1
|
Ke X, Dong HD, Zhao XM, Wang XX, Liu ZQ, Zheng YG. Functional Expression and Construction of a Self-Sufficient Cytochrome P450 Chimera for Efficient Steroidal C14α Hydroxylation in Escherichia coli. Biotechnol Bioeng 2024. [PMID: 39702940 DOI: 10.1002/bit.28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
C14-functionalized steroids enabled diverse biological activities in anti-gonadotropin and anticancer therapy. However, access to C14-functionalized steroids was impeded by the deficiency of chemical synthetic methods. Recently, several membrane-bound fungal cytochrome P450s (CYPs) have been identified with steroid C14α-hydroxylation activity. However, the lack of efficient heterologous overexpression strategy hampered their further characterization and molecular engineering. In the present study, sequences of fungi-derived CYP genes encoding putative 14α-hydroxylase were selected and bioinformatically analyzed. Substitution of the N-terminal hydrophobic helix by a soluble maltose binding protein tag significantly enhanced the soluble expression level in Escherichia coli. A novel CYP originated from Bipolaris oryzae was discovered with high steroidal C14α-hydroxylation activity when coupled with the redox partner CPRlun. A catalytically self-sufficient chimeric CYP-CPR was built by intramolecular fusion, and the electronic transfer rate was improved. A coenzyme NADPH regeneration system was finally constructed by the co-expression of glucose dehydrogenase. The developed soluble multi-enzyme cascade biotransformation system supported the selective C14α-hydroxylation toward progesterone with a final titer of 34.54 mg/L, the highest level achieved in E. coli-based heterologous expression system. This study provides insightful ideas on the functional expression of fungi-derived CYPs and promises an efficient C14α-hydroxylation system for steroidal drugs through protein engineering.
Collapse
Affiliation(s)
- Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hong-Duo Dong
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xi-Man Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Li S, Li Z, Zhang G, Urlacher VB, Ma L, Li S. Functional analysis of the whole CYPome and Fdxome of Streptomyces venezuelae ATCC 15439. ENGINEERING MICROBIOLOGY 2024; 4:100166. [PMID: 39628593 PMCID: PMC11610998 DOI: 10.1016/j.engmic.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 enzymes (CYPs or P450s) and ferredoxins (Fdxs) are ubiquitously distributed in all domains of life. Bacterial P450s are capable of catalyzing various oxidative reactions with two electrons usually donated by Fdxs. Particularly in Streptomyces, there are abundant P450s that have exhibited outstanding biosynthetic capacity of bioactive metabolites and great potential for xenobiotic metabolisms. However, no systematic study has been conducted on physiological functions of the whole cytochrome P450 complement (CYPome) and ferredoxin complement (Fdxome) of any Streptomyces strain to date, leaving a significant knowledge gap in microbial functional genomics. Herein, we functionally analyze the whole CYPome and Fdxome of Streptomyces venezuelae ATCC 15439 by investigating groups of single and sequential P450 deletion mutants, single P450 overexpression mutants, and Fdx gene deletion or repression mutants. Construction of an unprecedented P450-null mutant strain indicates that none of P450 genes are essential for S. venezuelae in maintaining its survival and normal morphology. The non-housekeeping Fdx1 and housekeeping Fdx3 not only jointly support the cellular activity of the prototypic P450 enzyme PikC, but also play significant regulatory functions. These findings significantly advance the understandings of the native functionality of P450s and Fdxs as well as their cellular interactions.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Guoqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Schultes FPJ, Welter L, Hufnagel D, Heghmanns M, Kasanmascheff M, Mügge C. An Active and Versatile Electron Transport System for Cytochrome P450 Monooxygenases from the Alkane Degrading Organism Acinetobacter sp. OC4. Chembiochem 2024; 25:e202400098. [PMID: 38787654 DOI: 10.1002/cbic.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Cytochrome P450 monooxygenases (CYPs) are valuable biocatalysts for the oxyfunctionalization of non-activated carbon-hydrogen bonds. Most CYPs rely on electron transport proteins as redox partners. In this study, the ferredoxin reductase (FdR) and ferredoxin (FD) for a cytochrome P450 monooxygenase from Acinetobacter sp. OC4 are investigated. Upon heterologous production of both proteins independently in Escherichia coli, spectral analysis showed their reduction capability towards reporter electron acceptors, e. g., cytochrome c. The individual proteins' specific activity towards cytochrome c reduction was 25 U mg-1. Furthermore, the possibility to enhance electron transfer by artificial fusion of the units was elucidated. FdR and FD were linked by helical linkers [EAAAK]n, flexible glycine linkers [GGGGS]n or rigid proline linkers [EPPPP]n of n=1-4 sequence repetitions. The system with a glycine linker (n=4) reached an appreciable specific activity of 19 U mg-1 towards cytochrome c. Moreover, their ability to drive different members of the CYP153A subfamily is demonstrated. By creating artificial self-sufficient P450s with FdR, FD, and a panel of four CYP153A representatives, effective hydroxylation of n-hexane in a whole-cell system was achieved. The results indicate this protein combination to constitute a functional and versatile surrogate electron transport system for this subfamily.
Collapse
Affiliation(s)
- Fabian Peter Josef Schultes
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Leon Welter
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Doreen Hufnagel
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Melanie Heghmanns
- Technical University Dortmund, Faculty for Chemistry and Chemical Biology, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Technical University Dortmund, Faculty for Chemistry and Chemical Biology, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Carolin Mügge
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
4
|
Bertelmann C, Bühler B. Strategies found not to be suitable for stabilizing high steroid hydroxylation activities of CYP450 BM3-based whole-cell biocatalysts. PLoS One 2024; 19:e0309965. [PMID: 39240904 PMCID: PMC11379211 DOI: 10.1371/journal.pone.0309965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
The implementation of biocatalytic steroid hydroxylation processes plays a crucial role in the pharmaceutical industry due to a plethora of medicative effects of hydroxylated steroid derivatives and their crucial role in drug approval processes. Cytochrome P450 monooxygenases (CYP450s) typically constitute the key enzymes catalyzing these reactions, but commonly entail drawbacks such as poor catalytic rates and the dependency on additional redox proteins for electron transfer from NAD(P)H to the active site. Recently, these bottlenecks were overcome by equipping Escherichia coli cells with highly active variants of the self-sufficient single-component CYP450 BM3 together with hydrophobic outer membrane proteins facilitating cellular steroid uptake. The combination of the BM3 variant KSA14m and the outer membrane pore AlkL enabled exceptionally high testosterone hydroxylation rates of up to 45 U gCDW-1 for resting (i.e., living but non-growing) cells. However, a rapid loss of specific activity heavily compromised final product titers and overall space-time yields. In this study, several stabilization strategies were evaluated on enzyme-, cell-, and reaction level. However, neither changes in biocatalyst configuration nor variation of cultivation media, expression systems, or inducer concentrations led to considerable improvement. This qualified the so-far used genetic construct pETM11-ksa14m-alkL, M9 medium, and the resting-cell state as the best options enabling comparatively efficient activity along with fast growth prior to biotransformation. In summary, we report several approaches not enabling a stabilization of the high testosterone hydroxylation rates, providing vital guidance for researchers tackling similar CYP450 stability issues. A comparison with more stable natively steroid-hydroxylating CYP106A2 and CYP154C5 in equivalent setups further highlighted the high potential of the investigated CYP450 BM3-based whole-cell biocatalysts. The immense and continuously developing repertoire of enzyme engineering strategies provides promising options to stabilize the highly active biocatalysts.
Collapse
Affiliation(s)
- Carolin Bertelmann
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| | - Bruno Bühler
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| |
Collapse
|
5
|
Yoo SK, Cheong DE, Yoo HS, Choi HJ, Nguyen NA, Yun CH, Kim GJ. Promising properties of cytochrome P450 BM3 reconstituted from separate domains by split intein. Int J Biol Macromol 2024; 273:132793. [PMID: 38830492 DOI: 10.1016/j.ijbiomac.2024.132793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Recombinant cytochrome P450 monooxygenases possess significant potential as biocatalysts, and efforts to improve heme content, electron coupling efficiency, and catalytic activity and stability are ongoing. Domain swapping between heme and reductase domains, whether natural or engineered, has thus received increasing attention. Here, we successfully achieved split intein-mediated reconstitution (IMR) of the heme and reductase domains of P450 BM3 both in vitro and in vivo. Intriguingly, the reconstituted enzymes displayed promising properties for practical use. IMR BM3 exhibited a higher heme content (>50 %) and a greater tendency for oligomerization compared to the wild-type enzyme. Moreover, these reconstituted enzymes exhibited a distinct increase in activity ranging from 165 % to 430 % even under the same heme concentrations. The reproducibility of our results strongly suggests that the proposed reconstitution approach could pave a new path for enhancing the catalytic efficiency of related enzymes.
Collapse
Affiliation(s)
- Su-Kyoung Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea
| | - Dae-Eun Cheong
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea
| | - Ho-Seok Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea
| | - Hye-Ji Choi
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea
| | - Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea.
| |
Collapse
|
6
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Liu W, Li H, Guo D, Ni Y, Zhang X, Shi J, Koffas MAG, Xu Z. Engineering of redox partners and cofactor NADPH supply of CYP68JX for efficient steroid two-step ordered selective hydroxylation activity. J Steroid Biochem Mol Biol 2024; 238:106452. [PMID: 38160767 DOI: 10.1016/j.jsbmb.2023.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
CYP68JX, a P450 hydroxylase, derived from Colletotrichum lini ST-1 is capable of biotransforming dehydroepiandrosterone (DHEA) to 3β,7α,15α-trihydroxy-5-androstene-17-one (7α,15α-diOH-DHEA). Redox partners and cofactor supply are important factors affecting the catalytic activity of CYP68JX. In this study, the heterologous expression of CYP68JX in Saccharomyces cerevisiae BY4741 was realized resulting in a 17.1% target product yield. In order to increase the catalytic efficiency of CYP68JX in S. cerevisiae BY4741, a complete cytochrome P450 redox system was constructed. Through the combination of CYP68JX and heterologous CPRs, the yield of the target product 7α,15α-diOH-DHEA in CYP68JX recombinant system was increased to 37.8%. Furthermore, by adding NADPH coenzyme precursor tryptophan of 40 mmol/L and co-substrate fructose of 20 g/L during the conversion process, the catalytic efficiency of CYP68JX was further improved, the target product yield reached 57.9% which was 3.39-fold higher than initial yield. Overall, this study provides a reference for improving the catalytic activity of P450s.
Collapse
Affiliation(s)
- Wei Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hui Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Dongxin Guo
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Ni
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| | - Zhenghong Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Bertelmann C, Mock M, Schmid A, Bühler B. Efficiency aspects of regioselective testosterone hydroxylation with highly active CYP450-based whole-cell biocatalysts. Microb Biotechnol 2024; 17:e14378. [PMID: 38018939 PMCID: PMC10832557 DOI: 10.1111/1751-7915.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
Steroid hydroxylations belong to the industrially most relevant reactions catalysed by cytochrome P450 monooxygenases (CYP450s) due to the pharmacological relevance of hydroxylated derivatives. The implementation of respective bioprocesses at an industrial scale still suffers from several limitations commonly found in CYP450 catalysis, that is low turnover rates, enzyme instability, inhibition and toxicity related to the substrate(s) and/or product(s). Recently, we achieved a new level of steroid hydroxylation rates by introducing highly active testosterone-hydroxylating CYP450 BM3 variants together with the hydrophobic outer membrane protein AlkL into Escherichia coli-based whole-cell biocatalysts. However, the activity tended to decrease, which possibly impedes overall productivities and final product titres. In this study, a considerable instability was confirmed and subject to a systematic investigation regarding possible causes. In-depth evaluation of whole-cell biocatalyst kinetics and stability revealed a limitation in substrate availability due to poor testosterone solubility as well as inhibition by the main product 15β-hydroxytestosterone. Instability of CYP450 BM3 variants was disclosed as another critical factor, which is of general significance for CYP450-based biocatalysis. Presented results reveal biocatalyst, reaction and process engineering strategies auguring well for industrial implementation of the developed steroid hydroxylation platform.
Collapse
Affiliation(s)
| | - Magdalena Mock
- Department of Solar MaterialsLeipzigGermany
- Present address:
Department of Mechanical Engineering and Material SciencesGeorg Agricola University of Applied SciencesBochumGermany
| | | | - Bruno Bühler
- Department of Solar MaterialsLeipzigGermany
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research GmbH–UFZLeipzigGermany
| |
Collapse
|
9
|
Chen M, Petriti V, Mondal A, Jiang Y, Ding Y. Direct aromatic nitration by bacterial P450 enzymes. Methods Enzymol 2023; 693:307-337. [PMID: 37977734 PMCID: PMC10928822 DOI: 10.1016/bs.mie.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nitro aromatics have broad applications in industry, agriculture, and pharmaceutics. However, their industrial production is faced with many challenges including poor selectivity, heavy pollution and safety concerns. Nature provides multiple strategies for aromatic nitration, which opens the door for the development of green and efficient biocatalysts. Our group's efforts focused on a unique bacterial cytochrome P450 TxtE that originates from the biosynthetic pathway of phytotoxin thaxtomins, which can install a nitro group at C4 of l-Trp indole ring. TxtE is a Class I P450 and its reaction relies on a pair of redox partners ferredoxin and ferredoxin reductase for essential electron transfer. To develop TxtE as an efficient nitration biocatalyst, we created artificial self-sufficient P450 chimeras by fusing TxtE with the reductase domain of the bacterial P450BM3 (BM3R). We evaluated the catalytic performance of the chimeras with different lengths of the linker connecting TxtE and BM3R domains and identified one with a 14-amino-acid linker (TB14) to give the best activity. In addition, we demonstrated the broad substrate scope of the engineered biocatalyst by screening diverse l-Trp analogs. In this chapter, we provide a detailed procedure for the development of aromatic nitration biocatalysts, including the construction of P450 fusion chimeras, biochemical characterization, determination of catalytic parameters, and testing of enzyme-substrate scope. These protocols can be followed to engineer other P450 enzymes and illustrate the processes of biocatalytic development for the synthesis of nitro chemicals.
Collapse
Affiliation(s)
- Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Vanisa Petriti
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Amit Mondal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Yujia Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
10
|
Amini SE, Bresson SE, Ruzzin J. Mice lacking intestinal Nr1i2 have normal intestinal homeostasis under steady-state conditions and are not hypersensitive to inflammation under lipopolysaccharide treatment. FASEB J 2023; 37:e23117. [PMID: 37490003 DOI: 10.1096/fj.202301126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Nr1i2, a nuclear receptor known for its key function in xenobiotic detoxification, has emerged as a potential regulator of intestinal homeostasis and inflammation. However, the role of Nr1i2 in different intestinal segments remains poorly known. Moreover, in vivo investigations on intestinal Nr1i2 have essentially been performed in whole-body Nr1i2 knockout (Nr1i2-/- ) mice where the deletion of Nr1i2 in all tissues may affect the intestinal phenotype. To better understand the role of Nr1i2 in the intestine, we generated intestinal epithelial-specific Nr1i2 knockout (iNr1i2-/- ) mice and studied the duodenum, jejunum, ileum, and colon of these animals during steady-state conditions and lipopolysaccharide (LPS)-induced inflammation. As compared to control (iNr1i2+/+ ) mice, iNr1i2-/- mice showed normal intestinal permeability as assessed by in vivo FITC-dextran test. The expression of genes involved in inflammation, tight- and adherens-junction, proliferation, glucose, and lipid metabolism was comparable in the duodenum, jejunum, ileum, and colon of iNr1i2-/- and iNr1i2+/+ mice. In line with these findings, histological analyses of the jejunum revealed no difference between iNr1i2-/- and iNr1i2+/+ mice. When treated with LPS, the intestine of iNr1i2-/- mice had no increased inflammatory response as compared to iNr1i2+/+ mice. Moreover, the health monitoring of LPS-treated iNr1i2-/- and iNr1i2+/+ mice was similar. Taken together, our results demonstrate that the specific deletion of Nr1i2 in the intestinal epithelium does not cause major intestinal damages in mice during both steady-state and inflammatory conditions.
Collapse
Affiliation(s)
- Salah Edden Amini
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sophie Emilie Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Hagen WR. The Development of Tungsten Biochemistry-A Personal Recollection. Molecules 2023; 28:molecules28104017. [PMID: 37241758 DOI: 10.3390/molecules28104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The development of tungsten biochemistry is sketched from the viewpoint of personal participation. Following its identification as a bio-element, a catalogue of genes, enzymes, and reactions was built up. EPR spectroscopic monitoring of redox states was, and remains, a prominent tool in attempts to understand tungstopterin-based catalysis. A paucity of pre-steady-state data remains a hindrance to overcome to this day. Tungstate transport systems have been characterized and found to be very specific for W over Mo. Additional selectivity is presented by the biosynthetic machinery for tungstopterin enzymes. Metallomics analysis of hyperthermophilic archaeon Pyrococcus furiosus indicates a comprehensive inventory of tungsten proteins.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
12
|
Wang Z, Diao W, Wu P, Li J, Fu Y, Guo Z, Cao Z, Shaik S, Wang B. How the Conformational Movement of the Substrate Drives the Regioselective C-N Bond Formation in P450 TleB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. J Am Chem Soc 2023; 145:7252-7267. [PMID: 36943409 DOI: 10.1021/jacs.2c12962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
P450 TleB catalyzes the oxidative cyclization of the dipeptide N-methylvalyl-tryptophanol into indolactam V through selective intramolecular C-H bond amination at the indole C4 position. Understanding its catalytic mechanism is instrumental for the engineering or design of P450-catalyzed C-H amination reactions. Using multiscale computational methods, we show that the reaction proceeds through a diradical pathway, involving a hydrogen atom transfer (HAT) from N1-H to Cpd I, a conformational transformation of the substrate radical species, and a second HAT from N13-H to Cpd II. Intriguingly, the conformational transformation is found to be the key to enabling efficient and selective C-N coupling between N13 and C4 in the subsequent diradical coupling reaction. The underlined conformational transformation is triggered by the first HAT, which proceeds with an energy-demanding indole ring flip and is followed by the facile approach of the N13-H group to Cpd II. Detailed analysis shows that the internal electric field (IEF) from the protein environment plays key roles in the transformation process, which not only provides the driving force but also stabilizes the flipped conformation of the indole radical. Our simulations provide a clear picture of how the P450 enzyme can smartly modulate the selective C-N coupling reaction. The present findings are in line with all available experimental data, highlighting the crucial role of substrate dynamics in controlling this highly valuable reaction.
Collapse
Affiliation(s)
- Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Wenwen Diao
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junfeng Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Functional-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Bian Q, Jiao X, Chen Y, Yu H, Ye L. Hierarchical dynamic regulation of Saccharomyces cerevisiae for enhanced lutein biosynthesis. Biotechnol Bioeng 2023; 120:536-552. [PMID: 36369967 DOI: 10.1002/bit.28286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Lutein, as a carotenoid with strong antioxidant capacity and an important component of macular pigment in the retina, has wide applications in pharmaceutical, food, feed, and cosmetics industries. Besides extraction from plant and algae, microbial fermentation using engineered cell factories to produce lutein has emerged as a promising route. However, intra-pathway competition between the lycopene cyclases and the conflict between cell growth and production are two major challenges. In our previous study, de novo synthesis of lutein had been achieved in Saccharomyces cerevisiae by dividing the pathway into two stages (δ-carotene formation and conversion) using temperature as the input signal to realize sequential cyclation of lycopene. However, lutein production was limited to microgram level, which is still too low to meet industrial demand. In this study, a dual-signal hierarchical dynamic regulation system was developed and applied to divide lutein biosynthesis into three stages in response to glucose concentration and culture temperature. By placing the genes involved in δ-carotene formation under the glucose-responsive ADH2 promoter and genes involved in the conversion of δ-carotene to lutein under temperature-responsive GAL promoters, the growth-production conflict and intra-pathway competition were simultaneously resolved. Meanwhile, the rate-limiting lycopene ε-cyclation and carotene hydroxylation reactions were improved by screening for lycopene ε-cyclase with higher activity and fine tuning of the P450 enzymes and their redox partners. Finally, a lutein titer of 19.92 mg/L (4.53 mg/g DCW) was obtained in shake-flask cultures using the engineered yeast strain YLutein-3S-6, which is the highest lutein titer ever reported in heterologous production systems.
Collapse
Affiliation(s)
- Qi Bian
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xue Jiao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ye Chen
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
14
|
|
15
|
Cha Y, Li W, Wu T, You X, Chen H, Zhu C, Zhuo M, Chen B, Li S. Probing the Synergistic Ratio of P450/CPR To Improve (+)-Nootkatone Production in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:815-825. [PMID: 35015539 DOI: 10.1021/acs.jafc.1c07035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
(+)-Nootkatone is an expensive sesquiterpene substance found in grapefruit peels and the heartwood of yellow cedar. It can be used as a food additive, perfume, and insect repellent; therefore, its highly efficient production is greatly needed. However, the low catalytic efficiency of the membrane-anchored cytochrome P450/P450 reductase system (HPO/AtCPR) is the main challenge and limits the production of (+)-nootkatone. We developed an effective high-throughput screening system based on cell wall destruction to probe the optimal ratio of HPO/AtCPR, which achieved a twofold elevation in (+)-valencene oxidation in Saccharomyces cerevisiae. An engineered strain PK2RI-AtC/Hm6A was constructed to realize de novo (+)-nootkatone production by a series of metabolic engineering strategies. In biphasic fed-batch fermentation, maximum titers of 3.73 and 1.02 g/L for (+)-valencene and (+)-nootkatone, respectively, were achieved. The dramatically improved performance of the constructed S. cerevisiae provides an excellent approach for economical production of (+)-nootkatone from glucose.
Collapse
Affiliation(s)
- Yaping Cha
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wen Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tao Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xia You
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bo Chen
- Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Lee R, Kim V, Chun Y, Kim D. Structure-Functional Analysis of Human Cytochrome P450 2C8 Using Directed Evolution. Pharmaceutics 2021; 13:pharmaceutics13091429. [PMID: 34575505 PMCID: PMC8469462 DOI: 10.3390/pharmaceutics13091429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The human genome includes four cytochrome P450 2C subfamily enzymes, and CYP2C8 has generated research interest because it is subject to drug-drug interactions and various polymorphic outcomes. To address the structure-functional complexity of CYP2C8, its catalytic activity was studied using a directed evolution analysis. Consecutive rounds of random mutagenesis and screening using 6-methoxy-luciferin produced two mutants, which displayed highly increased luciferase activity. Wild-type and selected mutants were expressed on a large scale and purified. The expression levels of the D349Y and D349Y/V237A mutants were ~310 and 460 nmol per liter of culture, respectively. The steady-state kinetic analysis of paclitaxel 6α-hydroxylation showed that the mutants exhibited a 5-7-fold increase in kcat values and a 3-5-fold increase in catalytic efficiencies (kcat/KM). In arachidonic acid epoxidation, two mutants exhibited a 30-150-fold increase in kcat values and a 40-110-fold increase in catalytic efficiencies. The binding titration analyses of paclitaxel and arachidonic acid showed that the V237A mutation had a lower Kd value, indicating a tighter substrate-binding affinity. The structural analysis of CYP2C8 indicated that the D349Y mutation was close enough to the putative binding domain of the redox partner; the increase in catalytic activity could be partially attributed to the enhancement of the P450 coupling efficiency or electron transfer.
Collapse
Affiliation(s)
- Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (R.L.); (V.K.)
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (R.L.); (V.K.)
| | - Youngjin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (R.L.); (V.K.)
- Correspondence: ; Tel.: +82-2-450-3366; Fax: +82-2-3436-5432
| |
Collapse
|
17
|
Cytochromes P450 in the biocatalytic valorization of lignin. Curr Opin Biotechnol 2021; 73:43-50. [PMID: 34303185 DOI: 10.1016/j.copbio.2021.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022]
Abstract
The valorization of lignin is critical to establishing sustainable biorefineries as we transition away from petroleum-derived feedstocks. Advances in lignin fractionation and depolymerization are yielding new opportunities for the biocatalytic upgrading of lignin-derived aromatic compounds (LDACs) using microbial cell factories. Given their roles in lignin metabolism and their catalytic versatility, cytochromes P450 are attractive enzymes in engineering such biocatalysts. Here we highlight P450s that catalyze aromatic O-demethylation, a rate-limiting step in the conversion of LDACs to valuable chemicals, including efforts to engineer the specificity of these enzymes and to use them in developing biocatalysts. We also discuss broader opportunities at the intersection of biochemistry, structure-guided enzyme engineering, and metabolic engineering for application of P450s in the emerging area of microbial lignin valorization.
Collapse
|
18
|
Kim JE, Son SH, Oh SS, Kim SC, Lee JY. Pairing of orthogonal chaperones with a cytochrome P450 enhances terpene synthesis in Saccharomyces cerevisiae. Biotechnol J 2021; 17:e2000452. [PMID: 34269523 DOI: 10.1002/biot.202000452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022]
Abstract
The supply of terpenes is often limited by their low extraction yield from natural resources, such as plants. Thus, microbial biosynthesis has emerged as an attractive platform for the production of terpenes. Many strategies have been applied to engineer microbes to improve terpene production capabilities; however, functional expression of heterologous proteins such as cytochrome P450 enzymes (P450s) in microbes is a major obstacle. This study reports the successful pairing of cognate chaperones and P450s for functional heterologous expression in Saccharomyces cerevisiae. This chaperone pairing was exploited to facilitate the functional assembly of the protopanaxadiol (PPD) biosynthesis pathway, which consists of a P450 oxygenase and a P450 reductase redox partner originating from Panax ginseng and Arabidopsis thaliana, respectively. We identified several chaperones required for protein folding in P. ginseng and A. thaliana and evaluated the impact of the coexpression of the corresponding chaperones on the synthesis and activity of PPD biosynthesis enzymes. Expression of a chaperone from P. ginseng (PgCPR5), a cognate of PPD biosynthesis enzymes, significantly increased PPD production by more than 2.5-fold compared with that in the corresponding control strain. Thus, pairing of chaperones with heterologous enzymes provides an effective strategy for the construction of challenging biosynthesis pathways in yeast.
Collapse
Affiliation(s)
- Jae-Eung Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - So-Hee Son
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| |
Collapse
|
19
|
Sun C, Peng H, Zhang W, Zheng M, Tian W, Zhang Y, Liu H, Lin Z, Deng Z, Qu X. Production of Heterodimeric Diketopiperazines Employing a Mycobacterium-Based Whole-Cell Biocatalysis System. J Org Chem 2021; 86:11189-11197. [PMID: 33886315 DOI: 10.1021/acs.joc.1c00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are an important class of bioactive secondary metabolites. P450-mediated biocatalysis offers a practical avenue to access their structural diversity; however, many of these enzymes are insoluble in Escherichia coli and difficult to operate in Streptomyces. Through validation of the functions of two pairs Mycobacterium smegmatis sourced redox partners in vitro, and comparing the efficiency of different biocatalytic systems with tricky P450s in vivo, we herein demonstrated that M. smegmatis is much more efficient, robust, and cleaner in metabolites background than the regularly used E. coli or Streptomyces systems. The M. smegmatis-based system can completely convert 1 g L-1 of cyclodipeptide into HTDKPs within 18 h with minimal background metabolites. On the basis of this efficient system, 12 novel HTDPKs were readily obtained by using two HTDKP-forming P450s (NasbB and NASS1868). Among them, five compounds have neuroprotective properties. Our study significantly expands the bioactive chemical scope of HTDKPs and provides an excellent biocatalysis platform for dealing with problematic enzymes from Actinomycetes.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mei Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Wenya Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Huanhuan Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Chen CC, Min J, Zhang L, Yang Y, Yu X, Guo RT. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. Chembiochem 2020; 22:1317-1328. [PMID: 33232569 DOI: 10.1002/cbic.202000705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.
Collapse
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
21
|
Akintade DD, Chaudhuri B. Sensing the Generation of Intracellular Free Electrons Using the Inactive Catalytic Subunit of Cytochrome P450s as a Sink. SENSORS 2020; 20:s20144050. [PMID: 32708163 PMCID: PMC7411652 DOI: 10.3390/s20144050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 reductase (CPR) abstracts electrons from Nicotinamide adenine dinucleotide phosphate H (NADPH), transferring them to an active Cytochrome P450 (CYP) site to provide a functional CYP. In the present study, a yeast strain was genetically engineered to delete the endogenous CPR gene. A human CYP expressed in a CPR-null (yRD−) strain was inactive. It was queried if Bax—which induces apoptosis in yeast and human cells by generating reactive oxygen species (ROS)—substituted for the absence of CPR. Since Bax-generated ROS stems from an initial release of electrons, is it possible for these released electrons to be captured by an inactive CYP to make it active once again? In this study, yeast cells that did not contain any CPR activity (i.e., because the yeasts’ CPR gene was completely deleted) were used to show that (a) human CYPs produced within CPR-null (yRD-) yeast cells were inactive and (b) low levels of the pro-apoptotic human Bax protein could activate inactive human CYPs within this yeast cells. Surprisingly, Bax activated three inactive CYP proteins, confirming that it could compensate for CPR’s absence within yeast cells. These findings could be useful in research, development of bioassays, bioreactors, biosensors, and disease diagnosis, among others.
Collapse
Affiliation(s)
- Damilare D. Akintade
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
- Correspondence: ; Tel.: +44-07712452922
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
22
|
Redox Partners: Function Modulators of Bacterial P450 Enzymes. Trends Microbiol 2020; 28:445-454. [DOI: 10.1016/j.tim.2020.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 01/25/2023]
|
23
|
Luirink RA, Verkade‐Vreeker MCA, Commandeur JNM, Geerke DP. A Modified Arrhenius Approach to Thermodynamically Study Regioselectivity in Cytochrome P450-Catalyzed Substrate Conversion. Chembiochem 2020; 21:1461-1472. [PMID: 31919943 PMCID: PMC7318578 DOI: 10.1002/cbic.201900751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 12/21/2022]
Abstract
The regio- (and stereo-)selectivity and specific activity of cytochrome P450s are determined by the accessibility of potential sites of metabolism (SOMs) of the bound substrate relative to the heme, and the activation barrier of the regioselective oxidation reaction(s). The accessibility of potential SOMs depends on the relative binding free energy (ΔΔGbind ) of the catalytically active substrate-binding poses, and the probability of the substrate to adopt a transition-state geometry. An established experimental method to measure activation energies of enzymatic reactions is the analysis of reaction rate constants at different temperatures and the construction of Arrhenius plots. This is a challenge for multistep P450-catalyzed processes that involve redox partners. We introduce a modified Arrhenius approach to overcome the limitations in studying P450 selectivity, which can be applied in multiproduct enzyme catalysis. Our approach gives combined information on relative activation energies, ΔΔGbind values, and collision entropies, yielding direct insight into the basis of selectivity in substrate conversion.
Collapse
Affiliation(s)
- Rosa A. Luirink
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | | | - Jan N. M. Commandeur
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Daan P. Geerke
- AIMMS Division of Molecular ToxicologyVrije UniversiteitDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
24
|
Barnette DA, Schleiff MA, Osborn LR, Flynn N, Matlock M, Swamidass SJ, Miller GP. Dual mechanisms suppress meloxicam bioactivation relative to sudoxicam. Toxicology 2020; 440:152478. [PMID: 32437779 DOI: 10.1016/j.tox.2020.152478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
Thiazoles are biologically active aromatic heterocyclic rings occurring frequently in natural products and drugs. These molecules undergo typically harmless elimination; however, a hepatotoxic response can occur due to multistep bioactivation of the thiazole to generate a reactive thioamide. A basis for those differences in outcomes remains unknown. A textbook example is the high hepatotoxicity observed for sudoxicam in contrast to the relative safe use and marketability of meloxicam, which differs in structure from sudoxicam by the addition of a single methyl group. Both drugs undergo bioactivation, but meloxicam exhibits an additional detoxification pathway due to hydroxylation of the methyl group. We hypothesized that thiazole bioactivation efficiency is similar between sudoxicam and meloxicam due to the methyl group being a weak electron donator, and thus, the relevance of bioactivation depends on the competing detoxification pathway. For a rapid analysis, we modeled epoxidation of sudoxicam derivatives to investigate the impact of substituents on thiazole bioactivation. As expected, electron donating groups increased the likelihood for epoxidation with a minimal effect for the methyl group, but model predictions did not extrapolate well among all types of substituents. Through analytical methods, we measured steady-state kinetics for metabolic bioactivation of sudoxicam and meloxicam by human liver microsomes. Sudoxicam bioactivation was 6-fold more efficient than that for meloxicam, yet meloxicam showed a 6-fold higher efficiency of detoxification than bioactivation. Overall, sudoxicam bioactivation was 15-fold more likely than meloxicam considering all metabolic clearance pathways. Kinetic differences likely arise from different enzymes catalyzing respective metabolic pathways based on phenotyping studies. Rather than simply providing an alternative detoxification pathway, the meloxicam methyl group suppressed the bioactivation reaction. These findings indicate the impact of thiazole substituents on bioactivation is more complex than previously thought and likely contributes to the unpredictability of their toxic potential.
Collapse
Affiliation(s)
- Dustyn A Barnette
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Laura R Osborn
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Noah Flynn
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - Matthew Matlock
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States.
| |
Collapse
|
25
|
Guengerich FP, Fekry MI. Methylene Oxidation of Alkyl Sulfates by Cytochrome P450 BM-3 and a Role for Conformational Selection in Substrate Recognition. ACS Catal 2020; 10:5008-5022. [PMID: 34327041 DOI: 10.1021/acscatal.0c00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome P450BM-3 (P450BM-3) is a flavoprotein reductase-heme fusion protein from the bacterium Bacillus megaterium that has been well-characterized in many biophysical aspects. Although the enzyme is known to catalyze the hydroxylation of medium and long-chain fatty acids at high rates, no definitive physiological function has been associated with this process in the organism other than a possible protective role. We found that P450BM-3 rapidly hydroxylates alkyl sulfates, particularly those with 12-16 carbons (i.e., including dodecyl sulfate) in a similar manner to the fatty acids. The products were characterized as primarily ω-1 hydroxylated alkyl sulfates (plus some ω-2 and ω-3 hydroxylation products), and some further oxidation to dihydroxy and keto derivatives also occurred. Binding of the alkyl sulfates to P450BM-3 converted the iron from the low-spin to high-spin form in a saturable manner, consistent with the catalytic results. Rates of binding decreased as a function of increasing concentration of dodecyl sulfate or the fatty acid myristate. This pattern is consistent with a binding model involving multiple events and with conformational selection (equilibrium of the unbound enzyme prior to binding) instead of an induced fit mechanism. Neither C-H bond-breaking nor product release was found to be rate-limiting in the oxidation of lauric acid. The conformational selection results rationalize some known crystal structures of P450BM-3 and can help explain the flexibility of P450BM-3 and engineered forms in accepting a great variety of substrates.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Mostafa I. Fekry
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
26
|
Degregorio D, D'Avino S, Castrignanò S, Di Nardo G, Sadeghi SJ, Catucci G, Gilardi G. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras. Front Pharmacol 2017; 8:121. [PMID: 28377716 PMCID: PMC5359286 DOI: 10.3389/fphar.2017.00121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a Vmax increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of TurinTurin, Italy
| |
Collapse
|
27
|
Grandner JM, Cacho RA, Tang Y, Houk KN. Mechanism of the P450-Catalyzed Oxidative Cyclization in the Biosynthesis of Griseofulvin. ACS Catal 2016; 6:4506-4511. [PMID: 28503354 DOI: 10.1021/acscatal.6b01068] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Griseofulvin is an anti-fungal agent which has recently been determined to have potential anti-viral and anti-cancer applications. The role of specific enzymes involved in the biosynthesis of this natural product has previously been determined, but the mechanism by which a p450, GsfF, catalyzes the key oxidative cyclization of griseophenone B remains unknown. Using density functional theory (DFT), we have determined the mechanism of this oxidation that forms the oxa-spiro core of griseofulvin. Computations show GsfF preferentially performs two sequential phenolic O-H abstractions rather than epoxidation to form an arene oxide intermediate. This conclusion is supported by experimental kinetic isotope effects.
Collapse
Affiliation(s)
- Jessica M. Grandner
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ralph A. Cacho
- Department
of Chemical and Biomolecular Engineering, University of California, Los
Angeles, California 90095, United States
| | - Yi Tang
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Los
Angeles, California 90095, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Los
Angeles, California 90095, United States
| |
Collapse
|
28
|
Duan Y, Ba L, Gao J, Gao X, Zhu D, de Jong RM, Mink D, Kaluzna I, Lin Z. Semi-rational engineering of cytochrome CYP153A from Marinobacter aquaeolei for improved ω-hydroxylation activity towards oleic acid. Appl Microbiol Biotechnol 2016; 100:8779-88. [DOI: 10.1007/s00253-016-7634-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/10/2016] [Accepted: 05/14/2016] [Indexed: 12/25/2022]
|
29
|
Lonsdale R, Fort RM, Rydberg P, Harvey JN, Mulholland AJ. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2. Chem Res Toxicol 2016; 29:963-71. [DOI: 10.1021/acs.chemrestox.5b00514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard Lonsdale
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Rachel M. Fort
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Patrik Rydberg
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jeremy N. Harvey
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
30
|
Obach RS, LaChapelle EA, Brodney MA, Vanase-Frawley M, Kauffman GW, Sawant-Basak A. Strategies toward optimization of the metabolism of a series of serotonin-4 partial agonists: investigation of azetidines as piperidine isosteres. Xenobiotica 2016; 46:1112-1121. [PMID: 26947511 DOI: 10.3109/00498254.2016.1152522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
1.The first generation 5HT-4 partial agonist, 4-{4-[4-Tetrahydrofuran-3-yloxy)-benzo[d]isoxazol-3-yloxymethyl]-piperidin-1-ylmethyl}-tetrahydropyran-4-ol, PF-4995274 (TBPT), was metabolized to N-dealkylated (M1) and an unusual, cyclized oxazolidine (M2) metabolites. M1 and M2 demonstrated pharmacological activity at 5HT receptor subtypes warranting further investigation into their dispositional properties in humans; M2 was a minor component in vitro but was the pre-dominant metabolite identified in human plasma. 2.To shift metabolism away from the piperidine ring of TBPT, a series of heterocyclic replacements were designed, synthesized, and profiled. Groups including azetidines, pyrrolidines, as well as functionalized piperidines were evaluated with the goal of identifying an alternative group that maintained the desired potency, functional activity, and reduced turnover in human hepatocytes. 3.Activities of 4-substituted piperidines or pyrrolidine analogs at the pharmacological target were not significantly altered, but the same metabolic pathways of N-dealkylation and oxazolidine formation were still observed. Altering these to bridged ring systems lowered oxazolidine metabolite formation, but not N-dealkylation. 4.The effort concluded with identification of azetidines as second-generation 5HT4 partial agonists. These were neither metabolized via N-dealkylation nor converted to cyclized oxazolidine metabolites rather oxidized on the isoxazole ring. The use of azetidine as a replacement for aliphatic aza-heterocyclic rings in drug design to alter drug metabolism and pharmacology is discussed.
Collapse
Affiliation(s)
- Ronald Scott Obach
- a Department of Pharmacokinetics , Dynamics, and Metabolism , Groton , CT , USA
| | | | - Michael A Brodney
- c Department of Neuroscience Medicinal Chemistry , Cambridge , MA , USA , and
| | | | - Gregory W Kauffman
- a Department of Pharmacokinetics , Dynamics, and Metabolism , Groton , CT , USA
| | - Aarti Sawant-Basak
- d Department of Pharmacokinetics , Dynamics, and Metabolism , Cambridge , MA , USA
| |
Collapse
|
31
|
Hartman JH, Martin HC, Caro AA, Pearce AR, Miller GP. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates. Toxicology 2015; 338:47-58. [PMID: 26463279 DOI: 10.1016/j.tox.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 10/06/2015] [Indexed: 01/12/2023]
Abstract
Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes.
Collapse
Affiliation(s)
- Jessica H Hartman
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - H Cass Martin
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Chemistry, University of Central Arkansas, Conway, AR, United States
| | - Andres A Caro
- Department of Chemistry, Hendrix College, Conway, AR, United States
| | - Amy R Pearce
- Arkansas Biosciences Institute, United States; Psychology & Counseling, Arkansas State University, Jonesboro, AR, United States
| | - Grover P Miller
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
32
|
Biooxidation of n-butane to 1-butanol by engineered P450 monooxygenase under increased pressure. J Biotechnol 2014; 191:86-92. [DOI: 10.1016/j.jbiotec.2014.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/06/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023]
|
33
|
Regulation of cytochrome b5 expression by miR-223 in human liver: effects on cytochrome P450 activities. Pharm Res 2014; 31:780-94. [PMID: 24078287 DOI: 10.1007/s11095-013-1200-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 08/31/2013] [Indexed: 01/24/2023]
Abstract
PURPOSE Cytochrome b5 (b5) is a hemoprotein that transfers electrons to several enzymes to fulfill functions in fatty acid desaturation, methemoglobin reduction, steroidogenesis, and drug metabolism. Despite the importance of b5, the regulation of b5 expression in human liver remains largely unknown. We investigated whether microRNA (miRNA) might be involved in the regulation of human b5. METHODS Twenty-four human liver specimens were used for correlation analysis. In silico analysis and luciferase assay were performed to determine whether the predicted miRNAs functionally target to b5. The miR-223 was overexpressed into HepG2 cells infected with adenovirus expressing human cytochrome P450. RESULTS In human livers, the b5 protein levels were not positively correlated with the b5 mRNA levels, and miR-223 levels were inversely correlated with the b5 mRNA levels or the translational efficiencies. The luciferase assay showed that miR-223 functionally binds to the element in the 3′-untranslated region of b5 mRNA. The overexpression of miR-223 significantly reduced the endogenous b5 protein level and the mRNA stability in HepG2 cells. Moreover, the overexpression of miR-223 significantly reduced CYP3A4-catalyzed testosterone 6β-hydroxylation activity and CYP2E1-catalyzed chlorzoxazone 6-hydroxylase activity but not CYP1A2-catalyzed 7-ethoxyresorufin O-deethylase activity. CONCLUSIONS miR-223 down-regulates b5 expression in the human liver, modulating P450 activities.
Collapse
|
34
|
Meling DD, McDougle DR, Das A. CYP2J2 epoxygenase membrane anchor plays an important role in facilitating electron transfer from CPR. J Inorg Biochem 2014; 142:47-53. [PMID: 25450017 DOI: 10.1016/j.jinorgbio.2014.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023]
Abstract
CYP2J2 epoxygenase is a membrane-bound cytochrome P450 primarily expressed in the heart and plays a significant role in cardiovascular diseases. The interactions of CYP2J2 with its redox partner, cytochrome P450 reductase (CPR), and with its substrates are quite complex and can have a significant effect on the kinetics of substrate metabolism. Here we show that the N-terminus of CYP2J2 plays an important role in the formation of CYP-CPR complex for subsequent electron transfer. We demonstrate that when CYP2J2-CPR are pre-incubated before the onset of reduction, the kinetics of reduction is triphasic and is of a similar order of magnitude to previously reported rates in other cytochrome P450 systems. However, when CYP2J2 and CPR form a complex during the time course of the experiment the kinetics of the fastest phase for N-terminus containing full-length CYP2J2 is 200 times faster than the kinetics of reduction of N-terminally truncated CYP2J2. Hence, we show that the N-terminus of CYP2J2 is very important to form a productive CYP-CPR complex to facilitate electron transfer.
Collapse
Affiliation(s)
- Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
35
|
Bandyopadhyay S, Rana A, Mittra K, Samanta S, Sengupta K, Dey A. Effect of Axial Ligand, Spin State, and Hydrogen Bonding on the Inner-Sphere Reorganization Energies of Functional Models of Cytochrome P450. Inorg Chem 2014; 53:10150-8. [PMID: 25238648 DOI: 10.1021/ic501112a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sabyasachi Bandyopadhyay
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Atanu Rana
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Kaustuv Mittra
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Subhra Samanta
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Kushal Sengupta
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
36
|
Hayakawa S, Matsumura H, Nakamura N, Yohda M, Ohno H. Identification of the rate-limiting step of the peroxygenase reactions catalyzed by the thermophilic cytochrome P450 fromSulfolobus tokodaiistrain 7. FEBS J 2014; 281:1409-1416. [DOI: 10.1111/febs.12712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Shohei Hayakawa
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; Koganei Japan
| | - Hirotoshi Matsumura
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; Koganei Japan
- Division of Environmental and Biomolecular Systems; Institute of Environmental Health; Oregon Health and Science University; Beaverton OR USA
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; Koganei Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; Koganei Japan
| | - Hiroyuki Ohno
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; Koganei Japan
| |
Collapse
|
37
|
Pianalto KM, Hartman JH, Boysen G, Miller GP. Differences in butadiene adduct formation between rats and mice not due to selective inhibition of CYP2E1 by butadiene metabolites. Toxicol Lett 2013; 223:221-7. [PMID: 24021170 PMCID: PMC3831829 DOI: 10.1016/j.toxlet.2013.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
CYP2E1 metabolizes 1,3-butadiene (BD) into genotoxic and possibly carcinogenic 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol (EB-diol). The dose response of DNA and protein adducts derived from BD metabolites increases linearly at low BD exposures and then saturates at higher exposures in rats, but not mice. It was hypothesized that differences in adduct formation between rodents reflect more efficient BD oxidation in mice than rats. Herein, we assessed whether BD-derived metabolites selectively inhibit rat but not mouse CYP2E1 activity using B6C3F1 mouse and Fisher 344 rat liver microsomes. Basal CYP2E1 activities toward 4-nitrophenol were similar between rodents. Through IC50 studies, EB was the strongest inhibitor (IC50 54μM, mouse; 98μM, rat), BD-diol considerably weaker (IC50 1200μM, mouse; 1000μM, rat), and DEB inhibition nonexistent (IC50>25mM). Kinetic studies showed that in both species EB and BD-diol inhibited 4-nitrophenol oxidation through two-site mechanisms in which inhibition constants reflected trends observed in IC50 studies. None of the reactive epoxide metabolites inactivated CYP2E1 irreversibly. Thus, there was no selective inhibition or inactivation of rat CYP2E1 by BD metabolites relative to mouse Cyp2e1, and it can be inferred that CYP2E1 activity toward BD between rodent species would similarly not be impacted by the presence of BD metabolites. Inhibition of CYP2E1 by BD metabolites is then not responsible for the reported species difference in BD metabolism, formation of BD-derived DNA and protein adducts, mutagenicity and tumorigenesis.
Collapse
Affiliation(s)
- Kaila M. Pianalto
- Department of Chemistry and Biochemistry, University of Arkansas at Fayetteville, Fayetteville, AR 72701, USA
| | - Jessica H. Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Grover P. Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
38
|
Ba L, Li P, Zhang H, Duan Y, Lin Z. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: Insights into the important role of electron transfer. Biotechnol Bioeng 2013; 110:2815-25. [DOI: 10.1002/bit.24960] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/28/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Lina Ba
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Pan Li
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Hui Zhang
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Yan Duan
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Zhanglin Lin
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| |
Collapse
|
39
|
Hartman JH, Cothren SD, Park SH, Yun CH, Darsey JA, Miller GP. Predicting CYP2C19 catalytic parameters for enantioselective oxidations using artificial neural networks and a chirality code. Bioorg Med Chem 2013; 21:3749-59. [PMID: 23673224 DOI: 10.1016/j.bmc.2013.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (k(cat), K(m), and k(cat)/K(m)), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (k(cat) and K(m)) were more consistent with experimental values than those for catalytic efficiency (k(cat)/K(m)). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds.
Collapse
Affiliation(s)
- Jessica H Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 516, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hartman JH, Boysen G, Miller GP. Cooperative effects for CYP2E1 differ between styrene and its metabolites. Xenobiotica 2013; 43:755-64. [PMID: 23327532 DOI: 10.3109/00498254.2012.760764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cooperative interactions are frequently observed in the metabolism of drugs and pollutants by cytochrome P450s; nevertheless, the molecular determinants for cooperativity remain elusive. Previously, we demonstrated that steady-state styrene metabolism by CYP2E1 exhibits positive cooperativity. We hypothesized that styrene metabolites have lower affinity than styrene toward CYP2E1 and limited ability to induce cooperative effects during metabolism. To test the hypothesis, we determined the potency and mechanism of inhibition for styrene and its metabolites toward oxidation of 4-nitrophenol using CYP2E1 Supersomes® and human liver microsomes. Styrene inhibited the reaction through a mixed cooperative mechanism with high affinity for the catalytic site (67 µM) and lower affinity for the cooperative site (1100 µM), while increasing substrate turnover at high concentrations. Styrene oxide and 4-vinylphenol possessed similar affinity for CYP2E1. Styrene oxide behaved cooperatively like styrene, but 4-vinylphenol decreased turnover at high concentrations. Styrene glycol was a very poor competitive inhibitor. Among all compounds, there was a positive correlation with binding and hydrophobicity. Taken together, these findings for CYP2E1 further validate contributions of cooperative mechanisms to metabolic processes, demonstrate the role of molecular structure on those mechanisms and underscore the potential for heterotropic cooperative effects between different compounds.
Collapse
Affiliation(s)
- Jessica H Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
41
|
Ferrero VEV, Di Nardo G, Catucci G, Sadeghi SJ, Gilardi G. Fluorescence detection of ligand binding to labeled cytochrome P450BM3. Dalton Trans 2012; 41:2018-25. [DOI: 10.1039/c1dt11437a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Oda S, Nakajima M, Toyoda Y, Fukami T, Yokoi T. Progesterone Receptor Membrane Component 1 Modulates Human Cytochrome P450 Activities in an Isoform-Dependent Manner. Drug Metab Dispos 2011; 39:2057-65. [DOI: 10.1124/dmd.111.040907] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Li D, Huang X, Han K, Zhan CG. Catalytic mechanism of cytochrome P450 for 5'-hydroxylation of nicotine: fundamental reaction pathways and stereoselectivity. J Am Chem Soc 2011; 133:7416-27. [PMID: 21513309 DOI: 10.1021/ja111657j] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A series of computational methods were used to study how cytochrome P450 2A6 (CYP2A6) interacts with (S)-(-)-nicotine, demonstrating that the dominant molecular species of (S)-(-)-nicotine in CYP2A6 active site exists in the free base state (with two conformations, SR(t) and SR(c)), despite the fact that the protonated state is dominant for the free ligand in solution. The computational results reveal that the dominant pathway of nicotine metabolism in CYP2A6 is through nicotine free base oxidation. Further, first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations were carried out to uncover the detailed reaction pathways for the CYP2A6-catalyzed nicotine 5'-hydroxylation reaction. In the determined CYP2A6-(S)-(-)-nicotine binding structures, the oxygen of Compound I (Cpd I) can abstract a hydrogen from either the trans-5'- or the cis-5'-position of (S)-(-)-nicotine. CYP2A6-catalyzed (S)-(-)-nicotine 5'-hydroxylation consists of two reaction steps, that is, the hydrogen transfer from the 5'-position of (S)-(-)-nicotine to the oxygen of Cpd I (the H-transfer step), followed by the recombination of the (S)-(-)-nicotine moiety with the iron-bound hydroxyl group to generate the 5'-hydroxynicotine product (the O-rebound step). The H-transfer step is rate-determining. The 5'-hydroxylation proceeds mainly with the stereoselective loss of the trans-5'-hydrogen, that is, the 5'-hydrogen trans to the pyridine ring. The calculated overall stereoselectivity of ∼97% favoring the trans-5'-hydroxylation is close to the observed stereoselectivity of 89-94%. This is the first time it has been demonstrated that a CYP substrate exists dominantly in one protonation state (cationic species) in solution, but uses its less-favorable protonation state (neutral free base) to perform the enzymatic reaction.
Collapse
Affiliation(s)
- Dongmei Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Sirim D, Widmann M, Wagner F, Pleiss J. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC STRUCTURAL BIOLOGY 2010; 10:34. [PMID: 20950472 PMCID: PMC3224734 DOI: 10.1186/1472-6807-10-34] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 10/15/2010] [Indexed: 02/05/2023]
Abstract
Background Cytochrome P450 monooxygenases (CYPs) form a vast and diverse family of highly variable sequences. They catalyze a wide variety of oxidative reactions and are therefore of great relevance in drug development and biotechnological applications. Despite their differences in sequence and substrate specificity, the structures of CYPs are highly similar. Although being in research focus for years, factors mediating selectivity and activity remain vague. Description This systematic comparison of CYPs based on the Cytochrome P450 Engineering Database (CYPED) involved sequence and structure analysis of more than 8000 sequences. 31 structures have been applied to generate a reliable structure-based HMM profile in order to predict structurally conserved regions. Therefore, it was possible to automatically transfer these modules on CYP sequences without any secondary structure information, to analyze substrate interacting residues and to compare interaction sites with redox partners. Conclusions Functionally relevant structural sites of CYPs were predicted. Regions involved in substrate binding were analyzed in all sequences among the CYPED. For all CYPs that require a reductase, two reductase interaction sites were identified and classified according to their length. The newly gained insights promise an improvement of engineered enzyme properties for potential biotechnological application. The annotated sequences are accessible on the current version of the CYPED. The prediction tool can be applied to any CYP sequence via the web interface at http://www.cyped.uni-stuttgart.de/cgi-bin/strpred/dosecpred.pl.
Collapse
Affiliation(s)
- Demet Sirim
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
45
|
Manoj KM, Gade SK, Mathew L. Cytochrome P450 reductase: a harbinger of diffusible reduced oxygen species. PLoS One 2010; 5:e13272. [PMID: 20967245 PMCID: PMC2954143 DOI: 10.1371/journal.pone.0013272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/08/2010] [Indexed: 11/26/2022] Open
Abstract
The bi-enzymatic system of cytochrome P450 (CYP, a hemoprotein) and cytochrome P450 reductase (CPR, a diflavoenzyme) mediate the redox metabolism of diverse indigenous and xenobiotic molecules in various cellular and organ systems, using oxygen and NADPH. Curiously, when a 1∶1 ratio is seen to be optimal for metabolism, the ubiquitous CYP:CPR distribution ratio is 10 to 100∶1 or higher. Further, the NADPH equivalents consumed in these in vitro or in situ assemblies usually far exceeded the amount of substrate metabolized. We aimed to find the rationale to explain for these two oddities. We report here that CPR is capable of activating molecular oxygen on its own merit, generating diffusible reduced oxygen species (DROS). Also, in the first instance for a flavoprotein, CPR is shown to deplete peroxide via diffusible radical mediated process, thereby leading to the formation of water (but without significant evolution of oxygen). We also quantitatively demonstrate that the rate of oxygen activation and peroxide depletion by CPR accounts for the major reactivity in the CYP+CPR mixture. We show unambiguously that CPR is able to regulate the concentration of diffusible reduced oxygen species in the reaction milieu. These findings point out that CPR mediated processes are bound to be energetically ‘wasteful’ and potentially ‘hazardous’ owing to the unavoidable nature of the CPR to generate and deplete DROS. Hence, we can understand that CPR is distributed at low densities in cells. Some of the activities that were primarily attributed to the heme-center of CYP are now established to be a facet of the flavins of CPR. The current approach of modeling drugs to minimize “uncoupling” on the basis of erstwhile hypothesis stands questionable, considering the ideas brought forth in this work.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Heme-Flavin Laboratory, School of Bio Sciences and Technology, Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, India.
| | | | | |
Collapse
|
46
|
Subramanian M, Tam H, Zheng H, Tracy TS. CYP2C9-CYP3A4 protein-protein interactions: role of the hydrophobic N terminus. Drug Metab Dispos 2010; 38:1003-9. [PMID: 20215413 DOI: 10.1124/dmd.109.030155] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochromes P450 (P450s) interact with redox transfer proteins, including P450 reductase (CPR) and cytochrome b(5) (b5), all being membrane-bound. In multiple in vitro systems, P450-P450 interactions also have been observed, resulting in alterations in enzymatic activity. The current work investigated the effects and mechanisms of interaction between CYP2C9 and CYP3A4 in a reconstituted system. CYP2C9-mediated metabolism of S-naproxen and S-flurbiprofen was inhibited up to 80% by coincubation with CYP3A4, although K(m) values were unchanged. Increasing CYP3A4 concentrations increased the degree of inhibition, whereas increasing CPR concentrations resulted in less inhibition. Addition of b5 only marginally affected the magnitude of inhibition. In contrast, CYP2C9 did not alter the CYP3A4-mediated metabolism of testosterone. The potential role of the hydrophobic N terminus on these interactions was assessed by incubating truncated CYP2C9 with full-length CYP3A4, and vice versa. In both cases, the inhibition was fully abolished, indicating an important role for hydrophobic forces in CYP2C9-CYP3A4 interactions. Finally, a CYP2C9/CYP3A4 heteromer complex was isolated by coimmunoprecipitation techniques, confirming the physical interaction of the proteins. These results show that the N-terminal membrane binding domains of CYP2C9 and CYP3A4 are involved in heteromer complex formation and that at least one consequence is a reduction in CYP2C9 activity.
Collapse
Affiliation(s)
- Murali Subramanian
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55126, USA
| | | | | | | |
Collapse
|
47
|
Jang HH, Jamakhandi AP, Sullivan SZ, Yun CH, Hollenberg PF, Miller GP. Beta sheet 2-alpha helix C loop of cytochrome P450 reductase serves as a docking site for redox partners. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1285-93. [PMID: 20152939 DOI: 10.1016/j.bbapap.2010.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 01/26/2010] [Accepted: 02/03/2010] [Indexed: 11/24/2022]
Abstract
As a promiscuous redox partner, the biological role of cytochrome P450 reductase (CPR) depends significantly on protein-protein interactions. We tested a hypothesized CPR docking site by mutating D113, E115, and E116 to alanine and assaying activity toward various electron acceptors as a function of ionic strength. Steady-state cytochrome c studies demonstrated the mutations improved catalytic efficiency and decreased the impact of ionic strength on catalytic parameters when compared to wild type. Based on activity toward 7-ethoxy-4-trifluoro-methylcoumarin, CYP2B1 and CPR favored formation of an active CYP2B1*CPR complex and inactive (CYP2B1)(2)*CPR complex until higher ionic strength whereby only the binary complex was observed. The mutations increased dissociation constants only for the binary complex and suppressed the ionic strength effect. Studies with a non-binding substrate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) suggest changes in activity toward cytochrome c and CYP2B1 reflect alterations in the route of electron transfer caused by the mutations. Electrostatic modeling of catalytic and binding parameters confirmed the importance of D113 and especially the double mutant E115 and E116 as mediators in forming charge-charge interactions between CPR and complex partners.
Collapse
Affiliation(s)
- Hyun-Hee Jang
- School of Biological Sciences and Technology and Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
48
|
Arellano-Aguilar O, Montoya RM, Garcia CM. Endogenous Functions and Expression of Cytochrome P450 Enzymes in Teleost Fish: A Review. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/10641260903243487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
49
|
Miller GP. Advances in the interpretation and prediction of CYP2E1 metabolism from a biochemical perspective. Expert Opin Drug Metab Toxicol 2008; 4:1053-64. [PMID: 18680440 DOI: 10.1517/17425255.4.8.1053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cytochrome P450 2E1 (CYP2E1) plays a central role in the metabolism and metabolic activation of a large number of small, mostly xenobiotic compounds. These qualities distinguish CYP2E1 from traditional enzymes and pose significant challenges to understanding the role and consequences of CYP2E1-mediated metabolism. OBJECTIVE This review discusses recent advances in kinetic profiling, quantitative structure-activity relationships and structural studies that have furthered the development of tools to interpret and predict CYP2E1 metabolism. METHODS Analysis of kinetic profiles by specific mechanisms produces important parameters describing specificity, stoichiometry and metabolism of molecules. Quantitative structure-activity relationships reveal a more specific basis for molecular recognition by CYP2E1. The corresponding protein structures imparting these interactions are the focus of chemical modifications, site-directed mutagenesis and homology modeling studies. RESULTS Compilation of kinetic profiling for CYP2E1 substrates established the selectivity for small substrates, whose characteristics could be generalized in parameters for hydrophobicity and steric properties as determined by quantitative structure-activity relationships. The possibility of an effector site for monocyclic compounds added an interesting variable to these modeling efforts. Various structural studies identified important residues contributing to binding and catalysis as well as the volume and location of the active site relative to the heme moiety. Pressure and carbon monoxide-binding experiments also demonstrated the inherent conformational flexibility of CYP2E1 that may contribute to rate-limiting steps during catalytic turnover. CONCLUSION Although combinations of these approaches have reinforced important observations, more work is needed to verify findings and seek broader impacts for various interpretative and predictive tools.
Collapse
Affiliation(s)
- Grover P Miller
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, 4301 W. Markham Street, Slot 516, Little Rock, AR 72205, USA.
| |
Collapse
|
50
|
Kim DH, Kim KH, Kim DH, Liu KH, Jung HC, Pan JG, Yun CH. Generation of Human Metabolites of 7-Ethoxycoumarin by Bacterial Cytochrome P450 BM3. Drug Metab Dispos 2008; 36:2166-70. [DOI: 10.1124/dmd.108.021220] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|