1
|
Bubik A, Frangež R, Žužek MC, Gutiérrez-Aguirre I, Lah TT, Sedmak B. Cyanobacterial Cyclic Peptides Can Disrupt Cytoskeleton Organization in Human Astrocytes-A Contribution to the Understanding of the Systemic Toxicity of Cyanotoxins. Toxins (Basel) 2024; 16:374. [PMID: 39330832 PMCID: PMC11436104 DOI: 10.3390/toxins16090374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The systemic toxicity of cyclic peptides produced by cyanobacteria (CCPs) is not yet completely understood. Apart from the most known damages to the liver and kidneys, symptoms of their neurotoxicity have also been reported. Hepatotoxic CCPs, like microcystins, as well as non-hepatotoxic anabaenopeptins and planktopeptins, all exhibit cytotoxic and cytostatic effects on mammalian cells. However, responses of different cell types to CCPs depend on their specific modes of interaction with cell membranes. This study demonstrates that non-hepatotoxic planktopeptin BL1125 and anabaenopeptins B and F, at concentrations up to 10 µM, affect normal and tumor human astrocytes (NHA and U87-GM) in vitro by their almost immediate insertion into the lipid monolayer. Like microcystin-LR (up to 1 µM), they inhibit Ser/Thr phosphatases and reorganize cytoskeletal elements, with modest effects on their gene expression. Based on the observed effects on intermediate filaments and intermediate filament linkage elements, their direct or indirect influence on tubulin cytoskeletons via post-translational modifications, we conclude that the basic mechanism of CCP toxicities is the induction of inter- and intracellular communication failure. The assessed inhibitory activity on Ser/Thr phosphatases is also crucial since the signal transduction cascades are modulated by phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Anja Bubik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, SI-3320 Velenje, Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
| | - Bojan Sedmak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, SI-3320 Velenje, Slovenia
| |
Collapse
|
2
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
3
|
Konkel R, Grabski M, Cegłowska M, Wieczerzak E, Węgrzyn G, Mazur-Marzec H. Anabaenopeptins from Nostoc edaphicum CCNP1411. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12346. [PMID: 36231642 PMCID: PMC9564503 DOI: 10.3390/ijerph191912346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria of the Nostoc genus belong to the most prolific sources of bioactive metabolites. In our previous study on Nostoc edaphicum strain CCNP1411, the occurrence of cyanopeptolins and nostocyclopeptides was documented. In the current work, the production of anabaenopeptins (APs) by the strain was studied using genetic and chemical methods. Compatibility between the analysis of the apt gene cluster and the structure of the identified APs was found. Three of the APs, including two new variants, were isolated as pure compounds and tested against four serine proteases and carboxypeptidase A (CPA). The in vitro enzymatic assays showed a typical activity of this class of cyanopeptides, i.e., the most pronounced effects were observed in the case of CPA. The activity of the detected compounds against important metabolic enzymes confirms the pharmaceutical potential of anabaenopeptins.
Collapse
Affiliation(s)
- Robert Konkel
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| |
Collapse
|
4
|
Zervou SK, Kaloudis T, Gkelis S, Hiskia A, Mazur-Marzec H. Anabaenopeptins from Cyanobacteria in Freshwater Bodies of Greece. Toxins (Basel) 2021; 14:4. [PMID: 35050981 PMCID: PMC8781842 DOI: 10.3390/toxins14010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC-qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|
5
|
Favas R, Morone J, Martins R, Vasconcelos V, Lopes G. Cyanobacteria and microalgae bioactive compounds in skin-ageing: potential to restore extracellular matrix filling and overcome hyperpigmentation. J Enzyme Inhib Med Chem 2021; 36:1829-1838. [PMID: 34353202 PMCID: PMC8354154 DOI: 10.1080/14756366.2021.1960830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
As the largest organ in human body, skin acts as a physicochemical barrier, offering protection against harmful environmental stressors, such as chemicals, pathogens, temperature and radiation. Nonetheless, skins prominence goes further, with a significant psychosocial role in an increasingly ageing population. Prompted by consumers’ concern regarding skincare, cosmetic industry has been developing new formulas capable of lessening the most visible signs of ageing, including reduction in skin density and elasticity, wrinkling and hyperpigmentation. Allied to skincare is the rising importance set on natural products, sustainably obtained from less environmental impacting methods. Cyanobacteria and microalgae are adding importance in this field, given their ability to biosynthesize secondary metabolites with anti-ageing potential. In this review, we present an overview on the potential of cyanobacteria and microalgae compounds to overcome skin-ageing, essentially by exploring their effects on the metalloproteinases collagenase, elastase, gelatinase and hyaluronidase, and in other enzymes involved in the pigmentation process.
Collapse
Affiliation(s)
- Rita Favas
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal.,FCUP, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Janaína Morone
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal.,FCUP, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal.,Health and Environment Research Centre, School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal.,FCUP, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Graciliana Lopes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| |
Collapse
|
6
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|
7
|
Pappas D, Panou M, Adamakis IDS, Gkelis S, Panteris E. Beyond Microcystins: Cyanobacterial Extracts Induce Cytoskeletal Alterations in Rice Root Cells. Int J Mol Sci 2020; 21:ijms21249649. [PMID: 33348912 PMCID: PMC7766381 DOI: 10.3390/ijms21249649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Microcystins (MCs) are cyanobacterial toxins and potent inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), which are involved in plant cytoskeleton (microtubules and F-actin) organization. Therefore, studies on the toxicity of cyanobacterial products on plant cells have so far been focused on MCs. In this study, we investigated the effects of extracts from 16 (4 MC-producing and 12 non-MC-producing) cyanobacterial strains from several habitats, on various enzymes (PP1, trypsin, elastase), on the plant cytoskeleton and H2O2 levels in Oryza sativa (rice) root cells. Seedling roots were treated for various time periods (1, 12, and 24 h) with aqueous cyanobacterial extracts and underwent either immunostaining for α-tubulin or staining of F-actin with fluorescent phalloidin. 2,7-dichlorofluorescein diacetate (DCF-DA) staining was performed for H2O2 imaging. The enzyme assays confirmed the bioactivity of the extracts of not only MC-rich (MC+), but also MC-devoid (MC−) extracts, which induced major time-dependent alterations on both components of the plant cytoskeleton. These findings suggest that a broad spectrum of bioactive cyanobacterial compounds, apart from MCs or other known cyanotoxins (such as cylindrospermopsin), can affect plants by disrupting the cytoskeleton.
Collapse
Affiliation(s)
- Dimitris Pappas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
- Correspondence: (D.P.); (E.P.); Tel.: +30-2310-998908 (E.P.)
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
| | | | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
- Correspondence: (D.P.); (E.P.); Tel.: +30-2310-998908 (E.P.)
| |
Collapse
|
8
|
Miller TR, Xiong A, Deeds JR, Stutts WL, Samdal IA, Løvberg KE, Miles CO. Microcystin Toxins at Potentially Hazardous Levels in Algal Dietary Supplements Revealed by a Combination of Bioassay, Immunoassay, and Mass Spectrometric Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8016-8025. [PMID: 32597644 DOI: 10.1021/acs.jafc.0c02024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are hepatotoxic heptapeptides produced by cyanobacteria and are potent inhibitors of protein phosphatases in eukaryotic cells. Algae for dietary supplements are harvested from outdoor environments and can be contaminated with MCs. Monitoring of MCs in these products is necessary but is complicated by their structural diversity (>250 congeners). We used a combination of protein phosphatase inhibition assay (PPIA), ELISA, LC-MS/MS, and nontargeted LC-high-resolution MS (LC-HRMS) with thiol derivatization to characterize the total MCs in 18 algal dietary supplements. LC-MS/MS revealed that some products contained >40 times the maximum acceptable concentration (MAC) of 1 μg/g MCs, but ELISA and PPIA showed up to 50-60 times the MAC. LC-HRMS identified all congeners targeted by LC-MS/MS plus MC-(H4)YR contributing up to 18% of total MCs, along with numerous minor MCs. Recommended dosages of the products greater than the MAC would result in 2.6-75 times the tolerable daily intake, presenting a risk to consumers. This study confirms the need for monitoring these products and presents strategies to fully describe the total MC pool in environmental samples and algal products.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Ame Xiong
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jonathan R Deeds
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740-3835, United States
| | - Whitney L Stutts
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740-3835, United States
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax B3H 3Z1, NS, Canada
| |
Collapse
|
9
|
Janssen EML. Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. WATER RESEARCH 2019; 151:488-499. [PMID: 30641464 DOI: 10.1016/j.watres.2018.12.048] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 05/28/2023]
Abstract
Cyanobacterial bloom events that produce natural toxins occur in freshwaters across the globe, yet the potential risk of many cyanobacterial metabolites remains mostly unknown. Only microcystins, one class of cyanopeptides, have been studied intensively and the wealth of evidence regarding exposure concentrations and toxicity led to their inclusion in risk management frameworks for water quality. However, cyanobacteria produce an incredible diversity of hundreds of cyanopeptides beyond the class of microcystins. The question arises, whether the other cyanopeptides are in fact of no human and ecological concern or whether these compounds merely received (too) little attention thus far. Current observations suggest that an assessment of their (eco)toxicological risk is indeed relevant: First, other cyanopeptides, including cyanopeptolins and anabaenopeptins, can occur just as frequently and at similar nanomolar concentrations as microcystins in surface waters. Second, cyanopeptolins, anabaenopeptins, aeruginosins and microginins inhibit proteases in the nanomolar range, in contrast to protein phosphatase inhibition by microcystins. Cyanopeptolins, aeruginosins, and aerucyclamide also show toxicity against grazers in the micromolar range comparable to microcystins. The key challenge for a comprehensive risk assessment of cyanopeptides remains their large structural diversity, lack of reference standards, and high analytical requirements for identification and quantification. One way forward would be a prevalence study to identify the priority candidates of tentatively abundant, persistent, and toxic cyanopeptides to make comprehensive risk assessments more manageable.
Collapse
Affiliation(s)
- Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600, Switzerland.
| |
Collapse
|
10
|
Junk L, Kazmaier U. Total Synthesis and Configurational Revision of Mozamide A, a Hydroxy-Brunsvicamide. J Org Chem 2019; 84:2489-2500. [DOI: 10.1021/acs.joc.8b02836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lukas Junk
- Organic Chemistry I, Saarland University, Campus Building C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus Building C4.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Spoof L, Błaszczyk A, Meriluoto J, Cegłowska M, Mazur-Marzec H. Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria. Mar Drugs 2015; 14:8. [PMID: 26729139 PMCID: PMC4728505 DOI: 10.3390/md14010008] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023] Open
Abstract
Anabaenopeptins, bioactive cyclic hexapeptides, were isolated by preparative reversed-phase high performance liquid chromatography from an extract of Baltic Sea cyanobacterial bloom material composed of Nodularia spumigena (50%), Aphanizomenon flos-aquae (40%) and Dolichospermum spp. (10%). Five new anabaenopeptins and nine previously known anabaenopeptins were isolated, and their putative structures were determined by tandem mass spectrometry. The activity of the peptides against carboxypeptidase A and protein phosphatase 1 as well as chymotrypsin, trypsin and thrombin was tested. All anabaenopeptins inhibited carboxypeptidase A (apart from one anabaenopeptin variant) and protein phosphatase 1 with varying potency, but no inhibition against chymotrypsin, trypsin and thrombin was observed.
Collapse
Affiliation(s)
- Lisa Spoof
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland.
| | - Agata Błaszczyk
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, 20520 Turku, Finland.
| | - Marta Cegłowska
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
12
|
Agha R, Quesada A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins (Basel) 2014; 6:1929-50. [PMID: 24960202 PMCID: PMC4073138 DOI: 10.3390/toxins6061929] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria.
Collapse
Affiliation(s)
- Ramsy Agha
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| |
Collapse
|
13
|
Mazur-Marzec H, Kaczkowska MJ, Blaszczyk A, Akcaalan R, Spoof L, Meriluoto J. Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar Drugs 2012; 11:1-19. [PMID: 23344154 PMCID: PMC3564153 DOI: 10.3390/md11010001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/13/2012] [Accepted: 12/11/2012] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria produce a great variety of non-ribosomal peptides. Among these compounds, both acute toxins and potential drug candidates have been reported. The profile of the peptides, as a stable and specific feature of an individual strain, can be used to discriminate cyanobacteria at sub-population levels. In our work, liquid chromatography-tandem mass spectrometry was used to elucidate the structures of non-ribosomal peptides produced by Nodularia spumigena from the Baltic Sea, the coastal waters of southern Australia and Lake Iznik in Turkey. In addition to known structures, 9 new congeners of spumigins, 4 aeruginosins and 12 anabaenopeptins (nodulapeptins) were identified. The production of aeruginosins by N. spumigena was revealed in this work for the first time. The isolates from the Baltic Sea appeared to be the richest source of the peptides; they also showed a higher diversity in peptide profiles. The Australian strains were characterized by similar peptide patterns, but distinct from those represented by the Baltic and Lake Iznik isolates. The results obtained with the application of the peptidomic approach were consistent with the published data on the genetic diversity of the Baltic and Australian populations.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Ecology, University of Gdansk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland; E-Mails: (M.J.K.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +48-58-523-6621; Fax: +48-58-523-6712
| | - Monika J. Kaczkowska
- Department of Marine Biology and Ecology, University of Gdansk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland; E-Mails: (M.J.K.); (A.B.)
| | - Agata Blaszczyk
- Department of Marine Biology and Ecology, University of Gdansk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland; E-Mails: (M.J.K.); (A.B.)
| | - Reyhan Akcaalan
- Faculty of Fisheries, Istanbul University, Ordu Cad. No. 200, 34470 Laleli, Istanbul, Turkey; E-Mail:
| | - Lisa Spoof
- Department of Biosciences, Abo Akademi University, Tykistökatu 6A, Turku 20520, Finland; E-Mails: (L.S.); (J.M.)
| | - Jussi Meriluoto
- Department of Biosciences, Abo Akademi University, Tykistökatu 6A, Turku 20520, Finland; E-Mails: (L.S.); (J.M.)
| |
Collapse
|
14
|
Cheruku P, Plaza A, Lauro G, Keffer J, Lloyd JR, Bifulco G, Bewley CA. Discovery and synthesis of namalide reveals a new anabaenopeptin scaffold and peptidase inhibitor. J Med Chem 2012; 55:735-42. [PMID: 22168797 DOI: 10.1021/jm201238p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The discovery, structure elucidation, and solid-phase synthesis of namalide, a marine natural product, are described. Namalide is a cyclic tetrapeptide; its macrocycle is formed by only three amino acids, with an exocyclic ureido phenylalanine moiety at its C-terminus. The absolute configuration of namalide was established, and analogs were generated through Fmoc-based solid phase peptide synthesis. We found that only natural namalide and not its analogs containing l-Lys or l-allo-Ile inhibited carboxypeptidase A at submicromolar concentrations. In parallel, an inverse virtual screening approach aimed at identifying protein targets of namalide selected carboxypeptidase A as the third highest scoring hit. Namalide represents a new anabaenopeptin-type scaffold, and its protease inhibitory activity demonstrates that the 13-membered macrolactam can exhibit similar activity as the more common hexapeptides.
Collapse
Affiliation(s)
- Pradeep Cheruku
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J Bacteriol 2011; 193:3822-31. [PMID: 21622740 DOI: 10.1128/jb.00360-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anabaenopeptins (AP) are bioactive cyclic hexapeptides synthesized nonribosomally in cyanobacteria. APs are characterized by several conserved motifs, including the ureido bond, N-methylation in position 5, and d-Lys in position 2. All other positions of the AP molecule are variable, resulting in numerous structural variants. We have identified a nonribosomal peptide synthetase (NRPS) operon from Planktothrix agardhii strain CYA126/8 consisting of five genes (apnA to apnE) encoding six NRPS modules and have confirmed its role in AP synthesis by the generation of a mutant via insertional inactivation of apnC. In order to correlate the genetic diversity among adenylation domains (A domains) with AP structure variation, we sequenced the A domains of all six NRPS modules from seven Planktothrix strains differing in the production of AP congeners. It is remarkable that single strains coproduce APs bearing either of the chemically divergent amino acids Arg and Tyr in exocyclic position 1. Since the A domain of the initiation module (the ApnA A₁ domain) has been proposed to activate the amino acid incorporated into exocyclic position 1, we decided to analyze this domain both biochemically and phylogenetically. Only ApnA A₁ enzymes from strains producing AP molecules containing Arg or Tyr in position 1 were found to activate these two chemically divergent amino acids in vitro. Phylogenetic analysis of apn A domain sequences revealed that strains with a promiscuous ApnA A₁ domain are derived from an ancestor that activates only Arg. Surprisingly, positive selection appears to affect only three codons within the apnA A₁ gene, suggesting that this remarkable promiscuity has evolved from point mutations only.
Collapse
|
16
|
Lopes VR, Schmidtke M, Helena Fernandes M, Martins R, Vasconcelos V. Cytotoxicity in L929 fibroblasts and inhibition of herpes simplex virus type 1 Kupka by estuarine cyanobacteria extracts. Toxicol In Vitro 2011; 25:944-50. [PMID: 21396440 DOI: 10.1016/j.tiv.2011.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 01/10/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
The cyanobacteria are known to be a rich source of metabolites with a variety of biological activities in different biological systems. In the present work, the bioactivity of aqueous and organic (methanolic and hexane) crude extracts of cyanobacteria isolated from estuarine ecosystems was studied using different bioassays. The assessment of DNA damage on the SOS gene repair region of mutant PQ37 strain of Escherichia coli was performed. Antiviral activity was evaluated against influenza virus, HRV-2, CVB3 and HSV-1 viruses using crystal violet dye uptake on HeLa, MDCK and GMK cell lines. Cytotoxicity evaluation was performed with L929 fibroblasts by MTT assay. Of a total of 18 cyanobacterial isolates studied, only the crude methanolic extract of LEGE 06078 proved to be genotoxic (IF > 1.5) in a dose-dependent manner and other four were putative candidates to induce DNA damage. Furthermore, the crude aqueous extract of LEGE 07085 showed anti- herpes type 1 activity (IC50 = 174.10 μg dry extract mL(-1)) while not presenting any cytotoxic activity against GMK cell lines. Of the 54 cyanobacterial extracts tested, only the crude methanolic and hexane ones showed impair on metabolic activity of L929 fibroblasts after long exposure (48-72 h). The inhibition of HSV-1 and the strong cytotoxicity against L929 cells observed emphasizes the importance of evaluating the impact of those estuarine cyanobacteria on aquatic ecosystem and on human health. The data also point out their potential application in HSV-1 treatment and pharmacological interest.
Collapse
Affiliation(s)
- Viviana R Lopes
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | | | | | | | | |
Collapse
|
17
|
Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). ACTA ACUST UNITED AC 2010; 17:265-73. [PMID: 20338518 DOI: 10.1016/j.chembiol.2010.01.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 11/25/2022]
Abstract
Anabaenopeptins are a diverse family of cyclic hexapeptide protease inhibitors produced by cyanobacteria that contain a conserved ureido bond and D-Lys moiety. Here we demonstrate that anabaenopeptins are assembled on a nonribosomal peptide synthetase enzyme complex encoded by a 32 kb apt gene cluster in the cyanobacterium Anabaena sp. strain 90. Surprisingly, the gene cluster encoded two alternative starter modules organized in separate bimodular proteins. The starter modules display high substrate specificity for L-Arg/L-Lys and L-Tyr, respectively, and allow the specific biosynthesis of different anabaenopeptin variants. The two starter modules were found also in other Anabaena strains. However, just a single module was present in the anabaenopeptin gene clusters of Nostoc and Nodularia, respectively. The organization of the apt gene cluster in Anabaena represents an exception to the established colinearity rule of linear non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Leo Rouhiainen
- Department of Food and Environmental Sciences, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
18
|
Sisay MT, Hautmann S, Mehner C, König GM, Bajorath J, Gütschow M. Inhibition of human leukocyte elastase by brunsvicamides a-C: cyanobacterial cyclic peptides. ChemMedChem 2009; 4:1425-9. [PMID: 19569166 DOI: 10.1002/cmdc.200900139] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mihiret T Sisay
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|