1
|
Herrera-Marcos LV, Sahali D, Ollero M. 9-O Acetylated Gangliosides in Health and Disease. Biomolecules 2023; 13:biom13050827. [PMID: 37238697 DOI: 10.3390/biom13050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosphingolipids comprise a lipid class characterized by the presence of sugar moieties attached to a ceramide backbone. The role of glycosphingolipids in pathophysiology has gained relevance in recent years in parallel with the development of analytical technologies. Within this vast family of molecules, gangliosides modified by acetylation represent a minority. Described for the first time in the 1980s, their relation to pathologies has resulted in increased interest in their function in normal and diseased cells. This review presents the state of the art on 9-O acetylated gangliosides and their link to cellular disorders.
Collapse
Affiliation(s)
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| |
Collapse
|
2
|
Aureli M, Mauri L, Carsana EV, Dobi D, Breviario S, Lunghi G, Sonnino S. Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:305-332. [DOI: 10.1007/978-3-031-12390-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Hunter CD, Khanna N, Richards MR, Rezaei Darestani R, Zou C, Klassen JS, Cairo CW. Human Neuraminidase Isoenzymes Show Variable Activities for 9- O-Acetyl-sialoside Substrates. ACS Chem Biol 2018; 13:922-932. [PMID: 29341588 DOI: 10.1021/acschembio.7b00952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recognition of terminal sialic acids is central to many cellular processes, and structural modification of sialic acid can disrupt these interactions. A prominent, naturally occurring, modification of sialic acid is 9- O-acetylation (9- O-Ac). Study of this modification through generation and analysis of 9- O-Ac sialosides is challenging because of the lability of the acetate group. Fundamental questions regarding the role of 9- O-Ac sialic acids remain unanswered, including what effect it may have on recognition and hydrolysis by the human neuraminidase enzymes (hNEU). To investigate the substrate activity of 9- O-acetylated sialic acids (Neu5,9Ac2), we synthesized an acetylated fluorogenic hNEU substrate 2'-(4-methylumbelliferyl)-9- O-acetyl-α-d- N-acetylneuraminic acid. Additionally, we generated a panel of octyl sialyllactosides containing modified sialic acids including variation in linkage, 9- O-acetylation, and C-5 group (Neu5Gc). Relative rates of substrate cleavage by hNEU were determined using fluorescence spectroscopy and electrospray ionization mass spectrometry. We report that 9- O-acetylation had a significant, and differential, impact on sialic acid hydrolysis by hNEU with general substrate tolerance following the trend of Neu5Ac > Neu5Gc ≫ Neu5,9Ac2 for NEU2, NEU3, and NEU4. Both NEU2 and NEU3 had remarkably reduced activity for Neu5,9Ac2 containing substrates. Other isoenzymes appeared to be more tolerant, with NEU4 even showing increased activity on Neu5,9Ac2 substrates with an aryl aglycone. The impact of these minor structural changes to sialic acid on hNEU activity was unexpected, and these results provide evidence of the substantial influence of 9- O-Ac modifications on hNEU enzyme substrate specificity. Furthermore, these findings may implicate hNEU in processes governed by 9- O-acetyltransferases and -esterases.
Collapse
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Neha Khanna
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Reza Rezaei Darestani
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Chunxia Zou
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| |
Collapse
|
4
|
Sandhoff R, Schulze H, Sandhoff K. Ganglioside Metabolism in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:1-62. [DOI: 10.1016/bs.pmbts.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
A dual drug regimen synergistically blocks human parainfluenza virus infection. Sci Rep 2016; 6:24138. [PMID: 27053240 PMCID: PMC4823791 DOI: 10.1038/srep24138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/21/2016] [Indexed: 01/30/2023] Open
Abstract
Human parainfluenza type-3 virus (hPIV-3) is one of the principal aetiological agents of acute respiratory illness in infants worldwide and also shows high disease severity in the elderly and immunocompromised, but neither therapies nor vaccines are available to treat or prevent infection, respectively. Using a multidisciplinary approach we report herein that the approved drug suramin acts as a non-competitive in vitro inhibitor of the hPIV-3 haemagglutinin-neuraminidase (HN). Furthermore, the drug inhibits viral replication in mammalian epithelial cells with an IC50 of 30 μM, when applied post-adsorption. Significantly, we show in cell-based drug-combination studies using virus infection blockade assays, that suramin acts synergistically with the anti-influenza virus drug zanamivir. Our data suggests that lower concentrations of both drugs can be used to yield high levels of inhibition. Finally, using NMR spectroscopy and in silico docking simulations we confirmed that suramin binds HN simultaneously with zanamivir. This binding event occurs most likely in the vicinity of the protein primary binding site, resulting in an enhancement of the inhibitory potential of the N-acetylneuraminic acid-based inhibitor. This study offers a potentially exciting avenue for the treatment of parainfluenza infection by a combinatorial repurposing approach of well-established approved drugs.
Collapse
|
6
|
Abad-Rodríguez J, Díez-Revuelta N. Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 2015; 40:385-96. [PMID: 25936977 DOI: 10.1016/j.tibs.2015.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Nervous system function relies on the capacity of neurons to organize specialized domains for impulse reception or transmission. Such a polarized architecture relies on highly discriminatory and efficient mechanisms for the transport and targeting of required molecules to their functional positions. Glycans play a central role in polarized traffic based on their extraordinary capacity to encrypt bio-information. Glycan-based interactions exquisitely regulate cargo selection, trafficking, and targeting to the axon membrane. This generates segregated functional domains, where basal nerve processes such as axon growth, synaptic activity, or myelination take place. Deciphering the details of the glycan structures and carbohydrate-binding molecules that underlie these mechanisms improves our knowledge of nerve physiology and defines novel specific approaches for neurological treatments.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
7
|
Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J Neurosci 2014; 34:2477-92. [PMID: 24523539 DOI: 10.1523/jneurosci.4432-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.
Collapse
|
8
|
Gangliosides and Cell Surface Ganglioside Glycohydrolases in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 9:223-44. [DOI: 10.1007/978-1-4939-1154-7_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Fanzani A, Zanola A, Faggi F, Papini N, Venerando B, Tettamanti G, Sampaolesi M, Monti E. Implications for the mammalian sialidases in the physiopathology of skeletal muscle. Skelet Muscle 2012; 2:23. [PMID: 23114189 PMCID: PMC3534598 DOI: 10.1186/2044-5040-2-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/02/2012] [Indexed: 12/11/2022] Open
Abstract
The family of mammalian sialidases is composed of four distinct versatile enzymes that remove negatively charged terminal sialic acid residues from gangliosides and glycoproteins in different subcellular areas and organelles, including lysosomes, cytosol, plasma membrane and mitochondria. In this review we summarize the growing body of data describing the important role of sialidases in skeletal muscle, a complex apparatus involved in numerous key functions and whose functional integrity can be affected by various conditions, such as aging, chronic diseases, cancer and neuromuscular disorders. In addition to supporting the proper catabolism of glycoconjugates, sialidases can affect different signaling pathways by desialylation of many receptors and modulation of ganglioside content in cell membranes, thus actively participating in myoblast proliferation, differentiation and hypertrophy, insulin responsiveness and skeletal muscle architecture.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wipfler D, Srinivasan GV, Sadick H, Kniep B, Arming S, Willhauck-Fleckenstein M, Vlasak R, Schauer R, Schwartz-Albiez R. Differentially regulated expression of 9-O-acetyl GD3 (CD60b) and 7-O-acetyl-GD3 (CD60c) during differentiation and maturation of human T and B lymphocytes. Glycobiology 2011; 21:1161-72. [PMID: 21507905 DOI: 10.1093/glycob/cwr050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
GD3 (CD60a) and its 9-O-acetylated variant (CD60b) are intracellular regulators of apoptosis in T lymphocytes. Surface expressed 9-O-acetyl- and 7-O-acetyl-GD3 (CD60b and CD60c) may have a functional impact on activated T and B cells. In order to investigate the balance between surface and intracellular expression and synthesis and degradation of these glycosphingolipids in human lymphocytes of various differentiation stages, we analyzed (i) expression of GD3 molecules on native T and B cells and thymocytes by flow cytometry and (ii) activity and regulation of possible key enzymes for CD60a,b,c synthesis and degradation at the transcriptional level. Both, surface and cytoplasmic expression of CD60a and CD60c was highest in tonsillar T cells. In thymocytes, CD60c outweighs the other CD60 variants and was mainly found in the cytoplasm. All lymphocyte preparations contained sialate O-acetyltransferase activity producing 7-O-acetyl-GD3. Sialidase activity was highest in peripheral blood lymphocytes followed by thymocytes and tonsillar T and B cells. Transcription of GD3 synthase (ST8SiaI), the key enzyme for GD3 synthesis, was highest in tonsillar T cells, whereas transcriptional levels of sialidase NEU3 and O-acetylesterase H-Lse were lowest in activated T cells. This balance between enzymes of sialic acid metabolism may explain the strong overall staining intensity for all GD3 forms in T cells. Both CASD1, presumably encoding a sialic acid-specific O-acetyltransferase, and H-Lse showed highest transcription in peripheral B lymphocytes corresponding to the low expression of CD60b and c in these cells. Our data point to regulatory functions of these anabolic and catabolic key enzymes for the expression of GD3 and its O-acetylated variants in lymphocytes at a given differentiation stage.
Collapse
Affiliation(s)
- Dirk Wipfler
- German Cancer Research Center, D015 Translational Immunology, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li Y, Cao H, Yu H, Chen Y, Lau K, Qu J, Thon V, Sugiarto G, Chen X. Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. MOLECULAR BIOSYSTEMS 2011; 7:1060-72. [PMID: 21206954 DOI: 10.1039/c0mb00244e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:297-316. [DOI: 10.1007/978-1-4419-7877-6_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 2009; 584:1914-22. [DOI: 10.1016/j.febslet.2009.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 12/19/2022]
|
14
|
Sodeoka M, Hirai G, Watanabe T, Miyagi T. A strategy for constructing C-sialosides based on Ireland-Claisen rearrangement and its application for synthesis of CF2-linked ganglioside GM4 analog. PURE APPL CHEM 2009. [DOI: 10.1351/pac-con-08-09-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sialidase-resistant ganglioside analogs having similar biological activities to natural gangliosides are expected to be important probes for clarifying the biological functions of gangliosides. Focusing on difluoromethylene-linked (CF2-linked) and methylene-linked (CH2-linked) α(2,3)sialylgalactose as a core structure of sialidase-resistant ganglioside mimics, we have developed novel, stereocontrolled, and efficient methodologies to synthesize C-sialosides based on Ireland-Claisen rearrangement. These methods were employed to synthesize CF2-linked GM4. The CF2-linked GM4 inhibited human sialidases NEU2 and NEU4 with IC50 values of 754 and 930 μM, respectively, and strongly inhibited human lymphocyte proliferation in the same concentration range as natural GM4.
Collapse
Affiliation(s)
- Mikiko Sodeoka
- 1Synthetic Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351 0198, Japan
| | - Go Hirai
- 1Synthetic Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351 0198, Japan
| | - Toru Watanabe
- 1Synthetic Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351 0198, Japan
| | - Taeko Miyagi
- 2Division of Biochemistry, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan, and CREST,JST Kawaguchi 332-1102, Japan
| |
Collapse
|
15
|
Hirai G, Watanabe T, Yamaguchi K, Miyagi T, Sodeoka M. Stereocontrolled and Convergent Entry toCF2-Sialosides: Synthesis ofCF2-Linked Ganglioside GM4. J Am Chem Soc 2007; 129:15420-1. [DOI: 10.1021/ja075738w] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Prinetti A, Chigorno V, Mauri L, Loberto N, Sonnino S. Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. J Neurochem 2007; 103 Suppl 1:113-25. [DOI: 10.1111/j.1471-4159.2007.04714.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Nan X, Carubelli I, Stamatos NM. Sialidase expression in activated human T lymphocytes influences production of IFN-gamma. J Leukoc Biol 2006; 81:284-96. [PMID: 17028199 DOI: 10.1189/jlb.1105692] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sialidases influence cellular activity by removing terminal sialic acid from glycoproteins and glycolipids. Four genetically distinct sialidases (Neu1-4) have been identified in mammalian cells. In this study, we demonstrate that only lysosomal Neu1 and plasma membrane-associated Neu3 are detected in freshly isolated and activated human T lymphocytes. Activation of lymphocytes by exposure to anti-CD3 and anti-CD28 IgG resulted in a ninefold increase in Neu1-specific activity after growth of cells in culture for 5 days. In contrast, the activity of Neu3 changed minimally in activated lymphocytes. The increase in Neu1 enzyme activity correlated with increased synthesis of Neu1-specific mRNA. Neu1 was present on the surface of freshly isolated and activated CD4 and CD8 T lymphocytes, as determined by staining intact cells with anti-Neu1 IgG and analysis by flow cytometry and by Western blot analysis of biotin-labeled cell surface proteins. Cell surface Neu1 was found tightly associated with a subunit of protective protein/cathepsin A (PPCA). Compared with freshly isolated lymphocytes, activated cells expressed more surface binding sites for galactose-recognizing lectins Erythrina cristagalli (ECA) and Arachis hypogaea. Growth of cells in the presence of sialidase inhibitors 2,3-dehydro-2-deoxy-N-acetylneuraminic acid or 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid resulted in a smaller increase in number of ECA-binding sites and a greater amount of cell surface sialic acid in activated cells. Inhibition of sialidase activity also resulted in reduced expression of IFN-gamma in activated cells. The down-regulation of IFN-gamma occurred at the transcriptional level. Thus, sialidase activity in activated T lymphocytes contributes to the hyposialylation of specific cell surface glycoconjugates and to the production of IFN-gamma.
Collapse
Affiliation(s)
- Xinli Nan
- Institute of Human Biology, and Department of Medicine, University of Maryland Medical Center, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
18
|
Magesh S, Suzuki T, Miyagi T, Ishida H, Kiso M. Homology modeling of human sialidase enzymes NEU1, NEU3 and NEU4 based on the crystal structure of NEU2: Hints for the design of selective NEU3 inhibitors. J Mol Graph Model 2006; 25:196-207. [PMID: 16427342 DOI: 10.1016/j.jmgm.2005.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 12/15/2005] [Accepted: 12/16/2005] [Indexed: 11/29/2022]
Abstract
Four types of human sialidases have been cloned and characterized at the molecular level. They are classified according to their major intracellular location as intralysomal (NEU1), cytosolic (NEU2), plasma membrane (NEU3) and lysosomal or mitochondrial membrane (NEU4) associated sialidases. These human isoforms are distinct from each other in their enzymatic properties as well as their substrate specificity. Altered expression of sialidases has been correlated with malignant transformation of cells and different sialidases have been known to behave differently during carcinogenesis. Particularly, increased expression of NEU3 has been implicated in the survival of various cancer cells and also in the development of insulin resistance. In the present study, we have modeled three-dimensional structures of NEU1, NEU3 and NEU4 based on the crystal structure of NEU2 using the homology modeling program MODELER. The best model in each enzyme case was chosen on the basis of various standard protein analysis programs. Predicted structures and the experimental protein-ligand complex of NEU2 were compared to identify similarities and differences among the active sites. The molecular electrostatic potential (MEP) was calculated for the predicted models to identify the differences in charge distribution around the active site and its vicinity. The primary objective of the present work is to identify the structural differences between the different isoforms of human sialidases, namely NEU1, NEU2, NEU3 and NEU4, thus providing a better insight into the differences in the active sites of these enzymes. This can in turn guide us in the better understanding and rationale of the differential substrate recognition and activity, thereby aiding in the structure-based design of selective NEU3 inhibitors.
Collapse
Affiliation(s)
- Sadagopan Magesh
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
19
|
McGlynn R, Dobrenis K, Walkley SU. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 2005; 480:415-26. [PMID: 15558784 DOI: 10.1002/cne.20355] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mucopolysaccharidoses (MPSs) are a complex family of lysosomal storage disorders characterized by failure to degrade heparan sulfate (HS) and/or other types of glycosaminoglycans (GAGs) secondary to the absence of specific lysosomal enzymes. An accompanying storage of glycosphingolipids (GSLs), most notably GM2 and GM3 gangliosides, has also been documented to occur in many types of MPS disease and is believed to be caused by secondary inhibition of GSL-degradative enzymes by intracellular GAG accumulation. We have documented the presence of secondary ganglioside accumulation in mouse models of several MPS disorders (types I, IIIA, IIIB, and VII) and report that this storage is accompanied by sequestration of free cholesterol in a manner similar to that observed in primary gangliosidoses. Using confocal microscopy, we evaluated the cellular distribution of cholesterol, GM2 and GM3 gangliosides, and HS in brains of mice with MPS IIIA disease. Unexpectedly, we found that although both gangliosides often accumulated in the same neurons, they were consistently located in separate populations of cytoplasmic vesicles. Additionally, GM3 ganglioside only partially co-localized with the primary storage material (HS), and cholesterol likewise only partially co-localized with the GM2 and GM3 gangliosides. These findings raise significant questions about the mechanism(s) responsible for secondary accumulation of storage materials in MPS disease. Furthermore, given that GSLs and cholesterol are constituents of membrane rafts believed critical in signal transduction events in neurons, their co-sequestration in individual neurons suggests the presence of defects in the composition, trafficking, and/or recycling of raft components and thus possible new mechanisms to explain neuronal dysfunction in MPS disorders.
Collapse
Affiliation(s)
- Robert McGlynn
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|