mechanism of AKT regulation by the ERBB receptor feedback inhibitor 1 (ERRFI1). We show that in cells expressing high levels of EGFR, ERRF1 inhibits growth and enhances responses to chemotherapy. This is mediated in part through the negative regulation of AKT signaling by direct ERRFI1-dependent inhibition of EGFR In cells expressing low levels of EGFR, ERRFI1 positively modulates AKT signaling by interfering with the interaction of the inactivating phosphatase PHLPP with AKT, thereby promoting cell growth and chemotherapy desensitization. These observations broaden our understanding of chemotherapy response and have important implications for the selection of targeted therapies in a cell context-dependent manner. EGFR inhibition can only sensitize EGFR-high cells for chemotherapy, while AKT inhibition increases chemosensitivity in EGFR-low cells. By understanding these mechanisms, we can take advantage of the cellular context to individualize antineoplastic therapy. Finally, our data also suggest targeting of EFFRI1 in EGFR-low cancer as a promising therapeutic approach.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Fridley
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Gregory D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Yongxian Zhuang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
38
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
39
|
Deng Y, Li J. Rational Optimization of Tumor Suppressor-Derived Peptide Inhibitor Selectivity between Oncogene Tyrosine Kinases ErbB1 and ErbB2. Arch Pharm (Weinheim) 2017; 350. [PMID: 29131383 DOI: 10.1002/ardp.201700181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/23/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Yilin Deng
- Weifang People's Hospital affiliated to Weifang Medical University; Weifang; China
| | - Jian Li
- The 89th Hospital of People's Liberation Army; Weifang; China
| |
Collapse
|
40
|
Abstract
Trophic factors control cellular physiology by activating specific receptor tyrosine kinases (RTKs). While the over activation of RTK signaling pathways is associated with cell growth and cancer, recent findings support the concept that impaired down-regulation or deactivation of RTKs may also be a mechanism involved in tumor formation. Under this perspective, the molecular determinants of RTK signaling inhibition may act as tumor-suppressor genes and have a potential role as tumor markers to monitor and predict disease progression. Here, we review the current understanding of the physiological mechanisms that attenuate RTK signaling and discuss evidence that implicates deregulation of these events in cancer.
Collapse
|
41
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
42
|
Liu J, Cho SN, Wu SP, Jin N, Moghaddam SJ, Gilbert JL, Wistuba I, DeMayo FJ. Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis. Lung Cancer 2017; 112:47-56. [PMID: 29191600 PMCID: PMC5718380 DOI: 10.1016/j.lungcan.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer related deaths worldwide and mutation activating KRAS is one of the most frequent mutations found in lung adenocarcinoma. Identifying regulators of KRAS may aid in the development of therapies to treat this disease. The mitogen-induced gene 6, MIG-6, is a small adaptor protein modulating signaling in cells to regulate the growth and differentiation in multiple tissues. Here, we investigated the role of Mig-6 in regulating adenocarcinoma progression in the lungs of genetically engineered mice with activation of Kras. MATERIALS AND METHODS Using the CCSPCre mouse to specifically activate expression of the oncogenic KrasG12D in Club cells, we investigated the expression of Mig-6 in CCSPCreKrasG12D-induced lung tumors. To determine the role of Mig-6 in KrasG12D-induced lung tumorigenesis, Mig-6 was conditionally ablated in the Club cells by breeding Mig6f/f mice to CCSPCreKrasG12D mice, yielding CCSPCreMig-6d/dKrasG12D mice (Mig-6d/dKrasG12D). RESULTS We found that Mig-6 expression is decreased in CCSPCreKrasG12D-induced lung tumors. Ablation of Mig-6 in the KrasG12D background led to enhanced tumorigenesis and reduced life expectancy. During tumor progression, there was increased airway hyperplasia, a heightened inflammatory response, reduced apoptosis in KrasG12D mouse lungs, and an increase of total and phosphorylated ERBB4 protein levels. Mechanistically, Mig-6 deficiency attenuates the cell apoptosis of lung tumor expressing KRASG12D partially through activating the ErbB4 pathway. CONCLUSIONS In summary, Mig-6 deficiency promotes the development of KrasG12D-induced lung adenoma through reducing the cell apoptosis in KrasG12D mouse lungs partially by activating the ErbB4 pathway.
Collapse
Affiliation(s)
- Jian Liu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Sung-Nam Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Nili Jin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L Gilbert
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA.
| |
Collapse
|
43
|
Wang H, Guo C, Ren D, Xu T, Cao Y, Xiao W, Jiao W. Let it bind: cyclization of Mig-6 segment 2 to target EGFR signaling in lung cancer. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1849-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Kim TH, Yoo JY, Jeong JW. Mig-6 Mouse Model of Endometrial Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:243-259. [PMID: 27910070 DOI: 10.1007/978-3-319-43139-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endometrial cancer is a frequently occurring gynecological disorder. Estrogen-dependent endometrioid carcinoma is the most common type of gynecological cancer. One of the major pathologic phenomena of endometrial cancer is the loss of estrogen (E2) and progesterone (P4) control over uterine epithelial cell proliferation. P4 antagonizes the growth-promoting properties of E2 in the uterus. P4 prevents the development of endometrial cancer associated with unopposed E2 by blocking E2 actions. Mitogen inducible gene 6 (Mig-6, Errfi1, RALT, or gene 33) is an immediate early response gene that can be induced by various mitogens and common chronic stress stimuli. Mig-6 has been identified as an important component of P4-mediated inhibition of E2 signaling in the uterus. Decreased expression of MIG-6 is observed in human endometrial carcinomas. Transgenic mice with Mig-6 ablation in the uterus develop endometrial hyperplasia and E2-dependent endometrial cancer. Thus, MIG-6 has a tumor suppressor function in endometrial tumorigenesis. The following discussion summarizes our current knowledge of Mig-6 mouse models and their role in understanding the molecular mechanisms of endometrial tumorigenesis and in the development of therapeutic approaches for endometrial cancer.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
45
|
Usmani SE, Ulici V, Pest MA, Hill TL, Welch ID, Beier F. Context-specific protection of TGFα null mice from osteoarthritis. Sci Rep 2016; 6:30434. [PMID: 27457421 PMCID: PMC4960644 DOI: 10.1038/srep30434] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/05/2016] [Indexed: 01/30/2023] Open
Abstract
Transforming growth factor alpha (TGFα) is a growth factor involved in osteoarthritis (OA). TGFα induces an OA-like phenotype in articular chondrocytes, by inhibiting matrix synthesis and promoting catabolic factor expression. To better understand TGFα’s potential as a therapeutic target, we employed two in vivo OA models: (1) post-traumatic and (2) aging related OA. Ten-week old and six-month old male Tgfa null mice and their heterozygous (control) littermates underwent destabilization of the medial meniscus (DMM) surgery. Disease progression was assessed histologically using the Osteoarthritis Research Society International (OARSI) scoring system. As well, spontaneous disease progression was analyzed in eighteen-month-old Tgfa null and heterozygous mice. Ten-week old Tgfa null mice were protected from OA progression at both seven and fourteen weeks post-surgery. No protection was seen however in six-month old null mice after DMM surgery, and no differences were observed between genotypes in the aging model. Thus, young Tgfa null mice are protected from OA progression in the DMM model, while older mice are not. In addition, Tgfa null mice are equally susceptible to spontaneous OA development during aging. Thus, TGFα might be a valuable therapeutic target in some post-traumatic forms of OA, however its role in idiopathic disease is less clear.
Collapse
Affiliation(s)
- Shirine E Usmani
- Department of Physiology &Pharmacology, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, ON, Canada
| | - Veronica Ulici
- Department of Physiology &Pharmacology, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, ON, Canada
| | - Michael A Pest
- Department of Physiology &Pharmacology, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, ON, Canada
| | - Tracy L Hill
- Department of Animal Care and Veterinary Services, University of Western Ontario, London, Canada
| | - Ian D Welch
- Department of Animal Care and Veterinary Services, University of Western Ontario, London, Canada
| | - Frank Beier
- Department of Physiology &Pharmacology, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
46
|
Li FX, Liu Y, Miao XP, Fu GQ, Curry TE. Expression and regulation of the differentiation regulators ERBB Receptor Feedback Inhibitor 1 (ERRFI1) and Interferon-related Developmental Regulator 1 (IFRD1) during the periovulatory period in the rat ovary. Mol Reprod Dev 2016; 83:714-23. [DOI: 10.1002/mrd.22673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Fei-xue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Ying Liu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Xiao-ping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Guo-quan Fu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center; University of Kentucky; Lexington Kentucky
| |
Collapse
|
47
|
Li N, Wei M. Conversion of MIG6 peptide from the nonbinder to binder of lung cancer-related EGFR by phosphorylation and cyclization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1023-1028. [PMID: 27346601 DOI: 10.1080/21691401.2016.1200058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Na Li
- Department of Respiratory Medicine, Linyi People’s Hospital, Linyi, China
| | - Meng Wei
- Department of Chest Surgery, Linyi People’s Hospital, Linyi, China
| |
Collapse
|
48
|
Vu HL, Aplin AE. Targeting mutant NRAS signaling pathways in melanoma. Pharmacol Res 2016; 107:111-116. [PMID: 26987942 DOI: 10.1016/j.phrs.2016.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
Abstract
Cutaneous melanoma is a devastating form of skin cancer and its incidence is increasing faster than any other preventable cancer in the United States. The mutant NRAS subset of melanoma is more aggressive and associated with poorer outcomes compared to non-NRAS mutant melanoma. The aggressive nature and complex molecular signaling conferred by this transformation has evaded clinically effective treatment options. This review examines the major downstream effectors of NRAS relevant in melanoma and the associated advances made in targeted therapies that focus on these effector pathways. We outline the history of MEK inhibition in mutant NRAS melanoma and recent advances with newer MEK inhibitors. Since MEK inhibitors will likely be optimized when combined with other targeted therapies, we focus on recently identified targets that can be used in combination with MEK inhibitors.
Collapse
Affiliation(s)
- Ha Linh Vu
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
49
|
Truncation, modification, and optimization of MIG6(segment 2) peptide to target lung cancer-related EGFR. Comput Biol Chem 2016; 61:251-7. [PMID: 26967626 DOI: 10.1016/j.compbiolchem.2016.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 11/24/2022]
Abstract
Human epidermal growth factor receptor (EGFR) plays a central role in the pathological progression and metastasis of lung cancer; the development and clinical application of therapeutic agents that target the receptor provide important insights for new lung cancer therapies. The tumor-suppressor protein MIG6 is a negative regulator of EGFR, which can bind at the activation interface of asymmetric dimer of EGFR kinase domains to disrupt dimerization and then inactivate the kinase (Zhang X. et al. Nature 2007, 450: 741-744). The protein adopts two separated segments, i.e. MIG6(segment 1) and MIG6(segment 2), to directly interact with EGFR. Here, computational modeling and analysis of the intermolecular interaction between EGFR kinase domain and MIG6(segment 2) peptide revealed that the peptide is folded into a two-stranded β-sheet composed of β-strand 1 and β-strand 2; only the β-strand 2 can directly interact with EGFR activation loop, while leaving β-strand 1 apart from the kinase. A C-terminal island within the β-strand 2 is primarily responsible for peptide binding, which was truncated from the MIG6(segment 2) and exhibited weak affinity to EGFR kinase domain. Structural and energetic analysis suggested that phosphorylation at residues Tyr394 and Tyr395 of truncated peptide can considerably improve EGFR affinity, and mutation of other residues can further optimize the peptide binding capability. Subsequently, three derivative versions of the truncated peptide, including phosphorylated and dephosphorylated peptides as well as a double-point mutant were synthesized and purified, and their affinities to the recombinant protein of human EGFR kinase domain were determined by fluorescence anisotropy titration. As expected theoretically, the dephosphorylated peptide has no observable binding to the kinase, and phosphorylation and mutation can confer low and moderate affinities to the peptide, respectively, suggesting a good consistence between the computational analysis and experimental assay.
Collapse
|
50
|
Design and Optimization of Peptide Ligands to Target Breast Cancer-Positive HER2 by Grafting and Truncation of MIG6 Peptide. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9501-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|