1
|
Hernández-Rodríguez M, Arciniega-Martínez IM, García-Marín ID, Correa-Basurto J, Rosales-Hernández MC. Chronic Administration of Scopolamine Increased GSK3βP9, Beta Secretase, Amyloid Beta, and Oxidative Stress in the Hippocampus of Wistar Rats. Mol Neurobiol 2020; 57:3979-3988. [PMID: 32638218 DOI: 10.1007/s12035-020-02009-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
The increase of amyloid beta (Aβ) release and hyperphosphorylation of Tau protein represents the main events related to Alzheimer's disease (AD). Furthermore, the sporadic type represents the most common form of AD. Therefore, the establishment of a non-transgenic animal model that resembles the characteristics of the disease is of particular importance. Scopolamine has been linked to increases in both Aβ production and oxidative stress in rat and mice brains. Thus, the purpose of the present work was to identify changes in biomarkers that are related to AD after chronic administration of scopolamine (2 mg/kg i.p., during 6 and 12 weeks) to male Wistar rats. The results showed increased Aβ deposition at rat hippocampus which could be due to an increase of β-site amyloid-β-protein precursor cleaving enzyme 1 (BACE1) expression and activity. These findings could be related to the increase of glycogen synthase kinase 3 phosphorylated (GSK3βP9) expression. Finally, the establishment of a state of oxidative stress in groups treated with scopolamine was demonstrated by an increase in free radical content and MDA levels. The present study facilitates our understanding of the changes that occur in biomolecules related to AD in Wistar rats after the chronic administration of scopolamine.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico.,Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico
| | - Iohanan Daniel García-Marín
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico.,Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico.
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, Mexico, Mexico.
| |
Collapse
|
2
|
Mputhia Z, Hone E, Tripathi T, Sargeant T, Martins R, Bharadwaj P. Autophagy Modulation as a Treatment of Amyloid Diseases. Molecules 2019; 24:E3372. [PMID: 31527516 PMCID: PMC6766836 DOI: 10.3390/molecules24183372] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
Amyloids are fibrous proteins aggregated into toxic forms that are implicated in several chronic disorders. More than 30 diseases show deposition of fibrous amyloid proteins associated with cell loss and degeneration in the affected tissues. Evidence demonstrates that amyloid diseases result from protein aggregation or impaired amyloid clearance, but the connection between amyloid accumulation and tissue degeneration is not clear. Common examples of amyloid diseases are Alzheimer's disease (AD), Parkinson's disease (PD) and tauopathies, which are the most common forms of neurodegenerative diseases, as well as polyglutamine disorders and certain peripheral metabolic diseases. In these diseases, increased accumulation of toxic amyloid proteins is suspected to be one of the main causative factors in the disease pathogenesis. It is therefore important to more clearly understand how these toxic amyloid proteins accumulate as this will aide in the development of more effective preventive and therapeutic strategies. Protein homeostasis, or proteostasis, is maintained by multiple cellular pathways-including protein synthesis, quality control, and clearance-which are collectively responsible for preventing protein misfolding or aggregation. Modulating protein degradation is a very complex but attractive treatment strategy used to remove amyloid and improve cell survival. This review will focus on autophagy, an important clearance pathway of amyloid proteins, and strategies for using it as a potential therapeutic target for amyloid diseases. The physiological role of autophagy in cells, pathways for its modulation, its connection with apoptosis, cell models and caveats in developing autophagy as a treatment and as a biomarker is discussed.
Collapse
Affiliation(s)
- Zoe Mputhia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
| | - Eugene Hone
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Meghalaya 793022, India.
| | - Tim Sargeant
- Hopwood Centre for Neurobiology, SAHMRI, Adelaide, SA 5000, Australia.
| | - Ralph Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
- School of Biomedical Science, Macquarie University, Sydney, NSW 2109, Australia.
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Nedlands, WA 6009, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
3
|
Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer's disease mouse models. J Neurosci 2015; 34:14022-31. [PMID: 25319699 DOI: 10.1523/jneurosci.0284-14.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease is characterized by the accumulation and deposition of plaques of β-amyloid (Aβ) peptide in the brain. Given its pivotal role, new therapies targeting Aβ are in demand. We rationally designed liposomes targeting the brain and promoting the disaggregation of Aβ assemblies and evaluated their efficiency in reducing the Aβ burden in Alzheimer's disease mouse models. Liposomes were bifunctionalized with a peptide derived from the apolipoprotein-E receptor-binding domain for blood-brain barrier targeting and with phosphatidic acid for Aβ binding. Bifunctionalized liposomes display the unique ability to hinder the formation of, and disaggregate, Aβ assemblies in vitro (EM experiments). Administration of bifunctionalized liposomes to APP/presenilin 1 transgenic mice (aged 10 months) for 3 weeks (three injections per week) decreased total brain-insoluble Aβ1-42 (-33%), assessed by ELISA, and the number and total area of plaques (-34%) detected histologically. Also, brain Aβ oligomers were reduced (-70.5%), as assessed by SDS-PAGE. Plaque reduction was confirmed in APP23 transgenic mice (aged 15 months) either histologically or by PET imaging with [(11)C]Pittsburgh compound B (PIB). The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Notably, the novel-object recognition test showed that the treatment ameliorated mouse impaired memory. Finally, liposomes reached the brain in an intact form, as determined by confocal microscopy experiments with fluorescently labeled liposomes. These data suggest that bifunctionalized liposomes destabilize brain Aβ aggregates and promote peptide removal across the blood-brain barrier and its peripheral clearance. This all-in-one multitask therapeutic device can be considered as a candidate for the treatment of Alzheimer's disease.
Collapse
|
4
|
Amyloid-precursor-protein-lowering small molecules for disease modifying therapy of Alzheimer's disease. PLoS One 2013; 8:e82255. [PMID: 24367508 PMCID: PMC3867334 DOI: 10.1371/journal.pone.0082255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly with progressive cognitive decline and memory loss. According to the amyloid-hypothesis, AD is caused by generation and subsequent cerebral deposition of β-amyloid (Aβ). Aβ is generated through sequential cleavage of the transmembrane Amyloid-Precursor-Protein (APP) by two endoproteinases termed beta- and gamma-secretase. Increased APP-expression caused by APP gene dosage effects is a risk factor for the development of AD. Here we carried out a large scale screen for novel compounds aimed at decreasing APP-expression. For this we developed a screening system employing a cell culture model of AD. A total of 10,000 substances selected for their ability of drug-likeness and chemical diversity were tested for their potential to decrease APP-expression resulting in reduced Aβ-levels. Positive compounds were further evaluated for their effect at lower concentrations, absence of cytotoxicity and specificity. The six most promising compounds were characterized and structure function relationships were established. The novel compounds presented here provide valuable information for the development of causal therapies for AD.
Collapse
|
5
|
Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer's disease. PLoS One 2011; 6:e23789. [PMID: 21909359 PMCID: PMC3166122 DOI: 10.1371/journal.pone.0023789] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 07/26/2011] [Indexed: 12/30/2022] Open
Abstract
Evidence of reduced blood-brain barrier (BBB) integrity preceding other Alzheimer's disease (AD) pathology provides a strong link between cerebrovascular angiopathy and AD. However, the "Vascular hypothesis", holds that BBB leakiness in AD is likely due to hypoxia and neuroinflammation leading to vascular deterioration and apoptosis. We propose an alternative hypothesis: amyloidogenesis promotes extensive neoangiogenesis leading to increased vascular permeability and subsequent hypervascularization in AD. Cerebrovascular integrity was characterized in Tg2576 AD model mice that overexpress the human amyloid precursor protein (APP) containing the double missense mutations, APPsw, found in a Swedish family, that causes early-onset AD. The expression of tight junction (TJ) proteins, occludin and ZO-1, were examined in conjunction with markers of apoptosis and angiogenesis. In aged Tg2576 AD mice, a significant increase in the incidence of disrupted TJs, compared to age matched wild-type littermates and young mice of both genotypes, was directly linked to an increased microvascular density but not apoptosis, which strongly supports amyloidogenic triggered hypervascularity as the basis for BBB disruption. Hypervascularity in human patients was corroborated in a comparison of postmortem brain tissues from AD and controls. Our results demonstrate that amylodogenesis mediates BBB disruption and leakiness through promoting neoangiogenesis and hypervascularity, resulting in the redistribution of TJs that maintain the barrier and thus, provides a new paradigm for integrating vascular remodeling with the pathophysiology observed in AD. Thus the extensive angiogenesis identified in AD brain, exhibits parallels to the neovascularity evident in the pathophysiology of other diseases such as age-related macular degeneration.
Collapse
Affiliation(s)
- Kaan E. Biron
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dara L. Dickstein
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Rayshad Gopaul
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wilfred A. Jefferies
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
6
|
Sepulveda-Falla D, Matschke J, Bernreuther C, Hagel C, Puig B, Villegas A, Garcia G, Zea J, Gomez-Mancilla B, Ferrer I, Lopera F, Glatzel M. Deposition of hyperphosphorylated tau in cerebellum of PS1 E280A Alzheimer's disease. Brain Pathol 2011; 21:452-63. [PMID: 21159009 DOI: 10.1111/j.1750-3639.2010.00469.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Early-onset familial Alzheimer's disease (AD) caused by presenilin-1 mutation E280A (PS1-E280A) presents wide clinical and neuropathological variabilities. We characterized clinically and neuropathologically PS1-E280A focusing in cerebellar involvement and compared it with early-onset sporadic Alzheimer's disease (EOSAD). Twelve E280A brains and 12 matched EOSAD brains were analyzed for beta-amyloid and hyperphosphorylated tau (pTau) morphology, beta-amyloid subspecies 1-40, 1-42 levels, pTau levels, and expression of stress kinases in frontal cortex and cerebellum. The data were correlated to clinical and genetic findings. We observed higher beta-amyloid load, beta-amyloid 1-42 and pTau concentrations in frontal cortex of PS1-E280A compared with EOSAD. High beta-amyloid load was found in the cerebellum of PS1-E280A and EOSAD patients. In PS1-E280A, beta-amyloid localized to the molecular and Purkinje cell layers, whereas EOSAD showed them in Purkinje and granular cell layers. Surprisingly, 11 out of 12 PS1-E280A patients showed deposition of pTau in the cerebellum. Also, seven out of 12 PS1-E280A patients presented cerebellar ataxia. We conclude that deposition of beta-amyloid in the cerebellum is prominent in early-onset AD irrespective of genetic or sporadic origin. The presence of pTau in cerebellum in PS1-E280A underscores the relevance of cerebellar involvement in AD and might be correlated to clinical phenotype.
Collapse
Affiliation(s)
- Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cheng X, van Breemen RB. Mass spectrometry-based screening for inhibitors of beta-amyloid protein aggregation. Anal Chem 2007; 77:7012-5. [PMID: 16255603 PMCID: PMC1780175 DOI: 10.1021/ac050556a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease is the most common cause of the loss of cognitive function among the elderly, and the aggregation and deposition of misfolded beta-amyloid protein (Abeta) contribute to this progressive central nervous system decline. Therefore, compounds that inhibit or even reverse Abeta aggregation might be useful for the treatment or prevention of Alzheimer's disease. To identify potential therapeutic agents for the treatment of Alzheimer's disease, a mass spectrometry-based screening assay was developed to identify and rank order compounds that inhibit the aggregation of Abeta. To carry out this assay, Abeta was incubated with a test compound at 37 degrees C for 20 h followed by ultrafiltration to separate the monomeric Abeta from its aggregates. Aliquots of the ultrafiltrate were analyzed for monomeric Abeta using positive ion electrospray mass spectrometry based on the abundance the quadruply protonated molecule of Abeta at m/z 1083. The calibration curve for Abeta was linear with a correlation coefficient (r2) of >0.99 over the range of at least 11-110 microM. The limit of detection was 0.224 ng (5.18 nM, 10-microL injection), and the limit of quantitation was 0.747 ng (17.2 nM, 10-microL injection). Based on previous reports of compounds that either bind to Abeta or are useful in treating Alzheimer's disease, melatonin, methysticin, 3-indolepropionic acid, and daunomycin were assayed and ranked in order of inhibition of Abeta aggregation. The most effective inhibitor of aggregation of Abeta protein was daunomycin followed in descending order by 3-indolepropionic acid, melatonin, and then methysticin. These data suggest that this ultrafiltration LC-MS screening assay may be used to identify potential therapeutic agents for the treatment of Alzheimer's disease based on the prevention of Abeta aggregation.
Collapse
Affiliation(s)
| | - Richard B. van Breemen
- *Address editorial correspondence to: Dr. Richard B. van Breemen, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, Illinois, 60612, Tel: (312)996-9353, Fax: (312)996-7107, E-mail:
| |
Collapse
|
8
|
Yan XX, Li T, Rominger CM, Prakash SR, Wong PC, Olson RE, Zaczek R, Li YW. Binding sites of gamma-secretase inhibitors in rodent brain: distribution, postnatal development, and effect of deafferentation. J Neurosci 2004; 24:2942-52. [PMID: 15044533 PMCID: PMC6729845 DOI: 10.1523/jneurosci.0092-04.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
gamma-Secretase is a multimeric complex consisted of presenilins (PSs) and three other proteins. PSs appear to be key contributors for the enzymatic center, the potential target of a number of recently developed gamma-secretase inhibitors. Using radiolabeled and unlabeled inhibitors as ligands, this study was aimed to determine the in situ distribution of gamma-secretase in the brain. Characterization using PS-1 knock-out mouse embryos revealed 50 and 80% reductions of gamma-secretase inhibitor binding density in the heterozygous (PS-1(+/-)) and homozygous (PS-1-/-) embryos, respectively, relative to the wild type (PS-1(+/+)). The pharmacological profile from competition binding assays suggests that the ligands may target at the N- and C-terminal fragments of PS essential for gamma-secretase activity. In the adult rat brain, the binding sites existed mostly in the forebrain, the cerebellum, and discrete brainstem areas and were particularly abundant in areas rich in neuronal terminals, e.g., olfactory glomeruli, CA3-hilus area, cerebellar molecular layer, and pars reticulata of the substantia nigra. In the developing rat brain, diffuse and elevated expression of binding sites occurred at the early postnatal stage relative to the adult. The possible association of binding sites with neuronal terminals in the adult brain was further investigated after olfactory deafferentation. A significant decrease with subsequent recovery of binding sites was noted in the olfactory glomeruli after chemical damage of the olfactory epithelium. The findings in this study support a physiological role of PS or gamma-secretase complex in neuronal and synaptic development and plasticity.
Collapse
Affiliation(s)
- Xiao-Xin Yan
- Bristol-Myers Squibb Company, Pharmaceutical Research Institute, Neuroscience Drug Discovery, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
De Felice FG, Ferreira ST. Beta-amyloid production, aggregation, and clearance as targets for therapy in Alzheimer's disease. Cell Mol Neurobiol 2002; 22:545-63. [PMID: 12585679 DOI: 10.1023/a:1021832302524] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. Despite major efforts aimed at elucidating the molecular basis and physiopathology of Alzheimer's disease (AD), there is still no effective treatment available for this devastating disorder. The biological mechanisms underlying the development of AD are complex, as multiple factors appear to modulate (either positively or negatively) the progression of neurodegeneration in the brains of AD patients. Not surprisingly, a number of different therapeutic approaches aimed at distinct aspects of the disease are currently being pursued. Given its central role in the neuropathology of AD, the beta-amyloid peptide (Abeta) is the focus of many such approaches. 2. In this review, we discuss recent developments along three major lines of investigation: (i) identification and characterization of inhibitors of the enzymes involved in proteolytic processing of the amyloid precursor protein and production of Abeta; (ii) identification of the pathways involved in cerebral degradation and clearance of Abeta; and (iii) characterization of small-molecule inhibitors of amyloid aggregation that prevent cerebral amyloid deposition and neurotoxicity. 3. Significant progress has been achieved in these directions, opening up new perspectives toward the development of effective approaches for the treatment or prevention of AD.
Collapse
Affiliation(s)
- Fernanda G De Felice
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
10
|
Fillit HM, O'Connell AW, Brown WM, Altstiel LD, Anand R, Collins K, Ferris SH, Khachaturian ZS, Kinoshita J, Van Eldik L, Dewey CF. Barriers to drug discovery and development for Alzheimer disease. Alzheimer Dis Assoc Disord 2002; 16 Suppl 1:S1-8. [PMID: 12070355 DOI: 10.1097/00002093-200200001-00001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative condition leading to progressive, irreversible loss of cognitive and behavioral function. Despite considerable investments in neuroscience research, only four drugs, all cholinesterase inhibitors, have been approved for the symptomatic management of AD in the United States. Although basically safe and modestly effective, these drugs are far from ideal, being neither universally efficacious nor disease modifying. AD exacts a considerable toll in direct medical costs, quality of life, and caregiver burden for persons and society. In addition to the obvious clinical benefit, therapeutic agents for AD and related dementias represent a considerable market opportunity for the pharmaceutical and biotechnology industries. There are currently 8-10 million AD sufferers in the seven major pharmaceutical markets. The market will grow rapidly in coming decades, as the developed world experiences an enormous increase in its elderly population. Given the great need for new therapeutic agents to manage and prevent AD, the Institute for the Study of Aging and the Fidelity Foundation organized a workshop, "Barriers to the Discovery and Development of Drugs for Alzheimer's Disease," to examine ways to expedite drug discovery and development. The identified barriers and potential solutions will be discussed here and in the accompanying articles in more detail.
Collapse
Affiliation(s)
- Howard M Fillit
- The Institute for the Study of Aging, Inc., New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Microglia are the principal immune cells in the central nervous system (CNS) and have a critical role in host defense against invading microorganisms and neoplastic cells. However, as with immune cells in other organs, microglia may play a dual role, amplifying the effects of inflammation and mediating cellular degeneration as well as protecting the CNS. In entities like human immunodeficiency virus (HIV) infection of the nervous system, microglia are also critical to viral persistence. In this review we discuss the role of microglia in three diseases in which their activity is at least partially deleterious: HIV, multiple sclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- F González-Scarano
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia 19104-6146, USA.
| | | |
Collapse
|