1
|
Ma K, Yang X, Mao Y. Advancing evolutionary medicine with complete primate genomes and advanced biotechnologies. Trends Genet 2025; 41:201-217. [PMID: 39627062 DOI: 10.1016/j.tig.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 03/06/2025]
Abstract
Evolutionary medicine, which integrates evolutionary biology and medicine, significantly enhances our understanding of human traits and disease susceptibility. However, previous studies in this field have often focused on single-nucleotide variants due to technological limitations in characterizing complex genomic regions, hindering the comprehensive analyses of their evolutionary origins and clinical significance. In this review, we summarize recent advancements in complete telomere-to-telomere (T2T), primate genomes and other primate resources, and illustrate how these resources facilitate the research of complex regions. We focus on several biomedically relevant regions to examine the relationship between primate genome evolution and human diseases. We also highlight the potentials of high-throughput functional genomic technologies for assessing candidate loci. Finally, we discuss future directions for primate research within the context of evolutionary medicine.
Collapse
Affiliation(s)
- Kaiyue Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
2
|
Lin W, Wells J, Wang Z, Orengo C, Martin ACR. Enhancing missense variant pathogenicity prediction with protein language models using VariPred. Sci Rep 2024; 14:8136. [PMID: 38584172 PMCID: PMC10999449 DOI: 10.1038/s41598-024-51489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/05/2024] [Indexed: 04/09/2024] Open
Abstract
Computational approaches for predicting the pathogenicity of genetic variants have advanced in recent years. These methods enable researchers to determine the possible clinical impact of rare and novel variants. Historically these prediction methods used hand-crafted features based on structural, evolutionary, or physiochemical properties of the variant. In this study we propose a novel framework that leverages the power of pre-trained protein language models to predict variant pathogenicity. We show that our approach VariPred (Variant impact Predictor) outperforms current state-of-the-art methods by using an end-to-end model that only requires the protein sequence as input. Using one of the best-performing protein language models (ESM-1b), we establish a robust classifier that requires no calculation of structural features or multiple sequence alignments. We compare the performance of VariPred with other representative models including 3Cnet, Polyphen-2, REVEL, MetaLR, FATHMM and ESM variant. VariPred performs as well as, or in most cases better than these other predictors using six variant impact prediction benchmarks despite requiring only sequence data and no pre-processing of the data.
Collapse
Affiliation(s)
- Weining Lin
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Jude Wells
- Department of Computer Science, University College London, London, UK
| | - Zeyuan Wang
- College of Computer Science and Technology, Zhejiang University, Zhejiang, China
| | - Christine Orengo
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Andrew C R Martin
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
3
|
Azbukina N, Zharikova A, Ramensky V. Intragenic compensation through the lens of deep mutational scanning. Biophys Rev 2022; 14:1161-1182. [PMID: 36345285 PMCID: PMC9636336 DOI: 10.1007/s12551-022-01005-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 12/20/2022] Open
Abstract
A significant fraction of mutations in proteins are deleterious and result in adverse consequences for protein function, stability, or interaction with other molecules. Intragenic compensation is a specific case of positive epistasis when a neutral missense mutation cancels effect of a deleterious mutation in the same protein. Permissive compensatory mutations facilitate protein evolution, since without them all sequences would be extremely conserved. Understanding compensatory mechanisms is an important scientific challenge at the intersection of protein biophysics and evolution. In human genetics, intragenic compensatory interactions are important since they may result in variable penetrance of pathogenic mutations or fixation of pathogenic human alleles in orthologous proteins from related species. The latter phenomenon complicates computational and clinical inference of an allele's pathogenicity. Deep mutational scanning is a relatively new technique that enables experimental studies of functional effects of thousands of mutations in proteins. We review the important aspects of the field and discuss existing limitations of current datasets. We reviewed ten published DMS datasets with quantified functional effects of single and double mutations and described rates and patterns of intragenic compensation in eight of them. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01005-w.
Collapse
Affiliation(s)
- Nadezhda Azbukina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Anastasia Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Bld.3, 101000 Moscow, Russia
| | - Vasily Ramensky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Bld.3, 101000 Moscow, Russia
| |
Collapse
|
4
|
Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Nucleic Acids Res 2021; 49:D1282-D1288. [PMID: 33300029 PMCID: PMC7779045 DOI: 10.1093/nar/gkaa1032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/14/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Numerous lines of evidence have shown that the interaction between the nuclear and mitochondrial genomes ensures the efficient functioning of the OXPHOS complexes, with substantial implications in bioenergetics, adaptation, and disease. Their interaction is a fascinating and complex trait of the eukaryotic cell that MitImpact explores with its third major release. MitImpact expands its collection of genomic, clinical, and functional annotations of all non-synonymous substitutions of the human mitochondrial genome with new information on putative Compensated Pathogenic Deviations and co-varying amino acid sites of the Respiratory Chain subunits. It further provides evidence of energetic and structural residue compensation by techniques of molecular dynamics simulation. MitImpact is freely accessible at http://mitimpact.css-mendel.it.
Collapse
Affiliation(s)
- Stefano Castellana
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Tommaso Biagini
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Luca Parca
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Noemi Panzironi
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Angelo Luigi Vescovi
- ISBReMIT Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Massimo Carella
- Laboratory of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG) 71013, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| |
Collapse
|
5
|
Goode A, Butler K, Long J, Cavey J, Scott D, Shaw B, Sollenberger J, Gell C, Johansen T, Oldham NJ, Searle MS, Layfield R. Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy 2016; 12:1094-104. [PMID: 27158844 PMCID: PMC4990988 DOI: 10.1080/15548627.2016.1170257] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Growing evidence implicates impairment of autophagy as a candidate pathogenic mechanism in the spectrum of neurodegenerative disorders which includes amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS-FTLD). SQSTM1, which encodes the autophagy receptor SQSTM1/p62, is genetically associated with ALS-FTLD, although to date autophagy-relevant functional defects in disease-associated variants have not been described. A key protein-protein interaction in autophagy is the recognition of a lipid-anchored form of LC3 (LC3-II) within the phagophore membrane by SQSTM1, mediated through its LC3-interacting region (LIR), and notably some ALS-FTLD mutations map to this region. Here we show that although representing a conservative substitution and predicted to be benign, the ALS-associated L341V mutation of SQSTM1 is defective in recognition of LC3B. We place our observations on a firm quantitative footing by showing the L341V-mutant LIR is associated with a ∼3-fold reduction in LC3B binding affinity and using protein NMR we rationalize the structural basis for the effect. This functional deficit is realized in motor neuron-like cells, with the L341V mutant EGFP-mCherry-SQSTM1 less readily incorporated into acidic autophagic vesicles than the wild type. Our data supports a model in which the L341V mutation limits the critical step of SQSTM1 recruitment to the phagophore. The oligomeric nature of SQSTM1, which presents multiple LIRs to template growth of the phagophore, potentially gives rise to avidity effects which amplify the relatively modest impact of any single mutation on LC3B binding. Over the lifetime of a neuron, impaired autophagy could expose a vulnerability, which ultimately tips the balance from cell survival toward cell death.
Collapse
Affiliation(s)
- Alice Goode
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Kevin Butler
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Jed Long
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - James Cavey
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Daniel Scott
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Barry Shaw
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Jill Sollenberger
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Christopher Gell
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Terje Johansen
- d Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway , Tromsø , Norway
| | - Neil J Oldham
- b School of Chemistry, University of Nottingham , Nottingham , UK
| | - Mark S Searle
- b School of Chemistry, University of Nottingham , Nottingham , UK.,c Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Robert Layfield
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| |
Collapse
|