1
|
Bosch SS, Lunev S, Batista FA, Linzke M, Kronenberger T, Dömling ASS, Groves MR, Wrenger C. Molecular Target Validation of Aspartate Transcarbamoylase from Plasmodium falciparum by Torin 2. ACS Infect Dis 2020; 6:986-999. [PMID: 32129597 DOI: 10.1021/acsinfecdis.9b00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria is a tropical disease that kills about half a million people around the world annually. Enzymatic reactions within pyrimidine biosynthesis have been proven to be essential for Plasmodium proliferation. Here we report on the essentiality of the second enzymatic step of the pyrimidine biosynthesis pathway, catalyzed by aspartate transcarbamoylase (ATC). Crystallization experiments using a double mutant ofPlasmodium falciparum ATC (PfATC) revealed the importance of the mutated residues for enzyme catalysis. Subsequently, this mutant was employed in protein interference assays (PIAs), which resulted in inhibition of parasite proliferation when parasites transfected with the double mutant were cultivated in medium lacking an excess of nutrients, including aspartate. Addition of 5 or 10 mg/L of aspartate to the minimal medium restored the parasites' normal growth rate. In vitro and whole-cell assays in the presence of the compound Torin 2 showed inhibition of specific activity and parasite growth, respectively. In silico analyses revealed the potential binding mode of Torin 2 to PfATC. Furthermore, a transgenic ATC-overexpressing cell line exhibited a 10-fold increased tolerance to Torin 2 compared with control cultures. Taken together, our results confirm the antimalarial activity of Torin 2, suggesting PfATC as a target of this drug and a promising target for the development of novel antimalarials.
Collapse
Affiliation(s)
- Soraya S. Bosch
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Fernando A. Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Alexander S. S. Dömling
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Matthew R. Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| |
Collapse
|
2
|
Chemical and genetic validation of thiamine utilization as an antimalarial drug target. Nat Commun 2013; 4:2060. [PMID: 23804074 DOI: 10.1038/ncomms3060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/28/2013] [Indexed: 11/08/2022] Open
Abstract
Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.
Collapse
|
3
|
Targeting the vitamin biosynthesis pathways for the treatment of malaria. Future Med Chem 2013; 5:769-79. [PMID: 23651091 DOI: 10.4155/fmc.13.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The most severe form of malaria is Malaria tropica, caused by Plasmodium falciparum. There are more than 1 billion people that are exposed to malaria parasites leading to more than 500,000 deaths annually. Vaccines are not available and the increasing drug resistance of the parasite prioritizes the need for novel drug targets and chemotherapeutics, which should be ideally designed to target selectively the parasite. In this sense, parasite-specific pathways, such as the vitamin biosyntheses, represent perfect drug-target characteristics because they are absent in humans. In the past, the vitamin B9 (folate) metabolism has been exploited by antifolates to treat infections caused by malaria parasites. Recently, two further vitamin biosynthesis pathways - for the vitamins B6 (pyridoxine) and B1 (thiamine) - have been identified in Plasmodium and analyzed for their suitability to discover new drugs. In this review, the current status of the druggability of plasmodial vitamin biosynthesis pathways is summarized.
Collapse
|
4
|
The antioxidative effect of de novo generated vitamin B6 in Plasmodium falciparum validated by protein interference. Biochem J 2012; 443:397-405. [PMID: 22242896 DOI: 10.1042/bj20111542] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The malaria parasite Plasmodium falciparum is able to synthesize de novo PLP (pyridoxal 5'-phosphate), the active form of vitamin B6. In the present study, we have shown that the de novo synthesized PLP is used by the parasite to detoxify 1O2 (singlet molecular oxygen), a highly destructive reactive oxygen species arising from haemoglobin digestion. The formation of 1O2 and the response of the parasite were monitored by live-cell fluorescence microscopy, by transcription analysis and by determination of PLP levels in the parasite. Pull-down experiments of transgenic parasites overexpressing the vitamin B6-biosynthetic enzymes PfPdx1 and PfPdx2 clearly demonstrated an interaction of the two proteins in vivo which results in an elevated PLP level from 12.5 μM in wild-type parasites to 36.6 μM in the PfPdx1/PfPdx2-overexpressing cells and thus to a higher tolerance towards 1O2. In contrast, by applying the dominant-negative effect on the cellular level using inactive mutants of PfPdx1 and PfPdx2, P. falciparum becomes susceptible to 1O2. Our results demonstrate clearly the crucial role of vitamin B6 biosynthesis in the detoxification of 1O2 in P. falciparum. Besides the known role of PLP as a cofactor of many essential enzymes, this second important task of the vitamin B6 de novo synthesis as antioxidant emphasizes the high potential of this pathway as a target of new anti-malarial drugs.
Collapse
|
5
|
Müller IB, Knöckel J, Eschbach ML, Bergmann B, Walter RD, Wrenger C. Secretion of an acid phosphatase provides a possible mechanism to acquire host nutrients by Plasmodium falciparum. Cell Microbiol 2010; 12:677-91. [PMID: 20070315 DOI: 10.1111/j.1462-5822.2010.01426.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As an intracellular proliferating parasite, Plasmodium falciparum exploits the human host to acquire nutrients. However, nutrients such as nucleotides and cofactors are mostly phosphorylated in the host cell cytosol and thus have to be dephosphorylated in order to be taken up by the parasite. Here we report the functional characterization of a unique secreted phosphatase in P. falciparum, which is expressed throughout the developmental stages in the red blood cell. We show that this enzyme, formerly described as anchoring glideosome-associated protein 50 (GAP50), reveals a broad substrate profile with preference for di- and triphosphates at pH 5-7. Bioinformatic studies of the protein sequence identified an N-terminal signal anchor (SA) as well as a C-terminal transmembrane domain. By means of live microscopy of parasites transfected with GFP-fusions of this secreted acid phosphatase (PfSAP), we demonstrate that PfSAP enters the secretory pathway en route to the parasite periphery - mediated by SA - and is subsequently engulfed into the food vacuole. We corroborate this with independent data where acid phosphatase activity is visualized in close proximity to hemozoin. The biochemical as well as the trafficking results support the proposed role of PfSAP in the acquisition of host nutrients by dephosphorylation.
Collapse
Affiliation(s)
- Ingrid B Müller
- Bernhard Nocht Institute for Tropical Medicine, Department of Biochemistry, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Müller IB, Hyde JE, Wrenger C. Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends Parasitol 2009; 26:35-43. [PMID: 19939733 DOI: 10.1016/j.pt.2009.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/25/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
The malaria parasite Plasmodium falciparum depends primarily on nutrient sources from its human host. Most compounds, such as glucose, purines, amino acids, as well as cofactors and vitamins, are abundantly available in the host cell, and can be readily salvaged by the parasite. However, in some cases the parasite can also synthesize cofactors de novo in reactions that appear to be essential. Importantly, the three biosynthetic pathways that produce vitamins B(1), B(6) and B(9) are absent from the host, but are well established in P. falciparum. This review summarizes and updates the current knowledge of vitamin B de novo synthesis and salvage in P. falciparum and focuses on their potential as targets for drug intervention.
Collapse
Affiliation(s)
- Ingrid B Müller
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | |
Collapse
|
7
|
The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS One 2009; 4:e7656. [PMID: 19888457 PMCID: PMC2766623 DOI: 10.1371/journal.pone.0007656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/07/2009] [Indexed: 12/03/2022] Open
Abstract
Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels.
Collapse
|
8
|
Agyei-Owusu K, Leeper FJ. Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches. FEBS J 2009; 276:2905-16. [PMID: 19490097 DOI: 10.1111/j.1742-4658.2009.07018.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The role of thiamin diphosphate (ThDP) as a cofactor for enzymes has been known for many decades. This minireview covers the progress made in understanding the catalytic mechanism of ThDP-dependent enzymes through the use of ThDP analogues. Many such analogues have been synthesized and have provided information on the functional groups necessary for the binding and catalytic activity of the cofactor. Through these studies, the important role of hydrophobic interactions in stabilizing reaction intermediates in the catalytic cycle has been recognized. Stable analogues of intermediates in the ThDP-catalysed reaction mechanism have also been synthesized and crystallographic studies using these analogues have allowed enzyme structures to be solved that represent snapshots of the reaction in progress. As well as providing mechanistic information about ThDP-dependent enzymes, many analogues are potent inhibitors of these enzymes. The potential of these compounds as therapeutic targets and as important herbicidal agents is discussed. More recently, the way that ThDP regulates the genes for its own biosynthesis through the action of riboswitches has been discovered. This opens a new branch of thiamin research with the potential to provide new therapeutic targets in the fight against infection.
Collapse
|
9
|
Müller IB, Wu F, Bergmann B, Knöckel J, Walter RD, Gehring H, Wrenger C. Poisoning pyridoxal 5-phosphate-dependent enzymes: a new strategy to target the malaria parasite Plasmodium falciparum. PLoS One 2009; 4:e4406. [PMID: 19197387 PMCID: PMC2634962 DOI: 10.1371/journal.pone.0004406] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/12/2008] [Indexed: 11/18/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum is able to synthesize de novo pyridoxal 5-phosphate (PLP), a crucial cofactor, during erythrocytic schizogony. However, the parasite possesses additionally a pyridoxine/pyridoxal kinase (PdxK) to activate B6 vitamers salvaged from the host. We describe a strategy whereby synthetic pyridoxyl-amino acid adducts are channelled into the parasite. Trapped upon phosphorylation by the plasmodial PdxK, these compounds block PLP-dependent enzymes and thus impair the growth of P. falciparum. The novel compound PT3, a cyclic pyridoxyl-tryptophan methyl ester, inhibited the proliferation of Plasmodium very efficiently (IC(50)-value of 14 microM) without harming human cells. The non-cyclic pyridoxyl-tryptophan methyl ester PT5 and the pyridoxyl-histidine methyl ester PHME were at least one order of magnitude less effective or completely ineffective in the case of the latter. Modeling in silico indicates that the phosphorylated forms of PT3 and PT5 fit well into the PLP-binding site of plasmodial ornithine decarboxylase (PfODC), the key enzyme of polyamine synthesis, consistent with the ability to abolish ODC activity in vitro. Furthermore, the antiplasmodial effect of PT3 is directly linked to the capability of Plasmodium to trap this pyridoxyl analog, as shown by an increased sensitivity of parasites overexpressing PfPdxK in their cytosol, as visualized by GFP fluorescence.
Collapse
Affiliation(s)
- Ingrid B Müller
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Wrenger C, Knöckel J, Walter RD, Müller IB. Vitamin B1 and B6 in the malaria parasite: requisite or dispensable? ACTA ACUST UNITED AC 2008; 41:82-8. [PMID: 18235965 DOI: 10.1590/s0100-879x2008005000006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/06/2007] [Indexed: 11/21/2022]
Abstract
Vitamins are essential compounds mainly involved in acting as enzyme co-factors or in response to oxidative stress. In the last two years it became apparent that apicomplexan parasites are able to generate B vitamers such as vitamin B1 and B6 de novo. The biosynthesis pathways responsible for vitamin generation are considered as drug targets, since both provide a high degree of selectivity due to their absence in the human host. This report updates the current knowledge about vitamin B1 and B6 biosynthesis in malaria and other apicomplexan parasites. Owing to the urgent need for novel antimalarials, the significance of the biosynthesis and salvage of these vitamins is critically discussed in terms of parasite survival and their exploitation for drug development.
Collapse
Affiliation(s)
- C Wrenger
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | |
Collapse
|
11
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Filling the gap of intracellular dephosphorylation in the Plasmodium falciparum vitamin B1 biosynthesis. Mol Biochem Parasitol 2007; 157:241-3. [PMID: 18067979 DOI: 10.1016/j.molbiopara.2007.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 10/19/2007] [Accepted: 10/25/2007] [Indexed: 11/20/2022]
Abstract
Thiamine pyrophosphate (TPP), the active form of vitamin B1, is an essential cofactor for several enzymes. Humans depend exclusively on the uptake of vitamin B1, whereas bacteria, plants, fungi and the malaria parasite Plasmodium falciparum are able to synthesise thiamine monophosphate (TMP) de novo. TMP has to be dephosphorylated prior to pyrophosphorylation in order to obtain TPP. In P. falciparum the phosphatase capable to catalyse this reaction has been identified by analysis of the substrate specificity. The recombinant enzyme accepts beside vitamin B1 also nucleotides, phosphorylated sugars and the B6 vitamer pyridoxal 5'-phosphate. Vitamin B1 biosynthesis is known to occur in the cytosol. The cytosolic localisation of this phosphatase was verified by transfection of a GFP chimera construct. Stage specific Northern blot analysis of the phosphatase clearly identified an expression profile throughout the entire erythrocytic life cycle of P. falciparum and thereby emphasises the importance of dephosphorylation reactions within the malaria parasite.
Collapse
|