1
|
Romaldi B, Scirè A, Minnelli C, Frontini A, Casari G, Cianfruglia L, Mobbili G, de Bari L, Antognelli C, Pallardó FV, Armeni T. Overexpression of Glyoxalase 2 in Human Breast Cancer Cells: Implications for Cell Proliferation and Doxorubicin Resistance. Int J Mol Sci 2024; 25:10888. [PMID: 39456676 PMCID: PMC11507095 DOI: 10.3390/ijms252010888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Glyoxalase 2 (Glo2) is an enzyme of the glyoxalase system whose pathway parallels glycolysis and which aims to remove methylglyoxal (MGO). This study analyzed the possible additional roles of the Glo2 enzyme in breast cancer (MCF7) and non-cancer (HDF) cell lines, investigating its presence at the nuclear level and its potential involvement in cell proliferation and chemotherapy resistance. The results revealed that Glo2 is overexpressed in cancer cells, and its expression is higher during the proliferative (S and G2/M) phases of the cell cycle. The study also examined a post-translational modification (PTM) in which Glo2 could be involved, with S-glutathionylation revealing that Glo2 enhances this PTM in cancer cells both in the cytoplasm and nucleus. Inhibition of Glo2 by p-NCBG resulted in increased sensitivity to doxorubicin, a common chemotherapeutic agent. This suggests that Glo2 increases cancer cell resistance to chemotherapy, potentially through its role in regulating oxidative stress. These results highlight Glo2 as a potential therapeutic target to improve the efficacy of existing treatments.
Collapse
Affiliation(s)
- Brenda Romaldi
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Giulia Casari
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Laura Cianfruglia
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06129 Perugia, Italy;
| | - Federico V. Pallardó
- Department of Physiology, Medicine and Dentistry School, University of Valencia-INCLIVA, Center for Biomedical Network Research on Rare Diseases (CIBERER), 46010 Valencia, Spain;
| | - Tatiana Armeni
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| |
Collapse
|
2
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
3
|
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22:870-905. [PMID: 36648057 PMCID: PMC10054233 DOI: 10.1080/15384101.2023.2165632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
4
|
Braun BC, Müller K. Role of glyoxalase I and II in somatic and spermatogenic testicular cells during the postnatal development of the domestic cat. Theriogenology 2023; 197:10-15. [PMID: 36462331 DOI: 10.1016/j.theriogenology.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Like humans, many felid species suffer from teratozoospermia and frequently produce low numbers of normal spermatozoa. Male fertility can be affected by oxidative and dicarbonyl stress. Because of the high level of glycolytic activity in testes, reactive dicarbonyl metabolites may arise as side-products of glycolysis; their generation is further promoted by oxidative stress. Alpha-oxoaldehydes, including methylglyoxal (MG), are reactive dicarbonyl metabolites and substrates for the formation of advanced glycation end products. Elevated levels of both may lead to dicarbonyl stress and cause cellular dysfunction. However, MG and other α-oxoaldehydes can be converted to less dangerous molecules via the glyoxalase pathway. In this pathway, α-oxoaldehydes react with glutathione (GSH), forming a thioacetal, which becomes metabolized by glyoxalase I (GLO I) to S-D-lactoyl-glutathione (SLG). Glyoxalase II (GLO II) converts SLG to d-lactate upon the release of GSH. Nothing is known about the glyoxalase system in the feline testis and its capacity to mitigate an excess of dicarbonyl metabolites. To study whether GLO I and GLO II are present and have a specific function in the testis of the domestic cat, the gene expression of both enzymes were analyzed in testis samples of different developmental stages (prepubertal, pubertal, postpubertal). Furthermore, the presence of GLO I and GLO II proteins was investigated via immunohistochemistry. The GLO I gene expression does not change between developmental stages. Immunohistochemistry revealed strong signals for GLO I in the cytoplasm and nuclei of Sertoli and Leydig cells during all developmental stages. GLO I was described as catalyzing the rate-limiting step in the glyoxalase pathway. This implies a function on the part of this enzyme of sustaining the homeostasis of somatic testicular cells. For GLO II, we observed stage-dependent mRNA expression, which was significantly increased after puberty. In accordance with this observation, clear immunohistochemical GLO II signals were observed in nuclei of individual germ cells. The most intense signals were visible in spermatocytes. The different localizations of the strong GLO I and GLO II signals indicate that GLO II, in addition to the classical glyoxalase pathway, may have additional functions in meiotic germ cells, for example, providing lactate as an energy substrate and/or GSH as an antioxidant. Moreover, protein functions may be modulated via S-glutathionylation.
Collapse
Affiliation(s)
- Beate C Braun
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany.
| | - Karin Müller
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| |
Collapse
|
5
|
Scirè A, Cianfruglia L, Minnelli C, Romaldi B, Laudadio E, Galeazzi R, Antognelli C, Armeni T. Glyoxalase 2: Towards a Broader View of the Second Player of the Glyoxalase System. Antioxidants (Basel) 2022; 11:2131. [PMID: 36358501 PMCID: PMC9686547 DOI: 10.3390/antiox11112131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-β-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Materials, Environment and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
6
|
Nair R, Gupta P, Shanmugam M. Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy. Front Oncol 2022; 12:1000106. [PMID: 36185202 PMCID: PMC9523312 DOI: 10.3389/fonc.2022.1000106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by the clonal proliferation of antibody producing plasma cells. Despite the use of next generation proteasome inhibitors (PI), immunomodulatory agents (IMiDs) and immunotherapy, the development of therapy refractory disease is common, with approximately 20% of MM patients succumbing to aggressive treatment-refractory disease within 2 years of diagnosis. A large emphasis is placed on understanding inter/intra-tumoral genetic, epigenetic and transcriptomic changes contributing to relapsed/refractory disease, however, the contribution of cellular metabolism and intrinsic/extrinsic metabolites to therapy sensitivity and resistance mechanisms is less well understood. Cancer cells depend on specific metabolites for bioenergetics, duplication of biomass and redox homeostasis for growth, proliferation, and survival. Cancer therapy, importantly, largely relies on targeting cellular growth, proliferation, and survival. Thus, understanding the metabolic changes intersecting with a drug's mechanism of action can inform us of methods to elicit deeper responses and prevent acquired resistance. Knowledge of the Warburg effect and elevated aerobic glycolysis in cancer cells, including MM, has allowed us to capitalize on this phenomenon for diagnostics and prognostics. The demonstration that mitochondria play critical roles in cancer development, progression, and therapy sensitivity despite the inherent preference of cancer cells to engage aerobic glycolysis has re-invigorated deeper inquiry into how mitochondrial metabolism regulates tumor biology and therapy efficacy. Mitochondria are the sole source for coupled respiration mediated ATP synthesis and a key source for the anabolic synthesis of amino acids and reducing equivalents. Beyond their core metabolic activities, mitochondria facilitate apoptotic cell death, impact the activation of the cytosolic integrated response to stress, and through nuclear and cytosolic retrograde crosstalk maintain cell fitness and survival. Here, we hope to shed light on key mitochondrial functions that shape MM development and therapy sensitivity.
Collapse
|
7
|
Metabolic Shades of S-D-Lactoylglutathione. Antioxidants (Basel) 2022; 11:antiox11051005. [PMID: 35624868 PMCID: PMC9138017 DOI: 10.3390/antiox11051005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
S-D-lactoylglutathione (SDL) is an intermediate of the glutathione-dependent metabolism of methylglyoxal (MGO) by glyoxalases. MGO is an electrophilic compound that is inevitably produced in conjunction with glucose breakdown and is essentially metabolized via the glyoxalase route. In the last decades, MGO metabolism and its cytotoxic effects have been under active investigation, while almost nothing is known about SDL. This article seeks to fill the gap by presenting an overview of the chemistry, biochemistry, physiological role and clinical importance of SDL. The effects of intracellular SDL are investigated in three main directions: as a substrate for post-translational protein modifications, as a reservoir for mitochondrial reduced glutathione and as an energy currency. In essence, all three approaches point to one direction, namely, a metabolism-related regulatory role, enhancing the cellular defense against insults. It is also suggested that an increased plasma concentration of SDL or its metabolites may possibly serve as marker molecules in hemolytic states, particularly when the cause of hemolysis is a disturbance of the pay-off phase of the glycolytic chain. Finally, SDL could also represent a useful marker in such metabolic disorders as diabetes mellitus or ketotic states, in which its formation is expected to be enhanced. Despite the lack of clear-cut evidence underlying the clinical and experimental findings, the investigation of SDL metabolism is a promising field of research.
Collapse
|
8
|
Ghosh A, Mustafiz A, Pareek A, Sopory SK, Singla-Pareek SL. Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. PHYSIOLOGIA PLANTARUM 2022; 174:e13693. [PMID: 35483971 DOI: 10.1111/ppl.13693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Methylglyoxal (MG) is a metabolically generated highly cytotoxic compound that accumulates in all living organisms, from Escherichia coli to humans, under stress conditions. To detoxify MG, nature has evolved reduced glutathione (GSH)-dependent glyoxalase and NADPH-dependent aldo-keto reductase systems. But both GSH and NADPH have been reported to be limiting in plants under stress conditions, and thus detoxification might not be performed efficiently. Recently, glyoxalase III (GLY III)-like enzyme activity has been reported from various species, which can detoxify MG without any cofactor. In the present study, we have tested whether an E. coli gene, hchA, encoding a functional GLY III, could provide abiotic stress tolerance to living systems. Overexpression of this gene showed improved tolerance in E. coli and Saccharomyces cerevisiae cells against salinity, dicarbonyl, and oxidative stresses. Ectopic expression of the E. coli GLY III gene (EcGLY-III) in transgenic tobacco plants confers tolerance against salinity at both seedling and reproductive stages as indicated by their height, weight, membrane stability index, and total yield potential. Transgenic plants showed significantly increased glyoxalase and antioxidant enzyme activity that resisted the accumulation of excess MG and reactive oxygen species (ROS) during stress. Moreover, transgenic plants showed more anti-glycation activity to inhibit the formation of advanced glycation end product (AGE) that might prevent transgenic plants from stress-induced senescence. Taken together, all these observations indicate that overexpression of EcGLYIII confers salinity stress tolerance in plants and should be explored further for the generation of stress-tolerant plants.
Collapse
Affiliation(s)
- Ajit Ghosh
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ananda Mustafiz
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
9
|
Miller JJ, Shah IT, Hatten J, Barekatain Y, Mueller EA, Moustafa AM, Edwards RL, Dowd CS, Planet PJ, Muller FL, Jez JM, Odom John AR. Structure-guided microbial targeting of antistaphylococcal prodrugs. eLife 2021; 10:66657. [PMID: 34279224 PMCID: PMC8318587 DOI: 10.7554/elife.66657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Carboxy ester prodrugs are widely employed to increase oral absorption and potency of phosphonate antibiotics. Prodrugging can mask problematic chemical features that prevent cellular uptake and may enable tissue-specific compound delivery. However, many carboxy ester promoieties are rapidly hydrolyzed by serum esterases, limiting their therapeutic potential. While carboxy ester-based prodrug targeting is feasible, it has seen limited use in microbes as microbial esterase-specific promoieties have not been described. Here we identify the bacterial esterases, GloB and FrmB, that activate carboxy ester prodrugs in Staphylococcus aureus. Additionally, we determine the substrate specificities for FrmB and GloB and demonstrate the structural basis of these preferences. Finally, we establish the carboxy ester substrate specificities of human and mouse sera, ultimately identifying several promoieties likely to be serum esterase-resistant and microbially labile. These studies will enable structure-guided design of antistaphylococcal promoieties and expand the range of molecules to target staphylococcal pathogens.
Collapse
Affiliation(s)
- Justin J Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States.,Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Ishaan T Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Jayda Hatten
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Elizabeth A Mueller
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Ahmed M Moustafa
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Cynthia S Dowd
- Department of Chemistry, The George Washington University, Washington, United States
| | - Paul J Planet
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, United States.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
10
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
11
|
Metabolic Effects of Recurrent Genetic Aberrations in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13030396. [PMID: 33494394 PMCID: PMC7865460 DOI: 10.3390/cancers13030396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.
Collapse
|
12
|
dos Santos B, Schmitz AE, de Almeida GRL, de Souza LF, Szczepanik JC, Nunes EA, Brunetta HS, Mack JM, Prediger RD, Cunha MP, Dafre AL. Fructose Intake Impairs Cortical Antioxidant Defenses Allied to Hyperlocomotion in Middle-Aged C57BL/6 Female Mice. Neurochem Res 2020; 45:2868-2883. [DOI: 10.1007/s11064-020-03135-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
|
13
|
Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8363245. [PMID: 32832006 PMCID: PMC7422410 DOI: 10.1155/2020/8363245] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.
Collapse
|
14
|
Resveratrol, Curcumin and Piperine Alter Human Glyoxalase 1 in MCF-7 Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21155244. [PMID: 32721999 PMCID: PMC7432303 DOI: 10.3390/ijms21155244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the leading cause of cancer mortality in women worldwide. Conventional cancer treatment is costly and results in many side effects. Dietary bioactive compounds may be a potential source for breast cancer prevention and treatment. In this scenario, the aim of this study was to investigate the effects of the bioactive compounds resveratrol, curcumin and piperine (R-C-P) on MCF-7 breast cancer cells and to associate them to Glyoxalase 1 (GLO1) activity. The findings indicate that R-C-P exhibits cytotoxicity towards MCF-7 cells. R-C-P decreased mitochondrial membrane potential (ΔΨm) by 1.93-, 2.04- and 1.17-fold, respectively. Glutathione and N-acetylcysteine were able to reverse the cytotoxicity of the assessed bioactive compounds in MCF-7 cells. R-C-P reduced GLO1 activity by 1.36-, 1.92- and 1.31-fold, respectively. R-C-P in the presence of antimycin A led to 1.98-, 1.65- and 2.16-fold decreases in D-lactate levels after 2 h of treatment, respectively. Glyoxal and methylglyoxal presented cytotoxic effects on MCF-7 cells, with IC50 values of 2.8 and 2.7 mM and of 1.5 and 1.4 mM after 24 and 48 h of treatment, respectively. In conclusion, this study demonstrated that R-C-P results in cytotoxic effects in MCF-7 cells and that this outcome is associated with decreasing GLO1 activity and mitochondrial dysfunction.
Collapse
|
15
|
Donato L, Scimone C, Alibrandi S, Nicocia G, Rinaldi C, Sidoti A, D’Angelo R. Discovery of GLO1 New Related Genes and Pathways by RNA-Seq on A2E-Stressed Retinal Epithelial Cells Could Improve Knowledge on Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:E416. [PMID: 32413970 PMCID: PMC7278727 DOI: 10.3390/antiox9050416] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Endogenous antioxidants protect cells from reactive oxygen species (ROS)-related deleterious effects, and an imbalance in the oxidant/antioxidant systems generates oxidative stress. Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis whose excess can produce oxidative stress. In retinitis pigmentosa, one of the most diffuse cause of blindness, oxidative damage leads to photoreceptor death. To clarify the role of GLO1 in retinitis pigmentosa onset and progression, we treated human retinal pigment epithelium cells by the oxidant agent A2E. Transcriptome profiles between treated and untreated cells were performed by RNA-Seq, considering two time points (3 and 6 h), after the basal one. The exposure to A2E highlighted significant expression differences and splicing events in 370 GLO1 first-neighbor genes, and 23 of them emerged from pathway clustered analysis as main candidates to be associated with retinitis pigmentosa. Such a hypothesis was corroborated by the involvement of previously analyzed genes in specific cellular activities related to oxidative stress, such as glyoxylate and dicarboxylate metabolism, glycolysis, axo-dendritic transport, lipoprotein activity and metabolism, SUMOylation and retrograde transport at the trans-Golgi network. Our findings could be the starting point to explore unclear molecular mechanisms involved in retinitis pigmentosa etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Giacomo Nicocia
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| |
Collapse
|
16
|
Circulating free methylglyoxal as a metabolic tumor biomarker in a rat colon adenocarcinoma model. Mol Clin Oncol 2020; 12:311-316. [PMID: 32190311 PMCID: PMC7058004 DOI: 10.3892/mco.2020.2000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/11/2019] [Indexed: 11/05/2022] Open
Abstract
Since the 1956 hypothesis of Otto Warburg, aerobic glycolysis has been recognized as a metabolic hallmark of cancer. Because methylglyoxal (MG) is a naturally occurring waste metabolite of glycolysis, we measured blood levels of this molecule in colon cancer-bearing rats. To compare the blood levels of free MG in cancerous and healthy animals,the present study used a dedicated tumor graft model consisting of the subcutaneous administration in syngenic BD-IX rats of a tumorigenic cell clone (PROb) and another non-tumorigenic clone (REGb) derived from the same tumor. Rats grafted with the PROb growing tumor cell clone exhibited a statistically significant increase in free MG blood levels (P=0.003), whereas rats transplanted with the REGb non-growing tumor cell clone exhibited normal MG values. The present study (first of three parts) suggests that cancer cells can produce and release free MG at higher levels than normal cells, making MG a putative novel metabolic biomarker of cancer.
Collapse
|
17
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
18
|
Jiang L, Wang J, Wang Z, Huang W, Yang Y, Cai Z, Li K. Role of the Glyoxalase System in Alzheimer's Disease. J Alzheimers Dis 2019; 66:887-899. [PMID: 30400091 DOI: 10.3233/jad-180413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disease. The main pathological features of AD are the formation of amyloid-β deposits in the anterior cerebral cortex and hippocampus as well as the formation of intracellular neurofibrillary tangles. Thus far, accumulating evidence shows that glycation is closely related to AD. As a final product resulting from the crosslinking of a reducing sugar or other reactive carbonyls and a protein, the advanced glycation end products have been found to be associated with the formation of amyloid-β and neurofibrillary tangles in AD. As a saccharification inhibitor, the glyoxalase system and its substrate methylglyoxal (MG) were certified to be associated with AD onset and development. As an active substance of AGEs, MG could cause direct or indirect damage to nerve cells and tissues. MG is converted to D-lactic acid after decomposition by the glyoxalase system. Under normal circumstances, MG metabolism is in a dynamic equilibrium, whereas MG accumulates in cells in the case of aging or pathological states. Studies have shown that increasing glyoxalase activity and reducing the MG level can inhibit the generation of oxidative stress and AGEs, thereby alleviating the symptoms and signs of AD to some extent. This paper focuses on the relevant mechanisms of action of the glyoxalase system and MG in the pathogenesis of AD, as well as the potential of inhibiting the production of advanced glycation end products in the treatment of AD.
Collapse
Affiliation(s)
- Lianying Jiang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiafeng Wang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhigang Wang
- Department of Neurosurgery, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wenhui Huang
- Department of Neurology and Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yixia Yang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Preliminary Characterization of a Ni2+-Activated and Mycothiol-Dependent Glyoxalase I Enzyme from Streptomyces coelicolor. INORGANICS 2019. [DOI: 10.3390/inorganics7080099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The glyoxalase system consists of two enzymes, glyoxalase I (Glo1) and glyoxalase II (Glo2), and converts a hemithioacetal substrate formed between a cytotoxic alpha-ketoaldehyde, such as methylglyoxal (MG), and an intracellular thiol, such as glutathione, to a non-toxic alpha-hydroxy acid, such as d-lactate, and the regenerated thiol. Two classes of Glo1 have been identified. The first is a Zn2+-activated class and is exemplified by the Homo sapiens Glo1. The second class is a Ni2+-activated enzyme and is exemplified by the Escherichia coli Glo1. Glutathione is the intracellular thiol employed by Glo1 from both these sources. However, many organisms employ other intracellular thiols. These include trypanothione, bacillithiol, and mycothiol. The trypanothione-dependent Glo1 from Leishmania major has been shown to be Ni2+-activated. Genetic studies on Bacillus subtilis and Corynebacterium glutamicum focused on MG resistance have indicated the likely existence of Glo1 enzymes employing bacillithiol or mycothiol respectively, although no protein characterizations have been reported. The current investigation provides a preliminary characterization of an isolated mycothiol-dependent Glo1 from Streptomyces coelicolor. The enzyme has been determined to display a Ni2+-activation profile and indicates that Ni2+-activated Glo1 are indeed widespread in nature regardless of the intracellular thiol employed by an organism.
Collapse
|
20
|
de Bari L, Atlante A, Armeni T, Kalapos MP. Synthesis and metabolism of methylglyoxal, S-D-lactoylglutathione and D-lactate in cancer and Alzheimer's disease. Exploring the crossroad of eternal youth and premature aging. Ageing Res Rev 2019; 53:100915. [PMID: 31173890 DOI: 10.1016/j.arr.2019.100915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Both cancer and Alzheimer's disease (AD) are emerging as metabolic diseases in which aberrant/dysregulated glucose metabolism and bioenergetics occur, and play a key role in disease progression. Interestingly, an enhancement of glucose uptake, glycolysis and pentose phosphate pathway occurs in both cancer cells and amyloid-β-resistant neurons in the early phase of AD. However, this metabolic shift has its adverse effects. One of them is the increase in methylglyoxal production, a physiological cytotoxic by-product of glucose catabolism. Methylglyoxal is mainly detoxified via cytosolic glyoxalase route comprising glyoxalase 1 and glyoxalase 2 with the production of S-D-lactoylglutathione and D-lactate as intermediate and end-product, respectively. Due to the existence of mitochondrial carriers and intramitochondrial glyoxalase 2 and D-lactate dehydrogenase, the transport and metabolism of both S-D-lactoylglutathione and D-lactate in mitochondria can contribute to methylglyoxal elimination, cellular antioxidant power and energy production. In this review, it is supposed that the different ability of cancer cells and AD neurons to metabolize methylglyoxal, S-D-lactoylglutathione and D-lactate scores cell fate, therefore being at the very crossroad of the "eternal youth" of cancer and the "premature death" of AD neurons. Understanding of these processes would help to elaborate novel metabolism-based therapies for cancer and AD treatment.
Collapse
|
21
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. CRITICAL ISSUES Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. FUTURE DIRECTIONS The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.
Collapse
Affiliation(s)
- Carsten Berndt
- 1 Department of Neurology, Medical Faculty, Life Science Center , Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christopher Horst Lillig
- 2 Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald , Greifswald, Germany
| |
Collapse
|
23
|
Szwergold B. Reactions between methylglyoxal and its scavengers in-vivo appear to be catalyzed enzymatically. Med Hypotheses 2017; 109:153-155. [DOI: 10.1016/j.mehy.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 11/28/2022]
|
24
|
Wezena CA, Urscher M, Vince R, More SS, Deponte M. Hemolytic and antimalarial effects of tight-binding glyoxalase 1 inhibitors on the host-parasite unit of erythrocytes infected with Plasmodium falciparum. Redox Biol 2016; 8:348-53. [PMID: 26972115 PMCID: PMC4789335 DOI: 10.1016/j.redox.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022] Open
Abstract
Glyoxalases prevent the formation of advanced glycation end products by converting glycolysis-derived methylglyoxal to d-lactate with the help of glutathione. Vander Jagt and colleagues previously showed that erythrocytes release about thirty times more d-lactate after infection with the human malaria parasite Plasmodium falciparum. Functional glyoxalases in the host-parasite unit might therefore be crucial for parasite survival. Here, we determined the antimalarial and hemolytic activity of two tight-binding glyoxalase inhibitors using infected and uninfected erythrocytes. In addition, we synthesized and analyzed a set of diester derivates of both tight-binding inhibitors resulting in up to threefold lower IC50 values and an altered methemoglobin formation and hemolytic activity depending on the type of ester. Inhibitor treatments of uninfected erythrocytes revealed an extremely slow inactivation of the host cell glyoxalase, irrespective of inhibitor modifications, and a potential dispensability of the host cell enzyme for parasite survival. Our study highlights the benefits and drawbacks of different esterifications of glutathione-derived inhibitors and demonstrates the suitability of glyoxalase inhibitors as a tool for deciphering the relevance and mode of action of different glyoxalase systems in a host-parasite unit.
Collapse
Affiliation(s)
- Cletus A Wezena
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Miriam Urscher
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S More
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.
| |
Collapse
|