1
|
Geiwitz M, Page OR, Marello T, Nichols ME, Kumar N, Hummel S, Belosevich V, Ma Q, van Opijnen T, Batten B, Meyer MM, Burch KS. Graphene Multiplexed Sensor for Point-of-Need Viral Wastewater-Based Epidemiology. ACS APPLIED BIO MATERIALS 2024; 7:4622-4632. [PMID: 38954405 DOI: 10.1021/acsabm.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Wastewater-based epidemiology (WBE) can help mitigate the spread of respiratory infections through the early detection of viruses, pathogens, and other biomarkers in human waste. The need for sample collection, shipping, and testing facilities drives up the cost of WBE and hinders its use for rapid detection and isolation in environments with small populations and in low-resource settings. Given the ubiquitousness and regular outbreaks of respiratory syncytial virus, SARS-CoV-2, and various influenza strains, there is a rising need for a low-cost and easy-to-use biosensing platform to detect these viruses locally before outbreaks can occur and monitor their progression. To this end, we have developed an easy-to-use, cost-effective, multiplexed platform able to detect viral loads in wastewater with several orders of magnitude lower limit of detection than that of mass spectrometry. This is enabled by wafer-scale production and aptamers preattached with linker molecules, producing 44 chips at once. Each chip can simultaneously detect four target analytes using 20 transistors segregated into four sets of five for each analyte to allow for immediate statistical analysis. We show our platform's ability to rapidly detect three virus proteins (SARS-CoV-2, RSV, and Influenza A) and a population normalization molecule (caffeine) in wastewater. Going forward, turning these devices into hand-held systems would enable wastewater epidemiology in low-resource settings and be instrumental for rapid, local outbreak prevention.
Collapse
Affiliation(s)
- Michael Geiwitz
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Owen Rivers Page
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tio Marello
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Marina E Nichols
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Narendra Kumar
- GRIP Molecular Technologies, Inc., 1000 Westgate Drive, Saint Paul, Minnesota 55114, United States
| | - Stephen Hummel
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Vsevolod Belosevich
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Qiong Ma
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bruce Batten
- GRIP Molecular Technologies, Inc., 1000 Westgate Drive, Saint Paul, Minnesota 55114, United States
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Domsicova M, Korcekova J, Poturnayova A, Breier A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int J Mol Sci 2024; 25:6833. [PMID: 38999943 PMCID: PMC11240909 DOI: 10.3390/ijms25136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting. Furthermore, they can be easily modified with various labels or functional groups, tailoring them for diverse applications. Even more uniquely, aptamers can be regenerated after use, making aptasensors a cost-effective and sustainable alternative compared to disposable biosensors. This review delves into the inherent properties of aptamers that make them advantageous in established diagnostic methods. Furthermore, we will examine some of the limitations of aptamers, such as the need to engage in bioinformatics procedures in order to understand the relationship between the structure of the aptamer and its binding abilities. The objective is to develop a targeted design for specific targets. We analyse the process of aptamer selection and design by exploring the current landscape of aptamer utilisation across various industries. Here, we illuminate the potential advantages and applications of aptamers in a range of diagnostic techniques, with a specific focus on quartz crystal microbalance (QCM) aptasensors and their integration into the well-established ELISA method. This review serves as a comprehensive resource, summarising the latest knowledge and applications of aptamers, particularly highlighting their potential to revolutionise diagnostic approaches.
Collapse
Affiliation(s)
- Michaela Domsicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Jana Korcekova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Alexandra Poturnayova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Albert Breier
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
3
|
Shayesteh OH, Derakhshandeh K, Ranjbar A, Mahjub R, Farmany A. Development of a label-free, sensitive gold nanoparticles-poly(adenine) aptasensing platform for colorimetric determination of aflatoxin B1 in corn. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38682263 DOI: 10.1039/d4ay00605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In this work, a sensitive colorimetric bioassay method based on a poly(adenine) aptamer (polyA apt) and gold nanoparticles (AuNPs) was developed for the determination of aflatoxin B1 (AFB1). The polyA apt, adsorbed on the AuNPs, especially can bind to the analyte while deterring non-specific interactions. This nano aptasensor uses cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA), as an aggregating agent, to aggregate gold nanoparticles. PolyA apt-decorated gold nanoparticles (AuNPs/polyA apt) show resistance to PDDA-induced aggregation and maintains their dispersed state (red color) with the optical absorbance signal at λ = 520 nm. However, in the presence of AFB1 in the assay solution, the specific aptamer reacts with high affinity and folds into its three-dimensional form. Aggregation of AuNPs induced by PDDA caused their optical signal shift to λ = 620 nm (blue color). AFB1 concentration in the bioassay solution determines the amount of optical signal shift. Therefore, optical density ratio in two wavelengths (A620/520) can be used as a sturdy colorimetric signal to detect the concentration of aflatoxin B1. AFB1 was linearly detected between 0.5 and 20 ng mL-1, with a detection limit of 0.09 ng mL-1 (S/N = 3). The fabricated aptasensor was applied to the detection of AFB1 in real corn samples.
Collapse
Affiliation(s)
- Omid Heydari Shayesteh
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Javed A, Kong N, Mathesh M, Duan W, Yang W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2345041. [PMID: 38742153 PMCID: PMC11089931 DOI: 10.1080/14686996.2024.2345041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.
Collapse
Affiliation(s)
- Aisha Javed
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Motilal Mathesh
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
5
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Ahangari A, Mahmoodi P, Mohammadzadeh A. Biosensors functionalized with nanoparticles for rapid detection of Brucella. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Rezapoor-Fashtali Z, Ganjali MR, Faridbod F. A Novel Electrochemical Aptasensor Based on a New Platform of Samarium Molybdate Flower-like Nanoparticles@Poly(pyrrole) for Non-Invasive Determination of Saliva CORTISOL. BIOSENSORS 2022; 12:bios12090720. [PMID: 36140105 PMCID: PMC9496328 DOI: 10.3390/bios12090720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
Cortisol, a famous stress biomarker, can be considered a potential predictor of cardiac diseases in humans. The presence of cortisol in saliva has encouraged researchers to design point-of-care devices for cortisol concentration in biological fluids. Here, human salivary cortisol was analyzed through a new non-invasive voltammetric aptasensor. Although cortisol is an electroactive compound, generally, the reduction in the current peak has been considered; however, this does not show a strong signal on a bare electrode surface, especially at low concentration levels. Hence, in this study, cortisol concentration was measured electrochemically and indirectly by monitoring the difference between electrochemical probe signals in the presence and absence of cortisol. A new polymeric nanocomposite of samarium molybdate flower-like nanoparticles decorated in poly(pyrrole) was electro-synthesized on the surface of a glassy carbon electrode. Then, reduced graphene oxide was cast on the surface. Finally, the cortisol aptamer was immobilized covalently on the reduced graphene oxide. This platform was used to increase the oxidation current peak of the ferricyanide solution as a probe as well as its electrocatalyst. The novel designed polymeric has the potential ability for effective immobilization of aptamers on the electrode surface without decreasing their biological activities. Additionally, it can enhance the probe electrochemical signal. The differential pulse voltammetric method (DPV) was applied as the detection technique. By optimizing the effective parameters, a determination range of 5.0 × 10−14–1.5 × 10−11 mol/L and a limit of detection of 4.5 × 10−14 mol/L were obtained. Selectivity of the proposed aptasensor relative to β-estradiol, progesterone and also prednisolone was studied as well. Finally, cortisol in a healthy human saliva sample was successfully analyzed by the proposed biosensors.
Collapse
Affiliation(s)
- Zahra Rezapoor-Fashtali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran P.O. Box 14965/161, Iran
- Correspondence: ; Tel.: +98-2188356145
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| |
Collapse
|
8
|
Kumar N, Rana M, Geiwitz M, Khan NI, Catalano M, Ortiz-Marquez JC, Kitadai H, Weber A, Dweik B, Ling X, van Opijnen T, Argun AA, Burch KS. Rapid, Multianalyte Detection of Opioid Metabolites in Wastewater. ACS NANO 2022; 16:3704-3714. [PMID: 35201755 PMCID: PMC9949512 DOI: 10.1021/acsnano.1c07094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
By monitoring opioid metabolites, wastewater-based epidemiology (WBE) could be an excellent tool for real-time information on the consumption of illicit drugs. A key limitation of WBE is the reliance on costly laboratory-based techniques that require substantial infrastructure and trained personnel, resulting in long turnaround times. Here, we present an aptamer-based graphene field effect transistor (AptG-FET) platform for simultaneous detection of three different opioid metabolites. This platform provides a reliable, rapid, and inexpensive method for quantitative analysis of opioid metabolites in wastewater. The platform delivers a limit of detection 2-3 orders of magnitude lower than previous reports, but in line with the concentration range (pg/mL to ng/mL) of these opioid metabolites present in real samples. To enable multianalyte detection, we developed a facile, reproducible, and high-yield fabrication process producing 20 G-FETs with integrated side gate platinum (Pt) electrodes on a single chip. Our devices achieved the selective multianalyte detection of three different metabolites: noroxycodone (NX), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), and norfentanyl (NF) in wastewater diluted 20× in buffer.
Collapse
Affiliation(s)
- Narendra Kumar
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muhit Rana
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Michael Geiwitz
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Matthew Catalano
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Juan C Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hikari Kitadai
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Andrew Weber
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Badawi Dweik
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Avni A Argun
- Giner Inc., Newton, Massachusetts 02466, United States
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
9
|
Fabrication of AuNPs/MWCNTS/Chitosan Nanocomposite for the Electrochemical Aptasensing of Cadmium in Water. SENSORS 2021; 22:s22010105. [PMID: 35009645 PMCID: PMC8747752 DOI: 10.3390/s22010105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd2+) is one of the most toxic heavy metals causing serious health problems; thus, designing accurate analytical methods for monitoring such pollutants is highly urgent. Herein, we report a label-free electrochemical aptasensor for cadmium detection in water. For this, a nanocomposite combining the advantages of gold nanoparticles (AuNPs), carbon nanotubes (CNTs) and chitosan (Cs) was constructed and used as immobilization support for the cadmium aptamer. First, the surface of a glassy carbon electrode (GCE) was modified with CNTs-CS. Then, AuNPs were deposited on CNTs-CS/GCE using chrono-amperometry. Finally, the immobilization of the amino-modified Cd-aptamer was achieved via glutaraldehyde cross-linking. The different synthesis steps of the AuNPs/CNTs/CS nano assembly were characterized by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) was employed for cadmium determination. The proposed biosensor exhibited excellent performances for cadmium detection at a low applied potential (−0.5 V) with a high sensitivity (1.2 KΩ·M−1), a detection limit of 0.02 pM and a wide linear range (10−13–10−4 M). Moreover, the aptasensor showed a good selectivity against the interfering ions: Pb2+; Hg2+ and Zn2+. Our electrochemical biosensor provides a simple and sensitive approach for Cd2+ detection in aqueous solutions, with promising applications in the monitoring of trace amounts of heavy metals in real samples.
Collapse
|
10
|
T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures. Pharmaceuticals (Basel) 2021; 15:ph15010015. [PMID: 35056072 PMCID: PMC8780797 DOI: 10.3390/ph15010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Aptamers are oligonucleotides that have the characteristic of recognizing a target with high affinity and specificity. Based on our previous studies, the aptamer probe Sgc8-c-Alexa647 is a promising tool for molecular imaging of PTK7, which is an interesting biomarker in cancer. In order to improve the delivery of this probe as well as create a novel drug delivery nanosystem targeted to the PTK7 receptor, we evaluate the co-association between the probe and preformed nanostructures. In this work, preformed pegylated liposomes (PPL) and linear and branched pristine polymeric micelles (PMs), based on PEO–PPO–PEO triblock copolymers were used: poloxamer F127® and poloxamines T1307® and T908®. For it, Sgc8-c-Alexa647 and its co-association with the different nanostructures was exhaustively analyzed. DLS analysis showed nanometric sizes, and TEM and AFM showed notable differences between free- and co-associated probe. Likewise, all nanosystems were evaluated on A20 lymphoma cell line overexpressing PTK7, and the confocal microscopy images showed distinctness in cellular uptake. Finally, the biodistribution in BALB/c mice bearing lymphoma-tumor and pharmacokinetic study revealed an encouraging profile for T908-probe. All data obtained from this work suggested that PMs and, more specifically T908 ones, are good candidates to improve the pharmacokinetics and the tumor uptake of aptamer-based probes.
Collapse
|
11
|
Arshavsky-Graham S, Ward SJ, Massad-Ivanir N, Scheper T, Weiss SM, Segal E. Porous Silicon-Based Aptasensors: Toward Cancer Protein Biomarker Detection. ACS MEASUREMENT SCIENCE AU 2021; 1:82-94. [PMID: 34693403 PMCID: PMC8532149 DOI: 10.1021/acsmeasuresciau.1c00019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/09/2023]
Abstract
The anterior gradient homologue-2 (AGR2) protein is an attractive biomarker for various types of cancer. In pancreatic cancer, it is secreted to the pancreatic juice by premalignant lesions, which would be an ideal stage for diagnosis. Thus, designing assays for the sensitive detection of AGR2 would be highly valuable for the potential early diagnosis of pancreatic and other types of cancer. Herein, we present a biosensor for label-free AGR2 detection and investigate approaches for enhancing the aptasensor sensitivity by accelerating the target mass transfer rate and reducing the system noise. The biosensor is based on a nanostructured porous silicon thin film that is decorated with anti-AGR2 aptamers, where real-time monitoring of the reflectance changes enables the detection and quantification of AGR2, as well as the study of the diffusion and target-aptamer binding kinetics. The aptasensor is highly selective for AGR2 and can detect the protein in simulated pancreatic juice, where its concentration is outnumbered by orders of magnitude by numerous proteins. The aptasensor's analytical performance is characterized with a linear detection range of 0.05-2 mg mL-1, an apparent dissociation constant of 21 ± 1 μM, and a limit of detection of 9.2 μg mL-1 (0.2 μM), which is attributed to mass transfer limitations. To improve the latter, we applied different strategies to increase the diffusion flux to and within the nanostructure, such as the application of isotachophoresis for the preconcentration of AGR2 on the aptasensor, mixing, or integration with microchannels. By combining these approaches with a new signal processing technique that employs Morlet wavelet filtering and phase analysis, we achieve a limit of detection of 15 nM without compromising the biosensor's selectivity and specificity.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Institute
of Technical Chemistry, Leibniz Universität
Hannover, Callinstraße 5, 30167 Hanover, Germany
| | - Simon J. Ward
- Department
of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Naama Massad-Ivanir
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Thomas Scheper
- Institute
of Technical Chemistry, Leibniz Universität
Hannover, Callinstraße 5, 30167 Hanover, Germany
| | - Sharon M. Weiss
- Department
of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ester Segal
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
12
|
Advances in Colorimetric Assay Based on AuNPs Modified by Proteins and Nucleic Acid Aptamers. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review is focused on the biosensing assay based on AuNPs (AuNPs) modified by proteins, peptides and nucleic acid aptamers. The unique physical properties of AuNPs allow their modification by proteins, peptides or nucleic acid aptamers by chemisorption as well as other methods including physical adsorption and covalent immobilization using carbodiimide chemistry or based on strong binding of biotinylated receptors on neutravidin, streptavidin or avidin. The methods of AuNPs preparation, their chemical modification and application in several biosensing assays are presented with focus on application of nucleic acid aptamers for colorimetry assay for determination of antibiotics and bacteria in food samples.
Collapse
|
13
|
Oravczová V, Garaiová Z, Hianik T. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Xie S, Ai L, Cui C, Fu T, Cheng X, Qu F, Tan W. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9542-9560. [PMID: 33595277 DOI: 10.1021/acsami.0c19562] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the past decades, various nanomaterials with unique properties have been explored for bioapplications. Meanwhile, aptamers, generated from the systematic evolution of ligands by exponential enrichment technology, are becoming an indispensable element in the design of functional nanomaterials because of their small size, high stability, and convenient modification, especially endowing nanomaterials with recognition capability to specific targets. Therefore, the incorporation of aptamers into nanomaterials offers an unprecedented opportunity in the research fields of diagnostics and therapeutics. Here, we focus on recent advances in aptamer-embedded nanomaterials for bioapplications. First, we briefly introduce the properties of nanomaterials that can be functionalized with aptamers. Then, the applications of aptamer-embedded nanomaterials in cellular analysis, imaging, targeted drug delivery, gene editing, and cancer diagnosis/therapy are discussed. Finally, we provide some perspectives on the challenges and opportunities that have arisen from this promising area.
Collapse
Affiliation(s)
- Sitao Xie
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Fengli Qu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- College of Chemistry and Chemical, Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
15
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
16
|
Subjakova V, Oravczova V, Hianik T. Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers (Basel) 2021; 13:341. [PMID: 33494545 PMCID: PMC7866063 DOI: 10.3390/polym13030341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymer nanoparticles and nano/micromotors are novel nanostructures that are of increased interest especially in the diagnosis and therapy of cancer. These structures are modified by antibodies or nucleic acid aptamers and can recognize the cancer markers at the membrane of the cancer cells or in the intracellular side. They can serve as a cargo for targeted transport of drugs or nucleic acids in chemo- immuno- or gene therapy. The various mechanisms, such as enzyme, ultrasound, magnetic, electrical, or light, served as a driving force for nano/micromotors, allowing their transport into the cells. This review is focused on the recent achievements in the development of polymer nanoparticles and nano/micromotors modified by antibodies and nucleic acid aptamers. The methods of preparation of polymer nanoparticles, their structure and properties are provided together with those for synthesis and the application of nano/micromotors. The various mechanisms of the driving of nano/micromotors such as chemical, light, ultrasound, electric and magnetic fields are explained. The targeting drug delivery is based on the modification of nanostructures by receptors such as nucleic acid aptamers and antibodies. Special focus is therefore on the method of selection aptamers for recognition cancer markers as well as on the comparison of the properties of nucleic acid aptamers and antibodies. The methods of immobilization of aptamers at the nanoparticles and nano/micromotors are provided. Examples of applications of polymer nanoparticles and nano/micromotors in targeted delivery and in controlled drug release are presented. The future perspectives of biomimetic nanostructures in personalized nanomedicine are also discussed.
Collapse
Affiliation(s)
| | | | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia; (V.S.); (V.O.)
| |
Collapse
|
17
|
Phung NL, Walter JG, Jonczyk R, Seiler LK, Scheper T, Blume C. Development of an Aptamer-Based Lateral Flow Assay for the Detection of C-Reactive Protein Using Microarray Technology as a Prescreening Platform. ACS COMBINATORIAL SCIENCE 2020; 22:617-629. [PMID: 32894679 DOI: 10.1021/acscombsci.0c00080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For improved cost-effectiveness and temperature-stability, a ready to use lateral flow assay (LFA) is developed in this work for detecting inflammation/infection biomarker C-reactive protein (CRP) in human patient samples on the basis of aptamers. In prescreening investigations, an aptamer with CRP affinity was immobilized on microarray chips in forward and sandwich formats to optimize assay conditions. We suggest these microarray techniques as a resource-sparing and fast-screening instrument for evaluation of various conditions. The capability of the aptamer to detect CRP was shown. Optimized assay conditions were consequently transferred to the LFA-platform. Here we could demonstrate for the first time an aptamer-based LFA for the detection of CRP in human patient samples in pathologically relevant concentrations. The cutoff for CRP detection is set at 10 mg/L, providing a distinctive "yes" (≥10 mg/L CRP) or "no" (<10 mg/L CRP) answer for the patient. The resulting aptamer-based LFA is promising with regard to its application as point-of-care testing (POCT) for efficient monitoring, especially of patients affected by frequent infections or inflammations.
Collapse
Affiliation(s)
- Ngoc Linh Phung
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Johanna G. Walter
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Lisa K. Seiler
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
18
|
Arshavsky Graham S, Boyko E, Salama R, Segal E. Mass Transfer Limitations of Porous Silicon-Based Biosensors for Protein Detection. ACS Sens 2020; 5:3058-3069. [PMID: 32896130 PMCID: PMC7589614 DOI: 10.1021/acssensors.0c00670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Porous
silicon (PSi) thin films have been widely studied for biosensing
applications, enabling label-free optical detection of numerous targets.
The large surface area of these biosensors has been commonly recognized
as one of the main advantages of the PSi nanostructure. However, in
practice, without application of signal amplification strategies,
PSi-based biosensors suffer from limited sensitivity, compared to
planar counterparts. Using a theoretical model, which describes the
complex mass transport phenomena and reaction kinetics in these porous
nanomaterials, we reveal that the interrelated effect of bulk and
hindered diffusion is the main limiting factor of PSi-based biosensors.
Thus, without significantly accelerating the mass transport to and
within the nanostructure, the target capture performance of these
biosensors would be comparable, regardless of the nature of the capture
probe–target pair. We use our model to investigate the effect
of various structural and biosensor characteristics on the capture
performance of such biosensors and suggest rules of thumb for their
optimization.
Collapse
Affiliation(s)
- Sofia Arshavsky Graham
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, Hanover 30167, Germany
| | - Evgeniy Boyko
- Department of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
19
|
Prante M, Segal E, Scheper T, Bahnemann J, Walter J. Aptasensors for Point-of-Care Detection of Small Molecules. BIOSENSORS 2020; 10:E108. [PMID: 32859075 PMCID: PMC7559136 DOI: 10.3390/bios10090108] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Aptamers, a group of nucleic acids which can specifically bind to a target molecule, have drawn extensive interest over the past few decades. For analytics, aptamers represent a viable alternative to gold-standard antibodies due to their oligonucleic nature combined with advantageous properties, including higher stability in harsh environments and longer shelf-life. Indeed, over the last decade, aptamers have been used in numerous bioanalytical assays and in various point-of-care testing (POCT) platforms. The latter allows for rapid on-site testing and can be performed outside a laboratory by unskilled labor. Aptamer technology for POCT is not limited just to medical diagnostics; it can be used for a range of applications, including environmental monitoring and quality control. In this review, we critically examine the use of aptamers in POCT with an emphasis on their advantages and limitations. We also examine the recent success of aptasensor technology and how these findings pave the way for the analysis of small molecules in POCT and other health-related applications. Finally, the current major limitations of aptamers are discussed, and possible approaches for overcoming these challenges are presented.
Collapse
Affiliation(s)
- Marc Prante
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany; (M.P.); (T.S.); (J.B.)
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Technion City, Haifa 3200003, Israel;
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany; (M.P.); (T.S.); (J.B.)
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany; (M.P.); (T.S.); (J.B.)
| | - Johanna Walter
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstr. 5, 30167 Hannover, Germany; (M.P.); (T.S.); (J.B.)
| |
Collapse
|
20
|
Lin TX, Lai PX, Mao JY, Chu HW, Unnikrishnan B, Anand A, Huang CC. Supramolecular Aptamers on Graphene Oxide for Efficient Inhibition of Thrombin Activity. Front Chem 2019; 7:280. [PMID: 31157200 PMCID: PMC6532589 DOI: 10.3389/fchem.2019.00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Graphene oxide (GO), a two-dimensional material with a high aspect ratio and polar functional groups, can physically adsorb single-strand DNA through different types of interactions, such as hydrogen bonding and π-π stacking, making it an attractive nanocarrier for nucleic acids. In this work, we demonstrate a strategy to target exosites I and II of thrombin simultaneously by using programmed hybrid-aptamers for enhanced anticoagulation efficiency and stability. The targeting ligand is denoted as Supra-TBA15/29 (supramolecular TBA15/29), containing TBA15 (a 15-base nucleotide, targeting exosite I of thrombin) and TBA29 (a 29-base nucleotide, targeting exosite II of thrombin), and it is designed to allow consecutive hybridization of TBA15 and TBA29 to form a network of TBAs (i.e., supra-TBA15/29). The programmed hybrid-aptamers (Supra-TBA15/29) were self-assembled on GO to further boost anticoagulation activity by inhibiting thrombin activity, and thus suppress the thrombin-induced fibrin formation from fibrinogen. The Supra-TBA15/29-GO composite was formed mainly through multivalent interaction between poly(adenine) from Supra-TBA15/29 and GO. We controlled the assembly of Supra-TBA15/29 on GO by regulating the preparation temperature and the concentration ratio of Supra-TBA15/29 to GO to optimize the distance between TBA15 and TBA29 units, aptamer density, and aptamer orientation on the GO surfaces. The dose-dependent thrombin clotting time (TCT) delay caused by Supra-TBA15/29-GO was >10 times longer than that of common anticoagulant drugs including heparin, argatroban, hirudin, and warfarin. Supra-TBA15/29-GO exhibits high biocompatibility, which has been proved by in vitro cytotoxicity and hemolysis assays. In addition, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays indicate the anticoagulation ability of Supra-TBA15/29-GO is superior to the most widely used anticoagulant (heparin). Our highly biocompatible Supra-TBA15/29-GO with strong multivalent interaction with thrombin [dissociation constant (K d) = 1.9 × 10-11 M] shows great potential as an effective direct thrombin inhibitor for the treatment of hemostatic disorders.
Collapse
Affiliation(s)
- Ting-Xuan Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Pei-Xin Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Limongi T, Canta M, Racca L, Ancona A, Tritta S, Vighetto V, Cauda V. Improving dispersal of therapeutic nanoparticles in the human body. Nanomedicine (Lond) 2019; 14:797-801. [PMID: 30895871 DOI: 10.2217/nnm-2019-0070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Tania Limongi
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Marta Canta
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Luisa Racca
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Andrea Ancona
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Stefania Tritta
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Veronica Vighetto
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Valentina Cauda
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
22
|
Piccoli J, Hein R, El-Sagheer AH, Brown T, Cilli EM, Bueno PR, Davis JJ. Redox Capacitive Assaying of C-Reactive Protein at a Peptide Supported Aptamer Interface. Anal Chem 2018; 90:3005-3008. [PMID: 29411973 DOI: 10.1021/acs.analchem.7b05374] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electrochemical immunosensors offer much in the potential translation of a lab based sensing capability to a useful "real world" platform. In previous work we have introduced an impedance-derived electrochemical capacitance spectroscopic analysis as supportive of a reagentless means of reporting on analyte target capture at suitably prepared mixed-component redox-active, antibody-modified interfaces. Herein we directly integrate receptive aptamers into a redox charging peptide support in enabling a label-free low picomolar analytical assay for C-reactive protein with a sensitivity that significantly exceeds that attainable with an analogous antibody interface.
Collapse
Affiliation(s)
- Julia Piccoli
- Institute of Chemistry , São Paulo State University (UNESP) , 14800-900 , Araraquara , São Paulo , Brazil
| | - Robert Hein
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| | - Afaf H El-Sagheer
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| | - Eduardo M Cilli
- Institute of Chemistry , São Paulo State University (UNESP) , 14800-900 , Araraquara , São Paulo , Brazil
| | - Paulo R Bueno
- Institute of Chemistry , São Paulo State University (UNESP) , 14800-900 , Araraquara , São Paulo , Brazil
| | - Jason J Davis
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| |
Collapse
|
23
|
Arshavsky-Graham S, Massad-Ivanir N, Paratore F, Scheper T, Bercovici M, Segal E. On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors. ACS Sens 2017; 2:1767-1773. [PMID: 29164872 DOI: 10.1021/acssensors.7b00692] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Porous silicon (PSi) nanomaterials have been widely studied as label-free optical biosensors for protein detection. However, these biosensors' performance, specifically in terms of their sensitivity (which is typically in the micromolar range), is insufficient for many applications. Herein, we present a proof-of-concept application of the electrokinetic isotachophoresis (ITP) technique for real-time preconcentration of a target protein on a PSi biosensor. With ITP, a highly concentrated target zone is delivered to the sensing area, where the protein target is captured by immobilized aptamers. The detection of the binding events is conducted in a label-free manner by reflective interferometric Fourier transformation spectroscopy (RIFTS). Up to 1000-fold enhancement in local concentration of the protein target and the biosensor's sensitivity are achieved, with a measured limit of detection of 7.5 nM. Furthermore, the assay is successfully performed in complex media, such as bacteria lysate samples, while the selectivity of the biosensor is retained. The presented assay could be further utilized for other protein targets, and to promote the development of clinically useful PSi biosensors.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Institute
of Technical Chemistry, Leibniz Universität Hannover, Callinstr.
5, 30167 Hanover, Germany
| | | | - Federico Paratore
- IBM Research − Zürich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Thomas Scheper
- Institute
of Technical Chemistry, Leibniz Universität Hannover, Callinstr.
5, 30167 Hanover, Germany
| | | | | |
Collapse
|
24
|
Reich P, Stoltenburg R, Strehlitz B, Frense D, Beckmann D. Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus. Int J Mol Sci 2017; 18:ijms18112484. [PMID: 29160851 PMCID: PMC5713450 DOI: 10.3390/ijms18112484] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
In combination with electrochemical impedance spectroscopy, aptamer-based biosensors are a powerful tool for fast analytical devices. Herein, we present an impedimetric aptasensor for the detection of the human pathogen Staphylococcus aureus. The used aptamer targets protein A, a surface bound virulence factor of S. aureus. The thiol-modified protein A-binding aptamer was co-immobilized with 6-mercapto-1-hexanol onto gold electrodes by self-assembly. Optimization of the ratio of aptamer to 6-mercapto-1-hexanol resulted in an average density of 1.01 ± 0.44 × 1013 aptamer molecules per cm². As shown with quartz crystal microbalance experiments, the immobilized aptamer retained its functionality to bind recombinant protein A. Our impedimetric biosensor is based on the principle that binding of target molecules to the immobilized aptamer decreases the electron transfer between electrode and ferri-/ferrocyanide in solution, which is measured as an increase of impedance. Microscale thermophoresis measurements showed that addition of the redox probe ferri-/ferrocyanide has no influence on the binding of aptamer and its target. We demonstrated that upon incubation with various concentrations of S. aureus, the charge-transfer resistance increased proportionally. The developed biosensor showed a limit of detection of 10 CFU·mL-1 and results were available within 10 minutes. The biosensor is highly selective, distinguishing non-target bacteria such as Escherichia coli and Staphylococcus epidermidis. This work highlights the immense potential of impedimetric aptasensors for future biosensing applications.
Collapse
Affiliation(s)
- Peggy Reich
- Institut für Bioprozess- und Analysenmesstechnik e.V., 37308 Heilbad Heiligenstadt, Germany.
| | | | - Beate Strehlitz
- UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | - Dieter Frense
- Institut für Bioprozess- und Analysenmesstechnik e.V., 37308 Heilbad Heiligenstadt, Germany.
| | - Dieter Beckmann
- Institut für Bioprozess- und Analysenmesstechnik e.V., 37308 Heilbad Heiligenstadt, Germany.
| |
Collapse
|
25
|
Tawiah KD, Porciani D, Burke DH. Toward the Selection of Cell Targeting Aptamers with Extended Biological Functionalities to Facilitate Endosomal Escape of Cargoes. Biomedicines 2017; 5:biomedicines5030051. [PMID: 28837119 PMCID: PMC5618309 DOI: 10.3390/biomedicines5030051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/19/2017] [Accepted: 08/19/2017] [Indexed: 12/26/2022] Open
Abstract
Over the past decades there have been exciting and rapid developments of highly specific molecules to bind cancer antigens that are overexpressed on the surfaces of malignant cells. Nanomedicine aims to exploit these ligands to generate nanoscale platforms for targeted cancer therapy, and to do so with negligible off-target effects. Aptamers are structured nucleic acids that bind to defined molecular targets ranging from small molecules and proteins to whole cells or viruses. They are selected through an iterative process of amplification and enrichment called SELEX (systematic evolution of ligands by exponential enrichment), in which a combinatorial oligonucleotide library is exposed to the target of interest for several repetitive rounds. Nucleic acid ligands able to bind and internalize into malignant cells have been extensively used as tools for targeted delivery of therapeutic payloads both in vitro and in vivo. However, current cell targeting aptamer platforms suffer from limitations that have slowed their translation to the clinic. This is especially true for applications in which the cargo must reach the cytosol to exert its biological activity, as only a small percentage of the endocytosed cargo is typically able to translocate into the cytosol. Innovative technologies and selection strategies are required to enhance cytoplasmic delivery. In this review, we describe current selection methods used to generate aptamers that target cancer cells, and we highlight some of the factors that affect productive endosomal escape of cargoes. We also give an overview of the most promising strategies utilized to improve and monitor endosomal escape of therapeutic cargoes. The methods we highlight exploit tools and technologies that can potentially be incorporated in the SELEX process. Innovative selection protocols may identify aptamers with extended biological functionalities that allow effective cytosolic translocation of therapeutics. This in turn may facilitate successful translation of these platforms into clinical applications.
Collapse
Affiliation(s)
- Kwaku D Tawiah
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - David Porciani
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|