Cronholm T, Curstedt T. Heterogeneity of the sn-glycerol 3-phosphate pool in isolated hepatocytes, demonstrated by the use of deuterated glycerols and ethanol.
Biochem J 1984;
224:731-9. [PMID:
6525173 PMCID:
PMC1144507 DOI:
10.1042/bj2240731]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hepatocytes were isolated from female rats and incubated with [1,1,3,3-2H4]glycerol or [2-2H]glycerol. The deuterium excess in phosphatidylcholines, sn-glycerol 3-phosphate and other organic acids was determined by g.l.c./mass spectrometry. The unlabelled fraction of the major phosphatidylcholines decreased exponentially, and the turnover was not changed by the presence of ethanol. The relative contribution of the two deuterated glycerols was about the same in the major phosphatidylcholine as in sn-glycerol 3-phosphate, indicating that formation by acylation of dihydroxyacetone phosphate is insignificant. [1,1,3,3-2H4]Glycerol had lost deuterium to a larger extent when it was incorporated in the phosphatidylcholine than when it was incorporated in sn-glycerol-3-phosphate, indicating that the phosphatidylcholines are formed from a separate pool of sn-glycerol 3-phosphate. Deuterium at C-2 was transferred between sn-glycerol 3-phosphate molecules to about 25%. Ethanol decreased the extent of deuterium transfer, the extent of glycerol uptake and the loss of deuterium at C-1 and C-3 in sn-glycerol 3-phosphate. The results indicate that the oxidation to dihydroxyacetone phosphate was inhibited by the NADH formed during ethanol oxidation. [2-2H]Glycerol also labelled an alcohol dehydrogenase substrate, malate and lactate, indicating oxidation of sn-glycerol 3-phosphate in the cytosol. The two acids appeared to be formed in reductions with different pools of NADH.
Collapse