1
|
De Lira Silva NS, Schenkman S. Biogenesis of EVs in Trypanosomatids. CURRENT TOPICS IN MEMBRANES 2024; 94:49-83. [PMID: 39370213 DOI: 10.1016/bs.ctm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.
Collapse
Affiliation(s)
- Nadjania Saraiva De Lira Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil.
| |
Collapse
|
2
|
Gomez M, Matamoros WA, Larre-Campuzano S, Yépez-Mulia L, De Fuentes-Vicente JA, Hoagstrom CW. Revised New World bioregions and environmental correlates for vectors of Chagas disease (Hemiptera, Triatominae). Acta Trop 2024; 249:107063. [PMID: 37944838 DOI: 10.1016/j.actatropica.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The subfamily Triatominae includes a group of hematophagous insects, vectors of the parasite Trypanosoma cruzi, which is the etiological agent of Chagas disease, also known as American trypanosomiasis. Triatomines occur in the Old and New World and occupy diverse habitats including tropical and temperate areas. Some studies suggest the distributions of triatomines group into three or four regions. This study objectively determined bioregions focused specifically on New World Triatominae, using clustering and ordination analysis. We also identified indicator species by bioregion and investigated relationships among bioregions and environmental variables using redundancy analysis and multivariate regression trees. We delineated seven bioregions specific to Triatominae and linked each with indicator species. This result suggests more biogeographical structure exists than was revealed in earlier studies that were more general, subjective, and based on older taxonomic and distributional information. Precipitation, elevation, and vegetation were important variables in the delimitating bioregions. This implies that more detailed study of how these factors influence triatomine distributions could benefit understanding of how Chagas disease is spread.
Collapse
Affiliation(s)
- Mireya Gomez
- Maestría en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Libramiento Norte Poniente, Universidad de Ciencias y Artes de Chiapas, 1150, Lajas Maciel, Tuxtla Gutiérrez, Chiapas 29039, Mexico
| | - Wilfredo A Matamoros
- Maestría en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Libramiento Norte Poniente, Universidad de Ciencias y Artes de Chiapas, 1150, Lajas Maciel, Tuxtla Gutiérrez, Chiapas 29039, Mexico.
| | - Santiago Larre-Campuzano
- Maestría en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Libramiento Norte Poniente, Universidad de Ciencias y Artes de Chiapas, 1150, Lajas Maciel, Tuxtla Gutiérrez, Chiapas 29039, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | - José A De Fuentes-Vicente
- Maestría en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Libramiento Norte Poniente, Universidad de Ciencias y Artes de Chiapas, 1150, Lajas Maciel, Tuxtla Gutiérrez, Chiapas 29039, Mexico
| | | |
Collapse
|
3
|
Costa-Oliveira CND, Paiva-Cavalcanti MD, Barros MDS, Nakazawa M, Melo MGND, Pessoa-E-Silva R, Torres DJL, Oliveira KKDS, Moreira LR, Morais RCSD, Goes TCD, Oliveira GMDA, Júnior WDO, Silva MMDME, Batista FP, Montenegro D, Lorena VMBD. Outbreak of Chagas disease in Brazil: Validation of a molecular diagnostic method. Exp Parasitol 2023; 247:108478. [PMID: 36731642 DOI: 10.1016/j.exppara.2023.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi (T. cruzi), affects millions of people worldwide. Polymerase Chain Reaction (PCR) and real-time quantitative PCR (qPCR) have been used as tools to monitor parasitic levels in the bloodstream of individuals exposed to infection, thus enabling the monitoring of relapses and the effectiveness of therapy, for example. The aim of this study was to evaluate the TcSAT-IAM system, developed by our research group, on samples from patients with suspected Chagas disease infection. Initially, primer systems were developed for the detection of the nuclear DNA (SAT-DNA) from T. cruzi (TcSAT-IAM). The Cruzi system, predicted in the literature, and TcSAT-IAM were then evaluated in relation to their analytical sensitivity, specificity and efficiency. Afterwards, the applicability of the qPCR technique using both systems (separately) for the diagnosis of acute CD was evaluated in samples from 77 individuals exposed to the outbreak that occurred in Pernambuco-Brazil, relating the results obtained to those of the classical diagnostic methods recommended for this stage of the infection. TcSAT-IAM and Cruzi had a detection limit of 1 fg of target DNA (0,003 parasites). Thirty-eight cases were recorded, 28 by laboratory criteria and 10 by clinical and epidemiological criteria. Blood samples from 77 subjects were submitted to qPCR by both systems, reaching an agreement of 89.61% between them. After analyzes between systems and diagnostic criteria, the TcSAT-IAM showed sensitivity and specificity of 52.36% (CI 37.26-67.52) and 92.31% (CI 79.68-97.35), respectively, accuracy of 72.73% and moderate agreement. The TcSAT-IAM showed an accuracy of 72.58% and 75% in relation to parasitological and serological tests (IgM anti-T. cruzi), respectively. Therefore, quantitative PCR should be incorporated into the diagnosis of suspected acute cases of Chagas disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Filipe Prohaska Batista
- University Hospital Oswaldo Cruz (HUOC) - Pernambuco University (UPE), Recife, Pernambuco, Brazil
| | - Demetrius Montenegro
- University Hospital Oswaldo Cruz (HUOC) - Pernambuco University (UPE), Recife, Pernambuco, Brazil
| | | |
Collapse
|
4
|
Martín-Escolano J, Marín C, Rosales MJ, Tsaousis AD, Medina-Carmona E, Martín-Escolano R. An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an Effective Treatment. ACS Infect Dis 2022; 8:1107-1115. [PMID: 35652513 PMCID: PMC9194904 DOI: 10.1021/acsinfecdis.2c00123] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Chagas disease (CD)
is a parasitic, systemic, chronic, and often
fatal illness caused by infection with the protozoan Trypanosoma
cruzi. The World Health Organization classifies CD as the
most prevalent of poverty-promoting neglected tropical diseases, the
most important parasitic one, and the third most infectious disease
in Latin America. Currently, CD is a global public health issue that
affects 6–8 million people. However, the current approved treatments
are limited to two nitroheterocyclic drugs developed more than 50
years ago. Many efforts have been made in recent decades to find new
therapies, but our limited understanding of the infection process,
pathology development, and long-term nature of this disease has made
it impossible to develop new drugs, effective treatment, or vaccines.
This Review aims to provide a comprehensive update on our understanding
of the current life cycle, new morphological forms, and genetic diversity
of T. cruzi, as well as identify intervention points
in the life cycle where new drugs and treatments could achieve a parasitic
cure.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - María J. Rosales
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, University of Granada, 18071 Granada, Spain
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| |
Collapse
|
5
|
Silva NSDL, Orikaza CM, de Santana FR, Dos Santos LA, Salu BR, Oliva MLV, Sinigaglia RDC, Mortara RA. Interleukin-9 in Immunopathology of Trypanosoma cruzi Experimental Infection. Front Cell Infect Microbiol 2021; 11:756521. [PMID: 34722343 PMCID: PMC8554238 DOI: 10.3389/fcimb.2021.756521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
Chagas’ disease is a parasitosis caused by Trypanosoma cruzi, which affects approximately 8 million people worldwide. The balance between pro- and anti-inflammatory cytokines produced during immunological responses contributes to disease prognosis and progression. Parasite tissue persistence can induce chronic inflammatory stimuli, which can cause long-term tissue injury and fibrosis. Chronic Chagas’ patients exhibit increased levels of interleukin (IL)-9, an important cytokine in the regulation of inflammatory and fibrogenic processes. Data on the role of IL-9 in other pathologies are sometimes contradictory, and few studies have explored this cytokine’s influence in Chagas’ disease pathology. Hence, the aim of this study was to evaluate the role of IL-9 in the progression of T. cruzi infection in vivo and in vitro. In vitro infection demonstrated that IL-9 reduced the number of infected cells and decreased the multiplication of intracellular amastigotes in both C2C12 myoblasts and bone marrow-derived macrophages. In myoblasts, the increased production of nitric oxide (NO) was essential for reduced parasite multiplication, whereas macrophage responses resulted in increased IL-6 and reduced TGF-β levels, indicating that parasite growth restriction mechanisms induced by IL-9 were cell-type specific. Experimental infection of BALB/c mice with T. cruzi trypomastigotes of the Y strain implicated a major role of IL-9 during the chronic phase, as increased Th9 and Tc9 cells were detected among splenocytes; higher levels of IL-9 in these cell populations and increased cardiac IL-9 levels were detected compared to those of uninfected mice. Moreover, rIL9 treatment decreased serum IL-12, IL-6, and IL-10 levels and cardiac TNF-α levels, possibly attempting to control the inflammatory response. IL-9 neutralization increased cardiac fibrosis, synthesis of collagens I and III, and mastocyte recruitment in BALB/c heart tissue during the chronic phase. In conclusion, our data showed that IL-9 reduced the invasion and multiplication of T. cruzi in vitro, in both myoblasts and macrophages, favoring disease control through cell-specific mechanisms. In vivo, IL-9 was elevated during experimental chronic infection in BALB/c mice, and this cytokine played a protective role in the immunopathological response during this phase by controlling cardiac fibrosis and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Nadjania Saraiva de Lira Silva
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Cristina Mary Orikaza
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Fabiana Rodrigues de Santana
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Luana Aguiar Dos Santos
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Bruno Ramos Salu
- Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Maria Luiza Vilela Oliva
- Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Rita de Cássia Sinigaglia
- Electronic Microscopy Center, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
de Souza Marques F, Duarte THC, Xavier VF, Ferraz AT, das Mercês AC, Silva TVC, Mendes LC, da Fonseca Medeiros L, Perin L, Mathias FAS, da Silva Fonseca K, Nogueira-Paiva NC, Carneiro CM, de Abreu Vieira PM. Different infective forms trigger distinct lesions in the colon during experimental Chagas disease. Parasitol Res 2021; 120:3475-3486. [PMID: 34476583 DOI: 10.1007/s00436-021-07236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022]
Abstract
With the control of vectorial transmission of Chagas disease caused by metacyclic trypomastigotes (MT) in endemic countries, other pathways of infection have become important. The infection caused by blood trypomastigotes (BT) is relevant in places where the blood transfusion and organ transplantation are poorly controlled. This study aimed to evaluate immunopathogenic parameters in the colon during the acute and chronic phases of experimental infection in Swiss mice infected with BT or MT forms of VL-10 strain of Trypanosoma cruzi. We have found that animals infected with MT forms presented lower survival rate, and higher tissue parasitism in the acute phase of the disease, which may be associated with the exacerbated activation of the immune system with the production of pro-inflammatory cytokines even in the chronic phase of infection. Taken together, these results can also be associated to the maintenance of the inflammatory process in chronic phase and an earlier denervation of myenteric plexus in colon. These findings emphasized the importance of the inoculum source and the strain, once different forms of different strains seem to promote distinct diseases.
Collapse
Affiliation(s)
- Flávia de Souza Marques
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Thays Helena Chaves Duarte
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Viviane Flores Xavier
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Aline Tonhela Ferraz
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Aline Coelho das Mercês
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Thaís Vieira Carvalho Silva
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lívia Carvalho Mendes
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Luciana da Fonseca Medeiros
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Luísa Perin
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Fernando Augusto Siqueira Mathias
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Kátia da Silva Fonseca
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nivia Carolina Nogueira-Paiva
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratory of Morphopathology, Department of Biological Sciences, Nucleus of Biological Sciences Research, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Martín-Escolano J, Medina-Carmona E, Martín-Escolano R. Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infect Dis 2020; 6:2830-2843. [PMID: 33034192 DOI: 10.1021/acsinfecdis.0c00353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chagas disease is a neglected tropical disease and a global public health issue. In terms of treatment, no progress has been made since the 1960s, when benznidazole and nifurtimox, two obsolete drugs still prescribed, were used to treat this disease. Hence, currently, there are no effective treatments available to tackle Chagas disease. Over the past 20 years, there has been an increasing interest in the disease. However, parasite genetic diversity, drug resistance, tropism, and complex life cycle, along with the limited understanding of the disease and inadequate methodologies and strategies, have resulted in the absence of new insights in drugs development and disappointing outcomes in clinical trials so far. In summary, new drugs are urgently needed. This Review considers the relevant aspects related to the lack of drugs for Chagas disease, resumes the advances in tools for drug discovery, and discusses the main features to be taken into account to develop new effective drugs.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | | | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
8
|
Radisic MV, Repetto SA. American trypanosomiasis (Chagas disease) in solid organ transplantation. Transpl Infect Dis 2020; 22:e13429. [DOI: 10.1111/tid.13429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Marcelo V. Radisic
- d. Institute. Instituto de Trasplante y Alta Complejidad (ITAC) Ciudad Autónoma de Buenos Aires Argentina
| | - Silvia A. Repetto
- Instituto de Investigaciones en Microbiologia y Parasitologia Medica (IMPaM) Facultad de Medicina Universidad de Buenos AiresConsejo Nacional de Investigaciones Cientificas y Tecnicas Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
9
|
Sangenito LS, Menna-Barreto RFS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Repositioning of HIV Aspartyl Peptidase Inhibitors for Combating the Neglected Human Pathogen Trypanosoma cruzi. Curr Med Chem 2019; 26:6590-6613. [PMID: 31187704 DOI: 10.2174/0929867326666190610152934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the flagellate parasite Trypanosoma cruzi, is a wellknown neglected tropical disease. This parasitic illness affects 6-7 million people and can lead to severe myocarditis and/or complications of the digestive tract. The changes in its epidemiology facilitate co-infection with the Human Immunodeficiency Virus (HIV), making even more difficult the diagnosis and prognosis. The parasitic infection is reactivated in T. cruzi/HIV co-infection, with the appearance of unusual manifestations in the chronic phase and the exacerbation of classical clinical signs. The therapeutic arsenal to treat Chagas disease, in all its clinical forms, is restricted basically to two drugs, benznidazole and nifurtimox. Both drugs are extremely toxic and the therapeutic efficacy is still unclear, making the clinical treatment a huge issue to be solved. Therefore, it seems obvious the necessity of new tangible approaches to combat this illness. In this sense, the repositioning of approved drugs appears as an interesting and viable strategy. The discovery of Human Immunodeficiency Virus Aspartyl Peptidase Inhibitors (HIV-PIs) represented a milestone in the treatment of Acquired Immune Deficiency Syndrome (AIDS) and, concomitantly, a marked reduction in both the incidence and prevalence of important bacterial, fungal and parasitic co-infections was clearly observed. Taking all these findings into consideration, the present review summarizes the promising and beneficial data concerning the effects of HIV-PIs on all the evolutionary forms of T. cruzi and in important steps of the parasite's life cycle, which highlight their possible application as alternative drugs to treat Chagas disease.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cláudia M d'Avila-Levy
- Laboratorio de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Therapeutic effects of vaccine derived from amastigote surface protein-2 (ASP-2) against Chagas disease in mouse liver. Cytokine 2018; 113:285-290. [PMID: 30037707 DOI: 10.1016/j.cyto.2018.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
This study investigated the efficacy of the vaccine in liver of mice infected with the Trypanosoma cruzi (T. cruzi) and immunized with AdASP-2. For this purpose, histopathological analysis and gene expression of COX-2, TNF-alpha, TNFR, iNOS, cytochrome C, caspase-3, TLR4, IL-6 and IL10 were evaluated. The following groups were used in this study: Group 1 - Control Group (CTRL) animals received AdβGal vehicle; Group 2 - Infected Group (TC) animals were infected with T. cruzi; Group 3 - Immunized Group (AdASP-2): animals were immunized by AdASP-2 vaccine; Group 4 - Immunized and Infected Group (AdASP-2+TC) animals were infected with T. cruzi and immunized by AdSP-2 vaccine. A significant decrease of amastigote nests was noticed in the group of animals that were immunized with AdASP-2 and infected on the same day. COX-2 and TNF-alpha gene expressions increased in TC group, whereas TNF-alpha decreased in the TC+AdASP-2 group. TNFR expression was high in AdASP-2+TC group. iNOS expression was high for all experimental groups whereas cytochrome C decreased for all experimental groups. Caspase 3 increased in TC and TC+AdASP-2 groups. The gene expression of TLR4 and IL-10 showed an increase in AdASP-2+TC group. Finally, hepatic fibrosis was noticed to TC and AdASP-2 + TC groups. Taken together, our results demonstrated that vaccination with AdASP-2 was effective against the acute phase of experimental Chagas disease as a result of a more powerful and rapid immune response closely related to expression of some inflammatory genes, such as iNOS, TNF-alpha, TLR 4, and IL-10.
Collapse
|
11
|
de la Rosa E, Paglini-Oliva P, Prato LB, Benizio E, Triquell MF, Muñoz SE, Fernández EA. Early Detection of Chronic Asymptomatic Chagas Infection. Med Sci Monit 2018; 24:4567-4571. [PMID: 29965956 PMCID: PMC6058734 DOI: 10.12659/msm.907735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 01/22/2023] Open
Abstract
Chagas disease, also known as American trypanosomiasis, is a chronic and systemic parasitic infection which has become a serious epidemiological problem not only in endemic regions (Latin America), but also in non-endemic ones like North America, Europe, and Oceania. Subjects with the indeterminate chagasic form (ICF), a chronic asymptomatic disease stage, are the main sources of non-vectorial dissemination through blood transfusion, organ transplantation, and congenital transmission. It has been suggested that 94% of urban infections can be explained by these subjects. Under this scenario, the availability of simple and effective screening methods for ICF detection becomes crucial for both prevention of disease propagation and detection of clinical stages. Recently, a new non-invasive method has been proposed for ICF detection. It is based on surface high-resolution ECG and it could be easily adopted and included in modern ECG devices, overcoming the limitations of serological-based tests. The proposed method shows accuracy for early ICF screening, thus improving prognosis by defining the clinical stages and allowing appropriate and effective treatment.
Collapse
Affiliation(s)
- Ezequiel de la Rosa
- Erasmus+ Joint Master in Medical Imaging and Applications, University of Girona, University of Burgundy and University of Cassino and Southern Lazio, Girona, Spain
| | - Patricia Paglini-Oliva
- Health Science Research Institute (INICSA), National Council of Scientific and Technological Research (CONICET), Córdoba, Argentina
- Department of Biomedical Physics, Faculty of Medical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Laura B. Prato
- Basic and Applied Sciences Institute, National University of Villa María, Villa María, Argentina
| | - Evangelina Benizio
- Basic and Applied Sciences Institute, National University of Villa María, Villa María, Argentina
- Institute of Cell Biology, Faculty of Medical Sciences, National University of Córdoba, Córdoba, Argentina
| | - María Fernanda Triquell
- Basic and Applied Sciences Institute, National University of Villa María, Villa María, Argentina
- Institute of Cell Biology, Faculty of Medical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Sonia E. Muñoz
- Health Science Research Institute (INICSA), National Council of Scientific and Technological Research (CONICET), Córdoba, Argentina
- Basic and Applied Sciences Institute, National University of Villa María, Villa María, Argentina
- Institute of Cell Biology, Faculty of Medical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Elmer Andrés Fernández
- Development and Research Center in Immunology and Infection Disease (CIDIE), National Council of Scientific and Technological Research (CONICET), Córdoba, Argentina
- Catholic University of Córdoba (UCC), Córdoba, Argentina
| |
Collapse
|
12
|
Álvarez-Hernández DA, Franyuti-Kelly GA, Díaz-López-Silva R, González-Chávez AM, González-Hermosillo-Cornejo D, Vázquez-López R. Chagas disease: Current perspectives on a forgotten disease. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2018. [DOI: 10.1016/j.hgmx.2016.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Identification of novel Trypanosoma cruzi prolyl oligopeptidase inhibitors by structure-based virtual screening. J Comput Aided Mol Des 2016; 30:1165-1174. [DOI: 10.1007/s10822-016-9985-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/08/2016] [Indexed: 11/26/2022]
|
14
|
Seid CA, Jones KM, Pollet J, Keegan B, Hudspeth E, Hammond M, Wei J, McAtee CP, Versteeg L, Gutierrez A, Liu Z, Zhan B, Respress JL, Strych U, Bottazzi ME, Hotez PJ. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease. Hum Vaccin Immunother 2016; 13:621-633. [PMID: 27737611 DOI: 10.1080/21645515.2016.1242540] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.
Collapse
Affiliation(s)
- Christopher A Seid
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Kathryn M Jones
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Jeroen Pollet
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Brian Keegan
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Elissa Hudspeth
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Molly Hammond
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Junfei Wei
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - C Patrick McAtee
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Leroy Versteeg
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Amanda Gutierrez
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Zhuyun Liu
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Bin Zhan
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Jonathan L Respress
- d Southwest Electronic Energy Medical Research Institute (SWEMRI) , Missouri City , TX , USA
| | - Ulrich Strych
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Maria Elena Bottazzi
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Peter J Hotez
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,c James A. Baker III Institute for Public Policy , Rice University , Houston , TX , USA
| |
Collapse
|
15
|
A Novel Vaccine Approach for Chagas Disease Using Rare Adenovirus Serotype 48 Vectors. Viruses 2016; 8:78. [PMID: 26978385 PMCID: PMC4810268 DOI: 10.3390/v8030078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/28/2022] Open
Abstract
Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy. In this study, we modified Ad5 and Ad48 vectors to contain T. cruzi’s amastigote surface protein 2 (ASP-2) in the adenoviral early gene. We also modified Ad5 and Ad48 vectors to utilize the “Antigen Capsid-Incorporation” strategy by adding T. cruzi epitopes to protein IX (pIX). Mice that were immunized with the modified vectors were able to elicit T. cruzi-specific humoral and cellular responses. This study indicates that Ad48-modified vectors function comparable to or even premium to Ad5-modified vectors. This study provides novel data demonstrating that Ad48 can be used as a potential adenovirus vaccine vector against Chagas disease.
Collapse
|
16
|
Applicability of a novel immunoassay based on surface plasmon resonance for the diagnosis of Chagas disease. Clin Chim Acta 2015; 454:39-45. [PMID: 26731593 DOI: 10.1016/j.cca.2015.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND We defined the methodological criteria for the interpretation of the results provided by a novel immunoassay based on surface plasmon resonance (SPR) to detect antibodies anti-Trypanosoma cruzi in human sera (SPRCruzi). Then, we evaluated its applicability as a diagnostic tool for Chagas disease. METHODS To define the cut-off point and serum dilution factor, 57 samples were analyzed at SPRCruzi and the obtained values of SPR angle displacement (ΔθSPR) were submitted to statistical analysis. Adopting the indicated criteria, its performance was evaluated into a wide panel of samples, being 99 Chagas disease patients, 30 non-infected subjects and 42 with other parasitic/infectious diseases. In parallel, these samples were also analyzed by ELISA. RESULTS Our data demonstrated that 1:320 dilution and cut-off point at ∆θSPR=17.2 m° provided the best results. Global performance analysis demonstrated satisfactory sensitivity (100%), specificity (97.2%), positive predictive value (98%), negative predictive value (100%) and global accuracy (99.6%). ELISA and SPRCruzi showed almost perfect agreement, mainly between chagasic and non-infected individuals. However, the new immunoassay was better in discriminate Chagas disease from other diseases. CONCLUSION This work demonstrated the applicability of SPRCruzi as a feasible, real time, label free, sensible and specific methodology for the diagnosis of Chagas disease.
Collapse
|
17
|
Trypanothione reductase inhibitors: Overview of the action of thioridazine in different stages of Chagas disease. Acta Trop 2015; 145:79-87. [PMID: 25733492 DOI: 10.1016/j.actatropica.2015.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
Thioridazine (TDZ) is a phenothiazine that has been shown to be one of the most potent phenothiazines to inhibit trypanothione reductase irreversibly. Trypanothione reductase is an essential enzyme for the survival of Trypanosoma cruzi in the host. Here, we reviewed the use of this drug for the treatment of T. cruzi experimental infection. In our laboratory, we have studied the effect of TDZ for the treatment of mice infected with different strains of T. cruzi and treated in the acute or in the chronic phases of the experimental infection, using two different schedules: TDZ at a dose of 80 mg/kg/day, for 3 days starting 1h after infection (acute phase), or TDZ 80 mg/kg/day for 12 days starting 180 days post infection (d.p.i.) (chronic phase). In our experience, the treatment of infected mice, in the acute or in the chronic phases of the infection, with TDZ led to a large reduction in the mortality rates and in the cardiac histological and electrocardiographical abnormalities, and modified the natural evolution of the experimental infection. These analyses reinforce the importance of treatment in the chronic phase to decrease, retard or stop the evolution to chagasic myocardiopathy. Other evidence leading to the use of this drug as a potential chemotherapeutic agent for Chagas disease treatment is also revised.
Collapse
|
18
|
van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A. Endogenous Allosteric Modulators of G Protein–Coupled Receptors. J Pharmacol Exp Ther 2015; 353:246-60. [DOI: 10.1124/jpet.114.221606] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
19
|
Keenan M, Chaplin JH. A New Era for Chagas Disease Drug Discovery? PROGRESS IN MEDICINAL CHEMISTRY 2015; 54:185-230. [DOI: 10.1016/bs.pmch.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Decoding the anti-Trypanosoma cruzi action of HIV peptidase inhibitors using epimastigotes as a model. PLoS One 2014; 9:e113957. [PMID: 25464510 PMCID: PMC4252066 DOI: 10.1371/journal.pone.0113957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/01/2014] [Indexed: 12/21/2022] Open
Abstract
Background Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs) on Trypanosoma cruzi, the etiologic agent of Chagas' disease. Methodology and Principal Findings HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. Conclusions and Significance The results contribute to understand the possible role of aspartic peptidases in T. cruzi physiology, adding new in vitro insights into the possibility of exploiting the use of HIV-PIs in the clinically relevant forms of the parasite.
Collapse
|
21
|
Keenan M, Chaplin JH, Alexander PW, Abbott MJ, Best WM, Khong A, Botero A, Perez C, Cornwall S, Thompson RA, White KL, Shackleford DM, Koltun M, Chiu FCK, Morizzi J, Ryan E, Campbell M, von Geldern TW, Scandale I, Chatelain E, Charman SA. Two analogues of fenarimol show curative activity in an experimental model of Chagas disease. J Med Chem 2013; 56:10158-70. [PMID: 24304150 PMCID: PMC3884847 DOI: 10.1021/jm401610c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Chagas
disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is an increasing threat to global health.
Available medicines were introduced over 40 years ago, have undesirable
side effects, and give equivocal results of cure in the chronic stage
of the disease. We report the development of two compounds, 6 and (S)-7, with PCR-confirmed
curative activity in a mouse model of established T. cruzi infection after once daily oral dosing for 20 days at 20 mg/kg 6 and 10 mg/kg (S)-7. Compounds 6 and (S)-7 have potent in vitro activity, are noncytotoxic,
show no adverse effects in vivo following repeat dosing, are prepared
by a short synthetic route, and have druglike properties suitable
for preclinical development.
Collapse
Affiliation(s)
- Martine Keenan
- Epichem Pty Ltd. , Murdoch University Campus, South Street, Murdoch, Western Australia 6150, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Botoni FA, Ribeiro ALP, Marinho CC, Lima MMO, Nunes MDCP, Rocha MOC. Treatment of Chagas cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:849504. [PMID: 24350293 PMCID: PMC3857751 DOI: 10.1155/2013/849504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/13/2022]
Abstract
Chagas' disease (ChD), caused by the protozoa Trypanosoma cruzi (T. cruzi), was discovered and described by the Brazilian physician Carlos Chagas in 1909. After a century of original description, trypanosomiasis still brings much misery to humanity and is classified as a neglected tropical disease prevalent in underdeveloped countries, particularly in South America. It is an increasing worldwide problem due to the number of cases in endemic areas and the migration of infected subjects to more developed regions, mainly North America and Europe. Despite its importance, chronic chagas cardiomyopathy (CCC) pathophysiology is yet poorly understood, and independently of its social, clinical, and epidemiological importance, the therapeutic approach of CCC is still transposed from the knowledge acquired from other cardiomyopathies. Therefore, the objective of this review is to describe the treatment of Chagas cardiomyopathy with emphasis on its peculiarities.
Collapse
Affiliation(s)
- Fernando A. Botoni
- Postgraduate Course of Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, 30130 100 Belo Horizonte, MG, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, 30130 100 Belo Horizonte, MG, Brazil
- Fundação Hospitalar do Estado de Minas Gerais, 30150 260 Belo Horizonte, MG, Brazil
| | - Antonio Luiz P. Ribeiro
- Postgraduate Course of Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, 30130 100 Belo Horizonte, MG, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, 30130 100 Belo Horizonte, MG, Brazil
| | | | - Marcia Maria Oliveira Lima
- Departamento de Fisioterapia, Universidade Federal do Vale do Mucuri e Jequitinhonha, 39100 000 Diamantina, MG, Brazil
| | - Maria do Carmo Pereira Nunes
- Postgraduate Course of Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, 30130 100 Belo Horizonte, MG, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, 30130 100 Belo Horizonte, MG, Brazil
| | - Manoel Otávio C. Rocha
- Postgraduate Course of Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, 30130 100 Belo Horizonte, MG, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, 30130 100 Belo Horizonte, MG, Brazil
| |
Collapse
|
23
|
Munoz Saravia SG, Haberland A, Bartel S, Araujo R, Valda G, Reynaga DD, Ramirez ID, Borges AC, Wallukat G, Ziebig R, Schimke I. Combined measurement of N-terminal pro-B-type natriuretic peptide and highly sensitive cardiac troponin T for diagnosis and monitoring of heart injury in chronic Chagas' disease. Clin Biochem 2013; 46:1615-8. [DOI: 10.1016/j.clinbiochem.2013.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
|