1
|
Tampieri A, Kon E, Sandri M, Campodoni E, Dapporto M, Sprio S. Marine-Inspired Approaches as a Smart Tool to Face Osteochondral Regeneration. Mar Drugs 2023; 21:md21040212. [PMID: 37103351 PMCID: PMC10145639 DOI: 10.3390/md21040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The degeneration of osteochondral tissue represents one of the major causes of disability in modern society and it is expected to fuel the demand for new solutions to repair and regenerate the damaged articular joints. In particular, osteoarthritis (OA) is the most common complication in articular diseases and a leading cause of chronic disability affecting a steady increasing number of people. The regeneration of osteochondral (OC) defects is one of the most challenging tasks in orthopedics since this anatomical region is composed of different tissues, characterized by antithetic features and functionalities, in tight connection to work together as a joint. The altered structural and mechanical joint environment impairs the natural tissue metabolism, thus making OC regeneration even more challenging. In this scenario, marine-derived ingredients elicit ever-increased interest for biomedical applications as a result of their outstanding mechanical and multiple biologic properties. The review highlights the possibility to exploit such unique features using a combination of bio-inspired synthesis process and 3D manufacturing technologies, relevant to generate compositionally and structurally graded hybrid constructs reproducing the smart architecture and biomechanical functions of natural OC regions.
Collapse
|
2
|
Immunopotentiating Activity of Fucoidans and Relevance to Cancer Immunotherapy. Mar Drugs 2023; 21:md21020128. [PMID: 36827169 PMCID: PMC9961398 DOI: 10.3390/md21020128] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Fucoidans, discovered in 1913, are fucose-rich sulfated polysaccharides extracted mainly from brown seaweed. These versatile and nontoxic marine-origin heteropolysaccharides have a wide range of favorable biological activities, including antitumor, immunomodulatory, antiviral, antithrombotic, anticoagulant, antithrombotic, antioxidant, and lipid-lowering activities. In the early 1980s, fucoidans were first recognized for their role in supporting the immune response and later, in the 1990s, their effects on immune potentiation began to emerge. In recent years, the understanding of the immunomodulatory effects of fucoidan has expanded significantly. The ability of fucoidan(s) to activate CTL-mediated cytotoxicity against cancer cells, strong antitumor property, and robust safety profile make fucoidans desirable for effective cancer immunotherapy. This review focusses on current progress and understanding of the immunopotentiation activity of various fucoidans, emphasizing their relevance to cancer immunotherapy. Here, we will discuss the action of fucoidans in different immune cells and review how fucoidans can be used as adjuvants in conjunction with immunotherapeutic products to improve cancer treatment and clinical outcome. Some key rationales for the possible combination of fucoidans with immunotherapy will be discussed. An update is provided on human clinical studies and available registered cancer clinical trials using fucoidans while highlighting future prospects and challenges.
Collapse
|
3
|
Geinguenaud F, Catherine OS, Poirier F, Besnard V, Haddad O, Chaubet F, Lalatonne Y, Lutomski D, Sutton A, Motte L. Iron Oxide Nanoparticles Functionalized with Fucoidan: a Potential Theranostic Nanotool for Hepatocellular Carcinoma. Chembiochem 2022; 23:e202200265. [PMID: 35748603 DOI: 10.1002/cbic.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Fucoidan is a natural sulfated polysaccharide with a large range of biological activities including anticancer and anti-oxidation activities. Hepatocellular carcinoma is the fourth most common aggressive cancer type. The aim of this study was to investigate the bioactivity of free fucoidan versus its vectorization using nanoparticles (NPs) in human hepatoma cells, Huh-7. Iron oxide NPs were functionalized with fucoidan by a one-step surface complexation. NP cellular uptake was quantified by magnetic measurement at various extracellular iron concentrations. Cell invasion and migration were reduced with NPs while free fucoidan increases these events at low fucoidan concentration (≤ 0.5 mM). Concomitantly, a high decrease of reactive oxygen species production related with a decrease of the matrix metalloproteinase-9 activity and an increase of its expression was observed with NPs compared to free fucoidan. A proteomic analysis evidenced that some fucoidan regulated proteins appeared related to protein synthesis, N-glycan processing, and cellular stress. To our knowledge, this is the first study which reveals such activity induced by fucoidan. These results pave the way for USPIO-fucoidan-NPs as potential theranostic nanotool for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Y Lalatonne
- Universite Sorbonne Paris Nord, LVTS, FRANCE
| | | | - A Sutton
- Universite Sorbonne Paris Nord, LVTS, FRANCE
| | - Laurence Motte
- Université Paris 13, Sorbonne Paris Cité, 74 Rue Marcel Cachin, bobigny, FRANCE
| |
Collapse
|
4
|
Barrier effect and wound healing activity of the medical device REF-FTP78 in the treatment of gastroesophageal reflux disease. Sci Rep 2022; 12:6136. [PMID: 35414705 PMCID: PMC9005723 DOI: 10.1038/s41598-022-10171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
REF-FTP78 is a class IIb medical device present on the market with different trade names and developed for the treatment of gastroesophageal reflux disease (GERD). This medical device is based on polysaccharides from Aloe Barbadensis and fucoidans from brown seaweeds, such as Undaria pinnatifida and Fucus vesiculosus, and aims to exert a protective effect on the esophageal mucosa against the noxious components of refluxate. The present study reports on the efficacy of REF-FTP78 devoting a particular attention to the barrier effect and wound healing properties, combined with antioxidant and anti-inflammatory activities. Film-forming properties and barrier effect were investigated on in vitro reconstructed human esophageal epithelium, through TEER measurement and evaluation of caffeine and Lucifer yellow permeability, and in an ex vivo swine model of esophageal mucosa damage. Antioxidant and anti-inflammatory properties were evaluated in terms of scavenging activity towards DPPH, ABTS and NO radicals and a wound healing assay was carried out to study the influence of the product on cell migration. The obtained results highlighted a significant barrier effect, with a reduction in caffeine penetration equal to 65.3%, the ability to both repair and prevent the damage caused by an acid insult, confirmed by a good transepithelial resistance for the tissue treated with the tested item, and the capacity to promote wound healing. Furthermore, the tested product showed good antioxidant and anti-inflammatory properties in the performed radical scavenging assays. These findings support the use of REF-FTP78 in the treatment of GERD.
Collapse
|
5
|
Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms 2022; 10:microorganisms10020405. [PMID: 35208860 PMCID: PMC8875674 DOI: 10.3390/microorganisms10020405] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a medicinal mushroom possessing a variety of biofunctionalities. It has several biologically important components such as polysaccharides and others. The diverse pharmacological potential of C. militaris has generated interest in reviewing the current scientific literature, with a particular focus on prevention and associated molecular mechanisms in inflammatory diseases. Due to rising global demand, research on C. militaris has continued to increase in recent years. C. militaris has shown the potential for inhibiting inflammation-related events, both in in vivo and in vitro experiments. Inflammation is a multifaceted biological process that contributes to the development and severity of diseases, including cancer, colitis, and allergies. These functions make C. militaris a suitable functional food for inhibiting inflammatory responses such as the regulation of proinflammatory cytokines. Therefore, on the basis of existing information, the current study provides insights towards the understanding of anti-inflammatory activity-related mechanisms. This article presents a foundation for clinical use, and analyzes the roadmap for future studies concerning the medical use of C. militaris and its constituents in the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
- Correspondence:
| |
Collapse
|
6
|
Ali F, Shen A, Islam W, Saleem MZ, Muthu R, Xie Q, Wu M, Cheng Y, Chu J, Lin W, Peng J. Role of MicroRNAs and their corresponding ACE2/Apelin signaling pathways in hypertension. Microb Pathog 2021; 162:105361. [PMID: 34919993 DOI: 10.1016/j.micpath.2021.105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Hypertension is controlled via the alteration of microRNAs (miRNAs), their therapeutic targets angiotensin II type I receptor (AT1R) and cross talk of signaling pathways. The stimulation of the Ang II/AT1R pathway by deregulation of miRNAs, has also been linked to cardiac remodeling as well as the pathophysiology of high blood pressure. As miRNAs have been associated to ACE2/Apelin and Mitogen-activated protein kinases (MAPK) signaling, it has revealed an utmost protective impact over hypertension and cardiovascular system. The ACE2-coupled intermodulation between RAAS, Apelin system, MAPK signaling pathways, and miRNAs reveal the practicalities of high blood pressure. The research of miRNAs may ultimately lead to the expansion of an innovative treatment strategy for hypertension, which indicates the need to explore them further at the molecular level. Therefore, here we have focused on the mechanistic importance of miRNAs in hypertension, ACE2/Apelin signaling as well as their biological functions, with a focus on interplay and crosstalk between ACE2/Apelin signaling, miRNAs, and hypertension, and the progress in miRNA-based diagnostic techniques with the goal of facilitating the development of new hypertension-controlling therapeutics.
Collapse
Affiliation(s)
- Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiangfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
7
|
Vaamonde-García C, Flórez-Fernández N, Torres MD, Lamas-Vázquez MJ, Blanco FJ, Domínguez H, Meijide-Faílde R. Study of fucoidans as natural biomolecules for therapeutical applications in osteoarthritis. Carbohydr Polym 2021; 258:117692. [PMID: 33593565 DOI: 10.1016/j.carbpol.2021.117692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is the most prevalent articular chronic disease. Although, to date there is no cure for OA. Fucoidans, one of the main therapeutic components of brown algae, have emerged as promising molecules in OA treatment. However, the variability between fucoidans makes difficult the pursuit of the most suitable candidate to target specific pathological processes. By an in vitro experimental approach in chondrocytes and fibroblast-like synoviocytes, we observed that chemical composition of fucoidan, and specifically the phlorotannin content and the ratio sulfate:fucose, seems critically relevant for its biological activity. Nonetheless, other factors like concentration and molecular weight of the fucoidan may influence on its beneficial effects. Additionally, a cell-type dependent response was also detected. Thus, our results shed light on the potential use of fucoidans as natural molecules in the treatment of key pathological processes in the joint that favor the development of rheumatic disorders as OA.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Tissue Engineering and Cellular Therapy Group, Department of Physiotherapy, Medicine and Biological Sciences, University of A Coruña, A Coruña, Spain; Unidad de Medicina Regenerativa, Grupo de Investigación de Reumatología (GIR), Instituto de InvestigaciónBiomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/ As Xubias de Arriba 84, 15006, A Coruña, España; Centro de Investigaciones Científicas Avanzadas (CICA), As Carballeiras S/N, Campus de Elviña, 15071, A Coruña, España.
| | - Noelia Flórez-Fernández
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, Ourense, Spain; CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - María Dolores Torres
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, Ourense, Spain; CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - María J Lamas-Vázquez
- Tissue Engineering and Cellular Therapy Group, Department of Physiotherapy, Medicine and Biological Sciences, University of A Coruña, A Coruña, Spain.
| | - Francisco J Blanco
- Unidad de Medicina Regenerativa, Grupo de Investigación de Reumatología (GIR), Instituto de InvestigaciónBiomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/ As Xubias de Arriba 84, 15006, A Coruña, España; Centro de Investigaciones Científicas Avanzadas (CICA), As Carballeiras S/N, Campus de Elviña, 15071, A Coruña, España.
| | - Herminia Domínguez
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, Ourense, Spain; CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Rosa Meijide-Faílde
- Tissue Engineering and Cellular Therapy Group, Department of Physiotherapy, Medicine and Biological Sciences, University of A Coruña, A Coruña, Spain; Centro de Investigaciones Científicas Avanzadas (CICA), As Carballeiras S/N, Campus de Elviña, 15071, A Coruña, España.
| |
Collapse
|
8
|
De Pieri A, Rana S, Korntner S, Zeugolis DI. Seaweed polysaccharides as macromolecular crowding agents. Int J Biol Macromol 2020; 164:434-446. [PMID: 32679331 DOI: 10.1016/j.ijbiomac.2020.07.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Development of mesenchymal stem cell-based tissue engineered implantable devices requires prolonged in vitro culture for the development of a three-dimensional implantable device, which leads to phenotypic drift, thus hindering the clinical translation and commercialisation of such approaches. Macromolecular crowding, a biophysical phenomenon based on the principles of excluded-volume effect, dramatically accelerates and increases extracellular matrix deposition during in vitro culture. However, the optimal macromolecular crowder is still elusive. Herein, we evaluated the biophysical properties of various concentrations of different seaweed in origin sulphated polysaccharides and their effect on human adipose derived stem cell cultures. Carrageenan, possibly due to its high sulphation degree, exhibited the highest negative charge values. No correlation was observed between the different concentrations of the crowders and charge, polydispersity index, hydrodynamic radius and fraction volume occupancy across all crowders. None of the crowders, but arabinogalactan, negatively affected cell viability. Carrageenan, fucoidan, galactofucan and ulvan increased extracellular matrix (especially collagen type I and collagen type V) deposition. Carrageenan induced the highest osteogenic effect and galactofucan and fucoidan demonstrated the highest chondrogenic effect. All crowders were relatively ineffective with respect to adipogenesis. Our data highlight the potential of sulphated seaweed polysaccharides for tissue engineering purposes.
Collapse
Affiliation(s)
- Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Shubhasmin Rana
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Stefanie Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
9
|
Jayawardena TU, Fernando IPS, Lee WW, Sanjeewa KKA, Kim HS, Lee DS, Jeon YJ. Isolation and purification of fucoidan fraction in Turbinaria ornata from the Maldives; Inflammation inhibitory potential under LPS stimulated conditions in in-vitro and in-vivo models. Int J Biol Macromol 2019; 131:614-623. [PMID: 30898597 DOI: 10.1016/j.ijbiomac.2019.03.105] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/01/2019] [Accepted: 03/17/2019] [Indexed: 12/22/2022]
Abstract
Fucoidan, referred to as fucose containing sulfated polysaccharides (FCSP), is a polymer from brown algae cell wall that is reported to exhibit potential anti-inflammatory activity. In the present study, the fucoidans are extracted from Turbinaria ornata (TO) from the Maldives. The method involves enzyme assisted extraction and is modified in order to improve the effectiveness and purity of final product. Purified fucoidan fraction was identified as F10, and its chemical properties were verified via FTIR, 1H NMR and monosaccharide analysis. Selected inflammatory mediators were studied to evaluate the anti-inflammatory potential using RAW 264.7 macrophages. F10 successfully inhibited NO production (IC50 = 30.83 ± 1.02 μg mL-1). F10 dose-dependently down-regulated iNOS, COX-2, and pro-inflammatory cytokines including PGE2 levels. The in vivo experiments were assisted by zebrafish embryo model. This exhibited reduction in ROS, NO expression levels. To our knowledge, this is the first report to illustrate potential anti-inflammatory activity of FCSPs' extracted from the brown algae T. ornata. Concisely, the results suggest that fucoidan purified from T. ornata increases the macrophage cellular and zebrafish embryo resistance against LPS-induced inflammation. Based on the observations, the fucoidans are promising candidates to be used in the pharmaceutical and cosmeceutical sectors.
Collapse
Affiliation(s)
- Thilina U Jayawardena
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | | | - Won Woo Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - K K Asanka Sanjeewa
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hyun-Soo Kim
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
10
|
Zhao Y, Zheng Y, Wang J, Ma S, Yu Y, White WL, Yang S, Yang F, Lu J. Fucoidan Extracted from Undaria pinnatifida: Source for Nutraceuticals/Functional Foods. Mar Drugs 2018; 16:E321. [PMID: 30205616 PMCID: PMC6164441 DOI: 10.3390/md16090321] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 01/01/2023] Open
Abstract
The importance of fucoidan as a functional ingredient in food, health products, and pharmaceutics is well-recognized due to its beneficial biological effects. Fucoidan is usually extracted from brown seaweeds, including Undaria pinnatifida. Fucoidan exhibits beneficial bio-activity and has antioxidant, anticancer, and anticoagulant properties. This review focuses on the biological activity of U. pinnatifida-derived fucoidan and investigates its structure⁻activity or fraction⁻activity relationship. It also describes several fucoidan extracts, along with their claimed anticancer effects. It aims to provide information and thoughts for future research such as the development of fucoidan into functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Yu Zhao
- Life and Environment Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Yizhou Zheng
- Life and Environment Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Jie Wang
- Life and Environment Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Shuyi Ma
- Life and Environment Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Yiming Yu
- Life and Environment Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Shiping Yang
- Life and Environment Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Fan Yang
- Life and Environment Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jun Lu
- Life and Environment Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- Institute for Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Life and Marine Sciences, Shenzhen University, Shenzhen 518060, China.
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|