1
|
Cen J, Wang M, Jiang G, Yin Y, Su Z, Tong L, luo J, Ma Y, Gao Y, Wei Q. The new immunosuppressant, isogarcinol, binds directly to its target enzyme calcineurin, unlike cyclosporin A and tacrolimus. Biochimie 2015; 111:119-24. [DOI: 10.1016/j.biochi.2015.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/09/2015] [Indexed: 12/26/2022]
|
2
|
Chen X, Zhang Y. Molecular cloning and characterization of the calcineurin subunit A from Plutella xylostella. Int J Mol Sci 2013; 14:20692-703. [PMID: 24132154 PMCID: PMC3821638 DOI: 10.3390/ijms141020692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/26/2022] Open
Abstract
Calcineurin (or PP2B) has been reported to be involved in an array of physiological process in insects, and the calcineurin subunit A (CNA) plays a central role in calcineurin activity. We cloned the CNA gene from Plutella xylostella (PxCNA). This gene contains an ORF of 1488 bp that encodes a 495 amino acid protein, showing 98%, and 80% identities to the CNA of Bombyx mori, and humans respectively. The full-length of PxCNA and its catalytic domain (CNA(1-341), defined as PxCNα) were both expressed in Escherichia coli. Purified recombinant PxCNA displayed no phosphatase activity, whereas recombinant PxCNα showed high phosphatase activity with a Km of 4.6 mM and a kcat of 0.66 S(-1) against pNPP. It could be activated at different degrees by Mn2+, Ni2+, Mg2+, and Ca2+. The optimum reaction pH was about 7.5 and the optimum reaction temperature was around 45 °C. An in vitro inhibition assay showed that okadaic acid (OA) and cantharidin (CTD) competitively inhibited recombinant PxCNα activity with the IC50 values of 8.95 μM and 77.64 μM, respectively. However, unlike previous reports, pyrethroid insecticides were unable to inhibit recombinant PxCNα, indicating that the P. xylostella calcineurin appears not to be sensitive to class II pyrethroid insecticides.
Collapse
Affiliation(s)
- Xi'en Chen
- Key Laboratory of Plant Protection Resources & Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | | |
Collapse
|
3
|
Ye Q, Feng Y, Yin Y, Faucher F, Currie MA, Rahman MN, Jin J, Li S, Wei Q, Jia Z. Structural basis of calcineurin activation by calmodulin. Cell Signal 2013; 25:2661-7. [PMID: 24018048 DOI: 10.1016/j.cellsig.2013.08.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/30/2013] [Indexed: 01/26/2023]
Abstract
Calcineurin is the only known calmodulin (CaM) activated protein phosphatase, which is involved in the regulation of numerous cellular and developmental processes and in calcium-dependent signal transduction. Although commonly assumed that CaM displaces the autoinhibitory domain (AID) blocking substrate access to its active site, the structural basis underlying activation remains elusive. We have created a fused ternary complex (CBA) by covalently linking three polypeptides: CaM, calcineurin regulatory B subunit (CnB) and calcineurin catalytic A subunit (CnA). CBA catalytic activity is comparable to that of fully activated native calcineurin in the presence of CaM. The crystal structure showed virtually no structural change in the active site and no evidence of CaM despite being covalently linked. The asymmetric unit contains four molecules; two parallel CBA pairs are packed in an antiparallel mode and the large cavities in crystal packing near the calcineurin active site would easily accommodate multiple positions of AID-bound CaM. Intriguingly, the conformation of the ordered segment of AID is not altered by CaM; thus, it is the disordered part of AID, which resumes a regular α-helical conformation upon binding to CaM, which is displaced by CaM for activation. We propose that the structural basis of calcineurin activation by CaM is through displacement of the disordered fragment of AID which otherwise impedes active site access.
Collapse
Affiliation(s)
- Qilu Ye
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China; Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy. Mol Cell Biol 2012; 32:3265-80. [PMID: 22688515 DOI: 10.1128/mcb.00145-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The calcineurin A (CaNA) subunit was identified as a novel binding partner of plasma membrane Na(+)/H(+) exchanger 1 (NHE1). CaN is a Ca(2+)-dependent phosphatase involved in many cellular functions, including cardiac hypertrophy. Direct binding of CaN to the (715)PVITID(720) sequence of NHE1, which resembles the consensus CaN-binding motif (PXIXIT), was observed. Overexpression of NHE1 promoted serum-induced CaN/nuclear factor of activated T cells (NFAT) signaling in fibroblasts, as indicated by enhancement of NFAT promoter activity and nuclear translocation, which was attenuated by NHE1 inhibitor. In neonatal rat cardiomyocytes, NHE1 stimulated hypertrophic gene expression and the NFAT pathway, which were inhibited by a CaN inhibitor, FK506. Importantly, CaN activity was strongly enhanced with increasing pH, so NHE1 may promote CaN/NFAT signaling via increased intracellular pH. Indeed, Na(+)/H(+) exchange activity was required for NHE1-dependent NFAT signaling. Moreover, interaction of CaN with NHE1 and clustering of NHE1 to lipid rafts were also required for this response. Based on these results, we propose that NHE1 activity may generate a localized membrane microdomain with higher pH, thereby sensitizing CaN to activation and promoting NFAT signaling. In cardiomyocytes, such signaling can be a pathway of NHE1-dependent hypertrophy.
Collapse
|
5
|
Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N. Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. PHYTOCHEMISTRY 2011; 72:1293-307. [PMID: 21353267 DOI: 10.1016/j.phytochem.2011.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/08/2011] [Accepted: 01/17/2011] [Indexed: 05/18/2023]
Abstract
Abiotic stress causes diverse biochemical and physiological changes in plants and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. To understand the molecular basis of stress tolerance in plants, we have developed differential proteomes in a hardy legume, grasspea (Lathyrus sativus L.). Five-week-old grasspea seedlings were subjected independently to high salinity, low temperature and abscisic acid treatment for duration of 36h. The physiological changes of stressed seedlings were monitored, and correlated with the temporal changes of proteome using two-dimensional gel electrophoresis. Approximately, 400 protein spots were detected in each of the stress proteome with one-fourth showing more than 2-fold differences in expression values. Eighty such proteins were subjected to LC-tandem MS/MS analyses that led to the identification of 48 stress-responsive proteins (SRPs) presumably involved in a variety of functions, including metabolism, signal transduction, protein biogenesis and degradation, and cell defense and rescue. While 33 proteins were responsive to all three treatments, 15 proteins were expressed in stress-specific manner. Further, we explored the possible role of ROS in triggering the stress-induced degradation of large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase (Rubisco). These results might help in understanding the spectrum of stress-regulated proteins and the biological processes they control as well as having implications for strategies to improve stress adaptation in plants.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen Q, Wu W, Li J, Wei Q. The polarity of the amino acid residue 118 of calcineurin B is closely linked to calcineurin enzyme activity. IUBMB Life 2010; 62:561-7. [PMID: 20552635 DOI: 10.1002/iub.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calcineurin(Cn), a multifunctional regulator expressed in several tissues and organs, consists of CnA (catalytic subunit) and CnB (regulatory subunit). The crystal structure shows that the hydrophobic groove formed by 118-123 residues of CnB is necessary for its interactions with two different immunosuppressant-immunophilin complexes and with CnA. In this report, we focus on Met118 of CnB to study the association between conformational states of CnB and the phosphatase activity of Cn. We found that hydrophobicity in the region around site118 of CnB is essential for the Cn activity. Polar mutants significantly weakened the enzymatic activity compared with the nonpolar ones. The data showed that some modest alterations in the vicinity of site118 impaired the integrality and compactness of hydrophobic microenvironment, and this might explain why CnB mutants defective in hydrophobicity failed in activating Cn. This requirement of hydrophobic microenvironment around site118 in CnB suggests that, besides the mutations in the catalytic subunit CnA, which impairs Cn phosphatase activity, and had been identified to be associated with diseases such as Alzheimer's disease (AD), the mutations in CnB might also affect Cn enzymatic activity in vivo, and this might be helpful for our further research on mechanisms of diseases associated with Cn.
Collapse
Affiliation(s)
- Qing Chen
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Ren Y, Wang ZX, Wei Q. Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+. Biol Chem 2009; 390:1155-62. [PMID: 19558332 DOI: 10.1515/bc.2009.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Saccharomyces cerevisiae calcineurin (CN) consists of a catalytic subunit CNA1 or CNA2 and a regulatory subunit CNB1. The kinetics of activation of yeast CN holoenzymes and their catalytic domains by Mn2+ were investigated. We report that the in vitro phosphatase reaction activated by Mn2+ typically has a pronounced initial lag phase caused by slow conformational rearrangement of the holoenzyme-Mn2+. A similar lag phase was detected using just the catalytic domain of yeast CN, indicating that the slowness of Mn2+-induced conformational change of CN results from a rearrangement within the catalytic domain. The Mn2+-activation of CN was reversible. The dissociation constant of the CN heterodimer containing the CNA2 subunit in the presence of Mn2+ was 3-fold higher than that of CN containing the CNA1 subunit and that of the catalytic domains of CNA1 and CNA2, pointing to differences between the residues surrounding the Mn2+-binding sites of CNA1 and CNA2.
Collapse
Affiliation(s)
- Yan Ren
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, P.R. China
| | | | | |
Collapse
|
8
|
Tu LH, Ma J, Liu HP, Wang RR, Luo J. The neuroprotective effects of ginsenosides on calcineurin activity and tau phosphorylation in SY5Y cells. Cell Mol Neurobiol 2009; 29:1257-64. [PMID: 19517226 DOI: 10.1007/s10571-009-9421-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 05/25/2009] [Indexed: 11/25/2022]
Abstract
Calcineurin (CN) is a Ca(2+)/calmodulin-dependent protein phosphatase expressed at high levels in brain. Many findings have shown that calcineurin plays an important role in tau hyperphosphorylation, which is one of the neuropathologic features in the brains of Alzheimer's disease (AD). Based on the molecular screening model using p-nitrophenyl phosphate (p-NPP) as a substrate for preliminary screening and (32)P-labeled 19-residue phosphopeptide as a specific substrate for final determination, we found that the total ginsenoside extracts from stems and leaves of Panax ginseng (GSL) could enhance the phosphatase activity of purified CN. In the human neuroblastoma cells SY5Y, inhibition of CN by cyclosporine A (CsA) could induce hyperphosphorylation of tau at multiple sites, accompanied with oxidative stress. Pretreatment of the cells with GSL prior to CsA exposure could alleviate CsA-induced CN inhibition and tau hyperphosphorylation to some degree. Further oxidative parameters demonstrated that GSL caused increased SOD activity and content of SH significantly. It is speculated that GSL weakens CsA-induced CN inhibition through the antioxidant mechanisms. Although our results indicate that GSL may have neuroprotective effects on some characteristic features of AD, the chemical compositions of GSL and their potential for affecting the disease mechanism need to be further studied.
Collapse
Affiliation(s)
- Ling-Hui Tu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory, Beijing Normal University, 100875, Beijing, China
| | | | | | | | | |
Collapse
|
9
|
Studies on the interactions of kaempferol to calcineurin by spectroscopic methods and docking. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1269-75. [PMID: 19439201 DOI: 10.1016/j.bbapap.2009.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 01/05/2023]
Abstract
Kaempferol, in our previous study, was a new immunosuppressant on calcineurin (CN), the Ca(2+)/calmodulin (CaM)-dependent protein phosphatase. Here, we examined the interactions of kaempferol with CN by fluorescence spectroscopy (FS), circular dichroism spectroscopy (CD) and docking. Data of kaempferol with CN catalytic subunit (CN A) and its truncated mutant CNAa obtained by FS method showed that the binding stoichiometry of kaempferol/CN A was 1:1, catalytic domain of CN A was the concrete domain for kaempferol binding while other domains contributed a lot to this binding. Distances from kaempferol to each tryptophan (Trp) in CN A by energy transfer experiments and the subsequent docking study interestingly provided the same binding sites for kaempferol, which all located in the non-active site area of CN A catalytic domain, also consisted with our previous conclusion from CN activity assay. Furthermore, CD results showed a much tighter structure of CN A for the inhibitor binding; on the other hand, presence of Ca(2+) and Mn(2+) decreased kaempferol binding on CN A.
Collapse
|
10
|
Wang H, Zhou CL, Lei H, Zhang SD, Zheng J, Wei Q. Kaempferol: a new immunosuppressant of calcineurin. IUBMB Life 2008; 60:549-54. [PMID: 18506853 DOI: 10.1002/iub.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcineurin (CN), the Ca(2+)/calmodulin (CaM)-dependant protein phosphatase, is the target for immunosuppressive drugs cyclosporine A (CsA) and FK506. These immunosuppressants can inhibit CN activity after binding with respective immunophilins. Based on the model of screening by using p-nitrophenyl phosphate as a substrate for preliminary screening and (32)P-labeled 19-residue phosphopeptide as a specific substrate for final determination, we found Kaempferol, a natural flavonol, could inhibit CN activity in purified enzyme and Jurkat T-cells. Unlike CsA and FK506, CN inhibition by kaempferol is independent of matchmaker protein and the inhibitory manner is noncompetitive. Through investigation of inhibitions for CNA and a series of its truncated mutants, we suggested that Kaempferol could directly act on the catalytic domain. Data also indicated that the CN inhibition by kaempferol could be enhanced when the enzyme was activated in the presence of CaM and CNB. CNB is necessary for mediating inhibition of enzyme by kaempferol. The result of RT-PCR also indicated that kaempferol had an inhibitory activity against IL-2 gene expression in activated Jurkat cells. All data suggested that kaempferol could be a new immunosuppressant of CN.
Collapse
Affiliation(s)
- Hu Wang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Luo J, Ma J, Yu DY, Bu F, Zhang W, Tu LH, Wei Q. Infusion of FK506, a specific inhibitor of calcineurin, induces potent tau hyperphosphorylation in mouse brain. Brain Res Bull 2008; 76:464-8. [PMID: 18534252 DOI: 10.1016/j.brainresbull.2007.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 11/29/2022]
Abstract
Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase expressed at high levels in brain. Many electrophysiological and pharmacological findings have shown that calcineurin plays an important role in brain function. FK506 is always used as a specific calcineurin inhibitor in these researches. But these reports did not quantify the calcineurin activity in FK506-treated brain. Here we first investigated the inhibitory effect of FK506 injected into the mouse brain ventricle on CN activity. FK506 reduced calcineurin activity in a dose-dependent manner, without affecting its amount. Injection of 12.5 nmol FK506 also significantly enhanced the phosphorylation of tau at Ser-262 (12E8 site), Ser-198, Ser-199, and/or Ser-202 (Tau-1 site) and Ser-396 and/or Ser-404 (PHF-1 site), without affecting total tau. It is suggested that calcineurin plays an important role in tau phosphorylation, dependently of its activity. Compared with the effects of cyclosporin A, another specific inhibitor of CN in our previous study, we first evaluate that such infusion of FK506 is more effective than that of cyclosporin A on calcineurin inhibition and tau phosphorylation.
Collapse
Affiliation(s)
- Jing Luo
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang H, Du Y, Xiang B, Lin W, Li X, Wei Q. A renewed model of CNA regulation involving its C-terminal regulatory domain and CaM. Biochemistry 2008; 47:4461-8. [PMID: 18348537 DOI: 10.1021/bi702539e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcineurin is composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). CNA contains the catalytic domain and three regulatory domains: a CNB-binding domain (BBH), a C-terminal calmodulin-binding domain (CBD), and an autoinhibitory domain (AID). We constructed a series of mutants of CNA to explore the regulatory role of its C-terminal regulatory domain and CaM. We demonstrated a more precise mechanism of CNA regulation by C-terminal residues 389-511 in the presence of CNB. First, we showed that residues 389-413, which were identified in previous work as constituting a CaM binding domain (CBD), also have an autoinhibiting function. We also found that residues 389-413 were not sufficient for CaM binding and that the CBD comprises at least residues 389-456. In conclusion, two distinct segments of the C-terminal regulatory region (389-511) of CNA inhibit enzyme activity: residues 389-413 interact with the CNB binding helix (BBH), and residues 457-482 with the active center of CNA.
Collapse
Affiliation(s)
- Hailong Wang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Wang H, Yao S, Lin W, Du Y, Xiang B, He S, Huang C, Wei Q. Different roles of Loop 7 in inhibition of calcineurin. Biochem Biophys Res Commun 2007; 362:263-8. [PMID: 17707777 DOI: 10.1016/j.bbrc.2007.07.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/16/2007] [Indexed: 01/26/2023]
Abstract
Calcineurin (CN) is the receptor for two immunophilin-immunosuppressant complexes, Cyp-CsA and FKBP-FK506. It is a heterodimer composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). It is also inhibited by its own auto-inhibitory domain (AID). Loop 7 is a beta-hairpin within CNA that makes close contact with bound immunophilin-immunosuppressant complexes and with the AID. To investigate the role of Loop 7 in inhibition, we generated a series of deletion and substitution mutants and examined their inhibition by Cyp-CsA, FKBP-FK506 and an AID peptide. Our results demonstrate that the contacts made by Loop 7 are critical for its role in CN inhibition. Intriguingly, single residue deletions of Val314 and neighboring residues increased inhibition by FKBP-FK506 >6-fold, whereas they reduced Cyp-CsA inhibition >3-fold and abolished inhibition by the AID peptide. Most of the single substitution mutations also decreased Cyp-CsA inhibition. Loop 7 thus plays different roles in the inhibition of CN by the different inhibitors.
Collapse
Affiliation(s)
- Hailong Wang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Xie XJ, Xue CZ, Huang W, Yu DY, Wei Q. The beta12-beta13 loop is a key regulatory element for the activity and properties of the catalytic domain of protein phosphatase 1 and 2B. Biol Chem 2006; 387:1461-7. [PMID: 17081120 DOI: 10.1515/bc.2006.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The molecular architectures of the catalytic core of protein phosphatase 1 (PP1) and protein phosphatase 2B (PP2B) are similar, and both contain a beta12-beta13 loop that consists of non-conserved residues. A truncation mutant containing the PP2B catalytic domain has previously been constructed in our laboratory, and designated CNAa. In this study, the PP1 catalytic subunit (PP1c) and CNAa, as well as mutants with the corresponding loops exchanged, were investigated using multiple substrates. Deletion of the beta12-beta13 loop from Y272 to A279 of PP1c or from Y311 to K318 of CNAa resulted in inactive proteins. Loop exchange generated chimeric mutants called PP1-CNAa-loop and CNAa-PP1-loop. The activities and kinetic parameters of the two chimeric mutants were altered in the direction of the enzyme from which its loop was derived. The activity of PP1c or CNAa-PP1-loop was similar whether preincubated with Mn(2+) or not, while CNAa and PP1-CNAa-loop can acquire enhanced activation if preincubated with Mn(2+) for longer periods of time. Intrinsic fluorescence spectra revealed that the three-dimensional structure was altered as a result of exchanging the loops of PP1c and CNAa. In conclusion, the beta12-beta13 loop is one of the key regulatory elements in the catalytic domain for the activity and properties of PP1c and CNAa.
Collapse
Affiliation(s)
- Xiu-Jie Xie
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, PR China
| | | | | | | | | |
Collapse
|
15
|
Yu DY, Luo J, Bu F, Song GJ, Zhang LQ, Wei Q. Inhibition of calcineurin by infusion of CsA causes hyperphosphorylation of tau and is accompanied by abnormal behavior in mice. Biol Chem 2006; 387:977-83. [PMID: 16913847 DOI: 10.1515/bc.2006.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calcineurin is a Ca2+/calmodulin-dependent phosphatase that dephosphorylates numerous substrates in different neuronal compartments. Genetic and pharmacological studies have provided insight into its involvement in the brain. Cyclosporin A (CsA) is used as a specific calcineurin inhibitor in many pharmacological experiments. However, the calcineurin activity of CsA-treated brain has not been reported. To examine the relationship between calcineurin activity and brain function, we injected CsA into the left lateral ventricle of the mouse brain and assayed calcineurin activity. CsA reduced calcineurin activity in a dose-dependent manner, without affecting the amount of calcineurin protein. Assays of the effect of protein phosphatase inhibitors on CsA-injected mouse brain extracts and kinetic analysis revealed that CsA inhibited calcineurin activity in a non-competitive manner in vivo, in agreement with in vitro results. Injection of CsA led to enhanced phosphorylation of tau at Ser-262 (12E8 site), Ser-198, Ser-199, and/or Ser-202 (Tau-1 site) and Ser-396 and/or Ser-404 (PHF-1 site), as well as to impaired spatial memory, which are two characteristic features of Alzheimer's disease. We propose that inhibition of calcineurin may play an important role in Alzheimer's disease.
Collapse
Affiliation(s)
- Da-yu Yu
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|
16
|
Kraus PR, Nichols CB, Heitman J. Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. EUKARYOTIC CELL 2005; 4:1079-87. [PMID: 15947200 PMCID: PMC1151996 DOI: 10.1128/ec.4.6.1079-1087.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of calcium as a signaling molecule is conserved in eukaryotes from fungi to humans. Previous studies have identified the calcium-activated phosphatase calcineurin as a critical factor in governing growth of the human pathogenic fungus Cryptococcus neoformans at mammalian body temperature. Here, we employed insertional mutagenesis to identify new genes required for growth at 37 degrees C. One insertion mutant, cam1-ts, that displayed a growth defect at 37 degrees C and hypersensitivity to the calcineurin inhibitor FK506 at 25 degrees C was isolated. Both phenotypes were linked to the dominant marker in genetic crosses, and molecular analysis revealed that the insertion occurred in the 3' untranslated region of the gene encoding the calcineurin activator calmodulin (CAM1) and impairs growth at 37 degrees C by significantly reducing calmodulin mRNA abundance. The CAM1 gene was demonstrated to be essential using genetic analysis of a CAM1/cam1Delta diploid strain. In the absence of calcineurin function, the cam1-ts mutant displayed a severe morphological defect with impaired bud formation. Expression of a calmodulin-independent calcineurin mutant did not suppress the growth defect of the cam1-ts mutant at 37 degrees C, indicating that calmodulin promotes growth at high temperature via calcineurin-dependent and -independent pathways. In addition, a Ca2+-binding-defective allele of CAM1 complemented the 37 degrees C growth defect, FK506 hypersensitivity, and morphogenesis defect of the cam1-ts mutant. Our findings reveal that calmodulin performs Ca2+- and calcineurin-independent and -dependent roles in controlling C. neoformans morphogenesis and high-temperature growth.
Collapse
Affiliation(s)
- Peter R Kraus
- Department of Molecular Genetics and Microbiology, 322 CARL Building, Box 3546, Research Drive, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
17
|
Liu P, Huang C, Jia Z, Yi F, Yu DY, Wei Q. Non-catalytic domains of subunit A negatively regulate the activity of calcineurin. Biochimie 2005; 87:215-21. [PMID: 15760715 DOI: 10.1016/j.biochi.2004.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Accepted: 10/21/2004] [Indexed: 11/30/2022]
Abstract
Calcineurin is composed of a catalytic subunit A (CNA) and a regulatory subunit B (CNB). In addition to the catalytic core, CNA further contains three non-catalytic domains--CNB binding domain (BBH), calmodulin binding domain (CBD), and autoinhibitory domain (AI). To investigate the effect of these three domains on the activity of CNA, we have constructed domain deletion mutants CNAa (catalytic domain only), CNAac (CNAa and CBD), and CNAaci (CNAa, CBD and AI). By using p-nitrophenylphosphate and (32)P-labeled R(II) peptide as substrates, we have systematically examined the phosphatase activities, kinetics, and regulatory effects of Mn(2+)/Ni(2+) and Mg(2+). The results show that the catalytic core has the highest activity and the order of activity of the remaining constructs is CNAac>CNAaci>CNA. Sequential removal of the non-catalytic domains corresponds to concurrent increases of the phosphatase activity assayed under several conditions. This observation clearly demonstrates that non-catalytic domains negatively regulate the enzyme activity and act as intra-molecular inhibitors, possibly through restraining the conformation elasticity of the catalytic core required for optimal catalysis or interfering with substrate access. The sequential domain deletion favors activation of the enzyme by Mn(2+)/Ni(2+) but not by Mg(2+) (except for CNAa), suggesting that enzyme activation by Mn(2+)/Ni(2+) is mainly mediated via the catalytic domain, whereas activation by Mg(2+) is via both the catalytic core and non-catalytic domains.
Collapse
Affiliation(s)
- Ping Liu
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | | | |
Collapse
|
18
|
Liu P, Huang C, Wang HL, Zhou K, Xiao FX, Qun W. The importance of Loop 7 for the activity of calcineurin. FEBS Lett 2005; 577:205-8. [PMID: 15527786 DOI: 10.1016/j.febslet.2004.09.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/20/2004] [Accepted: 09/22/2004] [Indexed: 11/19/2022]
Abstract
Calcineurin (CN) is a heterodimer composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). Loop 7 lies within the CNA catalytic domain. To investigate the role of Loop 7 in enzyme activity, we systematically examined all its residues by site-directed deletion mutation. Our results show that the Loop 7 residues are important for enzyme activity. Besides deleting residues V314, Y315 or N316, enzyme activity also increased dramatically when residues D313 or K318 were deleted. In contrast, almost all activity was lost when L312 or N317 were deleted. Ni2+ and Mn2+ were effective activators for all active mutants. However, whereas the wild-type enzyme was more efficiently activated by Ni2+ than by Mn2+ with 32P-labeled R(II) peptide as substrate, the reverse was true in all the mutants. We also found that the effect of Loop 7 on enzyme activity was substrate dependent, and involved interactions between Loop 7 residues and the unresolved part of the CN crystal structure near the auto-inhibitory domain and catalytic site.
Collapse
Affiliation(s)
- Ping Liu
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, PR China
| | | | | | | | | | | |
Collapse
|